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Purpose. Computer-aided diagnosis (CAD) can aid in improving diagnostic level; however, the main problem currently faced by
CAD isthat it cannot obtain sufficient labeled samples. To solve this problem, in this study, we adopt a generative adversarial network
(GAN) approach and design a semisupervised learning algorithm, named G2C-CAD. Methods. From the National Cancer Institute
(NCI) Lung Image Database Consortium (LIDC) dataset, we extracted four types of pulmonary nodule sign images closely related
tolung cancer: noncentral calcification, lobulation, spiculation, and nonsolid/ground-glass opacity (GGO) texture, obtaining a total
of 3,196 samples. In addition, we randomly selected 2,000 non-lesion image blocks as negative samples. We split the data 90% for
training and 10% for testing. We designed a DCGAN generative adversarial framework and trained it on the small sample set. We
also trained our designed CNN-based fuzzy Co-forest on the labeled small sample set and obtained a preliminary classifier. Then,
coupled with the simulated unlabeled samples generated by the trained DCGAN, we conducted iterative semisupervised learning,
which continually improved the classification performance of the fuzzy Co-forest until the termination condition was reached.
Finally, we tested the fuzzy Co-forest and compared its performance with that of a C4.5 random decision forest and the G2C-CAD
system without the fuzzy scheme, using ROC and confusion matrix for evaluation. Results. Four different types of lung cancer-
related signs were used in the classification experiment: noncentral calcification, lobulation, spiculation, and nonsolid/ground-glass
opacity (GGO) texture, along with negative image samples. For these five classes, the G2C-CAD system obtained AUCs of 0.946,
0.912, 0.908, 0.887, and 0.939, respectively. The average accuracy of G2C-CAD exceeded that of the C4.5 random decision tree by
14%. G2C-CAD also obtained promising test results on the LISS signs dataset; its AUCs for GGO, lobulation, spiculation, pleural
indentation, and negative image samples were 0.972, 0.964, 0.941, 0.967, and 0.953, respectively. Conclusion. The experimental
results show that G2C-CAD is an appropriate method for addressing the problem of insufficient labeled samples in the medical
image analysis field. Moreover, our system can be used to establish a training sample library for CAD classification diagnosis,
which is important for future medical image analysis.
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1. Introduction

Pulmonary carcinomas are the most lethal disease in the
world. Approximately 1.5 million people die due to pul-
monary cancer every year—far higher than the mortality
rate of other diseases [1]. In the United States alone, the
lung cancer deaths in 2018 will reach 154,050 [2]. However,
most pulmonary tumors cause no symptoms. Therefore, the
disease is usually diagnosed at advanced stages, resulting in a
low overall 5-year survival rate of approximately 14% [3]. In
contrast, the 5-year survival rate of patients with stage IA non-
small cell lung cancer that has been pathologically confirmed
and resected or precision treated [4-6] can reach 83% [7-
9]. Thus, early lung cancer detection can sharply decrease
the lung cancer mortality rate [10, 11]. Pulmonary primary
cancers manifest as nodules in the early stage. Compared
to chest X rays, computed tomography (CT) has shown
higher sensitivity in detecting small lung nodules [3, 12].
Currently, CT screening is the most recommended method
for finding nodules [13, 14]. The associated increase in spiral
CT screening has led to a growing burden on radiologists
[15]. Despite the higher resolution available today, it is still
difficult for radiologists to distinguish malignant nodules
from benign ones in low-dose CT (LDCT) images. The rates
of resected benign pulmonary nodules can reach 50% during
surgery [16-19]. These unnecessary surgeries cause physical
and mental pain and impose additional financial burdens on
patients.

A “sign” in a CT lung scans refers to a radiologic finding
that suggests a specific disease process. Understanding the
meaning of a sign implies an understanding of the findings
on the CT scan [20]. Signs are also called “CT features,” “CT
manifestation,” “CT patterns,” or sometimes “CT findings”
[21]. Lobulation signs [22, 23], spiculation signs [15, 24-
28], and some texture signs [29, 30] play crucial roles in
radiologists’ ability to differentiate benign from malignant
nodules [31, 32]. Noncentral calcification, such as punctate
sign or eccentric sign calcification, usually indicates that a
nodule is malignant [33-35]. Therefore, it is highly important
to study methods for identifying the signs of pulmonary
nodules automatically to assist radiologists in diagnosing
pulmonary malignant nodules.

One of the main methods is using Computer-Aided
Detection/Diagnosis (CAD). The earliest conception of CAD
appeared in the 1960s [36, 37]. Its early idea was attempting
to “fully automate the chest exam.” Over the decades, this
expectation has subsided (which seems to have happened to
the early enthusiasm regarding the capabilities of artificial
intelligence systems in general). Currently, the general agree-
ment is that the focus should be on making useful computer-
generated information available to physicians for decision
support rather than trying to make a computer act like a
diagnostician [38]. Various works on the CAD based on CT
signs have been published. Han G et al. [22] designed a
sliding-window-based framework to detect lobulation sign.
Suzuki K et al. [39] developed a computer-aided diagnostic
(CAD) scheme to distinguish benign from malignant nodules
in LDCT scans using a massive training artificial neural
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network (MTANN) and concluded that spiculation sign
is a highly differentiated feature for distinguishing benign
from malignant nodules. CAD systems based on texture
sign features have been investigated in several studies [40-
42]. Since AlexNet won the ImageNet challenge by a large
margin in 2012, deep learning techniques have flourished
rapidly in the image detection field. Compared to traditional
classification algorithms, deep learning can extract most
distinctive features automatically and can implement end-to-
end operations. However, the size of the dataset required to
train a high capacity deep learning framework is quite large,
while generating labeled training data in the medical image
analysis field is very expensive [43].

To address the dilemma of having only a small annotation
set available for lung nodule sign recognition, in this paper,
we propose a semisupervised generative adversarial network
(GAN) and a convolutional neural network (CNN)-based
Co-forest CAD scheme. We apply the designed scheme to
classify four types of nodule signs that are highly related
to lung cancer. We call this proposed scheme G2C-CAD in
abbreviation.

Overall workflow of G2C-CAD is illustrated in Figure 1.
In the stage A, we train a GAN and a Co-forest on the
available small sample set. Then, in stage B, we use the trained
GAN to generate a synthetic nodule patch and transfer it to
the trained CNN discriminator. From the discriminator, we
gain the CNN-extracted features of the synthesized nodule
patch. In stage C, the CNN features are provided to the fuzzy
Co-forest pretrained on the original sample set to conduct
semisupervised learning for the five types of ROI patches.
Finally, the process iterates between stages B and C until a
termination condition is met.

The rest of this paper is organized as follows. In Section 2,
we review the existing lung nodule classification algorithms.
Section 3 presents our G2C-CAD algorithm. We introduce
the experimental method in Section 4 and present an analysis
in Section 5. Section 6 concludes this paper.

2. Related Work

Discriminating between benign or malignant nodules has
attracted the interest of a large number of researchers.
The early discrimination methods were based primarily on
traditional machine learning algorithms such as k-nearest
neighbors (k-NN), linear discriminant analysis (LDA), Bayes
[44], rule based schemes, decision trees (DT), and the sup-
port vector machine (SVM). Krewer et al. [45] tested several
classifiers, including DT, k-NN, and SVM, on extracted
texture and shape features to discriminate malignant from
benign nodules. By analyzing the experimental results, they
found that partly solid and nonsolid nodules have a higher
malignancy rate than do solid nodules. Colin Jacobs et al.
[46] developed and evaluated a computer aided diagnos-
tic system for classifying lung nodules into solid, partly
solid, and nonsolid nodules. This CADx system performs
statistical classification on the nodules’ intensity-, texture-,
and segmentation-based features using the k-NN algorithm.
Xiabi Liu et al. [47] proposed a feature selection method
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FIGURE 1: GAN- and CNN-based Co-forest computer aided diagnosis (G2C-CAD) system workflow.

based on the Flsher criterion and genetic optimization (FIG)
to address Common CT Imaging Signs of Lung (CISL)
disease recognition problems. They applied the FIG feature
selection algorithm to bag-of-visual-words features, wavelet
transform-based features, the Local Binary Pattern, CT Value
Histogram features, and others. Their results showed that
FIG achieved high computational efficiency and was highly
effective. Tao Sun et al. [48] investigated an SVM-based
CADx system for lung cancer classification using a total of
488 input features that included textural features, patient
characteristics, and morphological features to train the clas-
sifier. Hidetaka Arimura et al. [49] developed a computerized
scheme to automatically detect lung nodules in LDCT images
for lung cancer screening. They extracted possible nodule
images using a ring average filter, identified a set of nodule
candidates by applying a multiple-gray-level thresholding
technique, and removed false positives by using two rule-
based schemes on the localized image features related to
morphology and gray levels. Tao Sun et al. [50] proposed
a CADx system to predict the characteristics of solitary
pulmonary nodules in lung CT to diagnose early stage lung
cancer. In their CADx system an SVM model was constructed
that exploited curvelet transform texture features, 3 patient
demographic features, and 9 morphological features. Fang-
fang Han et al. [51] constructed a CADx system based on 50
categories of 3D textural features extracted from gray levels, a
curvature cooccurrence matrix, and gradients as well as other
nodule volume data derivatives.

The above CAD systems mainly utilized features obtained
by traditional feature extraction algorithms. Traditional fea-
ture acquisition is based on manual design and selection,

which requires experts with specialized heuristic knowledge.
The features obtained in this way are low-level features near
the pixel level, and the work scope is relatively small. In the
image analysis workflow, the final performance of the system
also depends on the quality of prior preprocessing or seg-
mentation stages. Therefore, in the traditional CAD solutions,
tuning the classification performance is both complicated and
arduous [52].

The emergence of the convolutional neural network
(CNN) [53] solved this dilemma. In 2012, the emergence
of AlexNet sparked a revival in the image detection field
through deep learning techniques based on CNN features,
and CNNs have subsequently been used extensively in
pulmonary imaging analysis. Compared to traditional algo-
rithms, CNNs can extract more distinctive features auto-
matically. Two studies [52, 54] demonstrated that CNNs
are a promising technique in lung nodule identification.
Deep learning techniques have the inherent superiority of
being able to automatically extract features and adjust the
performance seamlessly.

In traditional CAD algorithms, training only needs to
seek an optimal discriminant surface from the manually
designed feature space. In contrast, deep learning networks
simultaneously attempt to find both the most significant
discriminate features among large numbers of high-level
features and an optimal classification surface. As a result,
training a deep learning network requires a massive amount
of labeled samples [55]—a requirement that cannot be met in
the medical image analysis field because professional anno-
tation is too expensive [56]. Data augmentation techniques
produce only limited effects. Although transfer learning can
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FIGURE 2: The architecture of the generator and the discriminator in the DCGAN model.

alleviate the problem of the lack of training examples to a
certain extent, the significant feature sequences vary between
different classification tasks. Thus, transfer learning is not the
most suitable method to cope with medical image analysis
tasks.

Generative adversarial networks (GANs) [57] have
demonstrated the promising ability to generate visually real-
istic images. A GAN trained with limited annotated samples
can generate large numbers of realistic images. Chuquicusma
M]J et al. [58] conducted visual Turing tests to evaluate the
degree of realism in nodule images generated by a DCGAN
and showed that the generated samples can be used to boost
the diagnostic power by mining high-level discriminative
image features and that the resulting features can be used to
train both radiologists and deep networks.

Semisupervised learning is a type of machine learning
method that combines supervised and unsupervised learn-
ing. It can be applied when only a small number of labeled
data exist, but a large number of unlabeled data are available.
Semisupervised learning is important for reducing the cost of
acquiring labeled data and improving classifier performance.
Commonly used methods include EM with generative mix-
ture models, self-training, cotraining, transductive support
vector machines, and graph-based methods [59]. Co-forest
is a cotraining based semisupervised learning algorithm that
first learns an initial classifier from a small amount of labeled
data and then refines the classifier by further exploiting
a larger number of unlabeled data to boost the classifier’s
performance. When applying micro calcification detection
for breast cancer diagnosis, Ming Li et al. [60] showed that
Co-forest can successfully enhance the performance of a
model trained on only a small amount of diagnosed samples
by utilizing the available undiagnosed samples.

The above works inspired us to exploit a GAN to enlarge
and enrich a training set of pulmonary nodules. It also
motivated us to implement the designed G2C-CAD.

3. Materials and Methods

3.1. Experimentation Materials. Insufficient labeled samples
represents a barrier to CAD progress. The emergence of GAN
[57] begun to change this situation. A GAN consists of two
main parts: a generator G and a discriminator D. The G is
used to learn the distribution of real images. Then it generates
realistic images to attempt to fool the D. The D attempts to
perform true and false discriminations concerning received
images. Throughout the process, the G strives to make the
generated image more realistic, while the D tries to identify
the true and false images. This process is equivalent to a
game with two opponents. Over time, the G and D eventually
achieve a dynamic equilibrium in which images generated by
the generator are highly similar to the real image distribution,
and the discriminator cannot determine whether a sample
is drawn from the true data or generated by the generator.
DCGAN [61] is a GAN extension in which a CNN is
introduced to conduct unsupervised training. The ability of
the CNN to extract features is used to enhance the training of
the generation network. Building on this idea, we constructed
a 32 x 32 input scale DCGAN. The discriminator architecture
in DCGAN has 4 layers, as shown in Figure 2.

We tested a GAN trained from 9 samples to generate
unlabeled-nodule sign patches, and the result is gratifying, as
shown in Figure 3.

3.2. CNN Feature-Based Fuzzy Co-Forest Method. As dis-
cussed in Section 3.1, when we gain a trained GAN, we also get
a trained CNN discriminator simultaneously. For each image
patch passed though the discriminator, we obtain a 128-
dimensional CNN feature vector from the last convolutional
layer. Features of 4 x 4 is hard for eyes to discern; in
Figure 4 we show an example of 32-dimensional 16 x 16
CNN features of a sign patch extracted from layer 1 of
D.
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(a) Original sign patches

(b) Patches generated by DCGAN

FIGURE 3: Samples of DCGAN-generated sign patches and real samples. The image on the left shows examples of the seed samples used for
training. Most of the generated samples in (b) are realistic; although some of the generated patches can be recognized as being fake (the 5th

one in row 3), they do help to boost the CAD system’s performance.

(a) Input patch

(b) Corresponding features

FIGURE 4: (a) An original input sign patch; (b) the corresponding 32 CNN features abstracted from the layer 1 of the discriminator D.

Cotraining random forest (Co-forest) is an upgraded
algorithm for the cotraining paradigm. The standard cotrain-
ing algorithm has two strong assumptions: (1) the samples
distribution is consistent with that of the target functions
and (2) the different features extracted from the same data
should be conditionally independent. In most cases, however,
these two strong assumptions are difficult to satisfy. Co-forest
uses an ensemble consisting of multiple classifiers to avoid
the constraints of standard cotraining. The specific structure
of random forests enables the Co-forest to take advantage
of semisupervised learning and ensemble learning to better
learn the distribution of the training data. Existing Co-forest
works are based on traditional manually designed features
[60, 62]. Here, we try to extend the Co-forest approach to
deep neural networks by utilizing the CNN features obtained
from the GAN’s discriminator.

For each generated realistic sign from DCGAN, we can
extract a 128-element 4 x 4 CNN feature vector. Each 4 x
4 CNN feature can be transformed to a 1 x 16 vector. If
we assume that DCGAN runs N times, then we will obtain
N CNN feature vectors from the discriminator. These CNN
feature vectors for the N image patches can be expressed by a
matrix:

fl,O ce f1,127

foo-o farzr
Original _F = ) 1)

fno---

fN,127

f=le...e5] (2)

where in (1) f is a 16-element vector transformed from a 4 x
4 feature patch. Every row in Original_F represents the 128-
dimensional CNN features from one input image patch. The
features in each column are produced from the same filter.
The nin f,, represents the nth sign in N, and m represents
the mth feature of a sign. We build a complete reference vector
r=[1,1,...,1], |r| = 16. The cosine similarity of any feature
f to r can be calculated as a:

eg*l+e *1+---+e,;*1

“- 2 2 2 21 12 7 G)
ep-te t o tes X VIF+ 17+ 411

where e; is an element of f. We use a distance matrix A of
the relative cosine distances to r to replace the feature matrix
Original _F:

a0 127
X 127

A= . (4)
ano---  9N127

From matrices (1) and (4), we can see that for any two
elements g, and a;, a smaller difference between the values
of g, and g; indicates that their corresponding features f; and
fj are more similar. The elements in each column of A are
a series of continuous-valued data. To build a Co-forest, the
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FIGURE 6: Here, (a) and (b) are fuzzy classification processes, and (c) is the decision tree.

first step is to construct decision trees by utilizing the labeled
samples [63]. Assume that the total number of samples is N
and that the classes are ¢, ¢,, . . ., ¢, k. To build a decision tree,
we randomly select S samples. These S samples are sorted on
A[x] by the values of g;, where x represents the xth column of

A. We calculate the middle value between a;, and a;,,, as a
split point t;,. The class information entropy of S is
k
Info (S) = —ij log, (pj), (5)

i1

where P; represents the proportion of the category j samples
relative to all samples, and S; is a subset of S constructed by
all the elements of S belonging to class Cj, pj = ISj |/S].

When selecting feature t;, as the splitting node of the
decision tree, the information entropy of S is

Info (A [x], t S) = |Si%|‘" « Info (Sj<t,-x) + |Si';t|ix ©
x Info (Sj>tix) .

Then, we compute the information gain:
Gain (A [x] .t : S) = Info(S)-Info (A [x], 25 :S).  (7)

The split information entropy is

a<t;, a<t;,

S | S
ERAE
a>t;,

+S”Lt*‘|xlog S_
1| 2\ S| ’

Split (A [x], £, : S) = — (
®)

and the information gain ratio is

 Gain (A [x],t;: S)

 Split (A[x].t,, : S) )

In a column of attributes A[x], a suitable threshold ¢,
to divide A[x] into two intervals is A[x],(4; < tp.00 €
Alx]y), Alxly(a, > to.o @ € Alx],). This split produces
the maximal information gain ratio. This ¢, is then selected
as the parent node to generate two children. This process
is conducted recursively to build a decision tree until a
termination criterion is matched.

In the reasoning process, if a sample’s attribute value falls
into a small region around ¢, after it is disturbed by noise,
it can easily be misclassified. As shown in Figure 5, suppose
we have a sample whose real attribute values are al=0.977
and a2=0.827; however, due to noise during collection, al is
changed to 0.973. In a traditional decision tree, this sample
would be misclassified as c,.

To avoid this fragility, when constructing a decision tree,
we utilize a fuzzy scheme [63]. In a traditional decision tree,
when a sample’s attribute a is greater than t,, the sample
belongs to either ¢, or ¢,. We modify this crisp classifying
method by selecting a neighborhood threshold ¢ around the
split point ¢, as shown in Figures 6(a) and 6(b), so that the
classification function becomes

C(s) = (10)

Co>

l;+e—a a—-t;+¢
XCpht

where C(s) is a classification function that maps sample s to
one of two weighted classes.
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Input: the labeled set LB.
Process:

foriin{1,...,T}

8,=05

Wi,o =0
endfor
t=0

t=t+1
foriin{l,...,T}
LB, =¢

if(é, < &)

. !
for x, inUj,

endfor
endfor
foriin{1,...,T}

endfor
endLoop

The threshold 9 of the confidence, T is random trees’ number

Initialize a random forest containing T trees.

Loop until all of the trees in Random Forest unchanged
z = a new random vector

e, = ClassificationErrorRate(H,,L)

e, W
Ui,,t = Sampled (G(z) , M)

if (MaxConfidence(E,;, x,)) > 0)
LB;, = U{(x,, E;(x,))}
W;, = W,, + MaxConfidence(E,; x,)

if(e; Wi, < &, Wiy 1)
e; = LearnRandomTree(LB U LB;J)

Output: E * (x) = argmax ) {fuzzy classes set}
y € label i: e;(x) = {fuzzy classes set}

€it

ALGORITHM 1: G2C-CAD.

As shown in Figure 6(c), along one branch, the final
classification ¢ is calculated as follows:

tite—a;
m 5 left branch of t;
a=[]4, % o
= right branch of t
J= ; .
2e 4 j.
where ¢ is one class from {¢;, ¢,, ..., G}

When ¢ = 0.1, under the fuzzy classifying scheme,
the classification result of disturbed example s is C(s) =
{0.253 5 ¢, 0.258 5 ¢;, 0.49 * ¢;}. It is obvious that the maximal
probability of the final decision result is max(C(s)) = ¢;.
Based on this classification example, we can see that the fuzzy
decision scheme is more robust to noise.

The classification result of the fuzzy Co-forest is a
multiple-label probability distribution of the union of the
decision trees’ output; we consider the class with the highest
probability as the final output.

Let LB denote the labeled set. G(z) denotes the process of
generating a new fake sign-image patch utilizing the trained
DCGAN. There are N classifiers in the Co-forest ensemble
E*. ¢ (i = 1,...,N). We denote one of the classifiers in
ensemble, E;, as the concomitant ensemble of e; and create
a subensemble that includes all the classifiers except e;. For a
newly generated sample from G, if the max fuzzy vote sum

of the classifiers in concomitant ensemble E; exceeds a preset
threshold 6, the sample will be copied to a newly labeled set
LB: with the new assigned label. Based on [64], the process
iterates until &;, \W;, /e, is larger than W;,.Then, the set
LB U LBLt is used to refine e;. € denotes the classification

m;, . s
j=o W where w;, ; is the predicted

confidence of E; on LB}, and m;, is the size of set LB} ,.

error rate, and W, = )’ o

Based on the fuzzy decision tree scheme, we construct the
fuzzy Co-forest as shown in Algorithm 1.

4. Experiments

4.1. Datasets. We collected sample instances from both the
LIDC-IDRI and LISS datasets. LIDC-IDRI [65] consists of
pulmonary medical image files (such as CT scans and X-
rays) with corresponding pathological annotations. The data
were collected by the National Cancer Institute to study
early cancer detection in high-risk populations. LISS [21]
consists a set of CISLs collected by the Cancer Institute and
Hospital at the Chinese Academy of Medical Sciences and the
Beijing Institute of Technology intended for computer-aided
detection and diagnosis research and medical education. LISS
contains 271 CT scans and 677 abnormal regions, including
nine categories of CISLs.
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FIGURE 7: The diameter-size distribution of the nodules in the LIDC-IDRI dataset.

a given category of ROI patches for a single patient does
not appear in any two subsets simultaneously, which helped
ensure that the specificity of the trained individual networks
is as high as possible.

4.3. LISS Instances. From LISS, we selected signs of lobula-
tion, spiculation, pleural indentation, and GGO associated
with malignant lung cancer [70-74] as the experimental
objects. The number of samples in each category is shown in
Table 3.

8
700
600
s )
a0 {4y
o0 {4}
20 Ve
“ | hh A
0 IIIIIll---....
TaBLE 1: The scheme of sign selection.
Used as signs Abandoned
Subtlety - -
Internal structure - -
Calcification =4 <>4
Sphericity - -
Margin - -
Lobulation >=4 <4
Spiculation 4 <4
Texture <=2 >2

4.2. LIDC-IDRI Instances. In the LIDC-IDRI CT imaging
slices, most of the annotated nodules have diameters less than
32 pixels, as shown in Figure 7. Therefore, we choose 32 x 32
as the input ROI size.

A higher degree of lobulation, speculation, and nonsolid
texture signs indicates a greater probability of malignant
nodules [66]. A calcification sign usually indicates a benign
nodule [66-68] except when it has a noncentral appearance.
Signs of subtlety [69], internal structure [27], sphericity, and
margin [33] have not been clearly proven to have a strong
relationship with malignancy. To simplify the comparisons
in this experiment, we selected nodules from LIDC with
calcification =4 (noncentral calcification), lobulation >=4,
spiculation >=4, texture <=2, and malignancy >=3 as exper-
imental instances based on the selection rules shown in
Table 1.

LIDC-IDRI contains 21,057 annotated nodules. We
selected the 4 category nodules with signs such as noncen-
tral calcification, lobulation, speculation, and nonsolid/GGO
texture that have a high prevalence of malignancy as the
experimental objects. For the probability of malignancy in
these nodules, we adopted the average value of 4 radiologists’
scores. The noncentral calcification, lobulation, spiculation,
and nonsolid/GGO texture signs are illustrated in Table 2. In
addition, we randomly extracted 32 x 32-pixel image patches
from slices not annotated by any radiologist as negative
samples. In total, we used five types of image blocks in our
experiment.

Based on the center point of the merged regions anno-
tated by 4 experts, we extracted 32 x 32-pixel image blocks
as the experimental input by following the selection criteria
shown in Table 1. Among these samples, we ensured that

4.4. Evaluation Criteria. To evaluate the performance of
the algorithm presented in this paper, we considered the
following criteria.

(1) ROC: The Receiver Operator Characteristic curve
(ROC) is a method that comprehensively and simul-
taneously reflects the sensitivity and specificity of the
classification result. By comparing the classification
results of different samples with the annotation labels,
a series of sensitivity and specificity scores is cal-
culated. Then, a curve is drawn using sensitivity as
the ordinate and 1 — specificity as the abscissa. A
larger area under the curve (AUC) indicates a higher
diagnostic accuracy. On the ROC curve, the point
closest to the top left of the coordinate diagram is the
critical value that reflects the highest sensitivity and
specificity.

(2) Confusion matrix: A confusion matrix is also called
an error matrix, and it is a visual representation of the
classification effect. A confusion matrix can be used
to describe the relationship between the real category
attribute of the sample data and the recognition result.
It is a method for evaluating classifier performance
and is widely used in pattern recognition. A confusion
matrix is also a performance evaluation method that
scholars often use when solving practical application
problems.

4.5. Experimentation. From the LIDC-IDRI database, we
acquired 590 noncentral calcification, 565 lobulation, 576
spiculation, 545 nonsolid/GGO texture sign patches, and
2,500 negative image patches. The experiment was conducted
according to the following steps:

(1) Set the initial values of T, €, and 0 to 6, 0.5, and 0.6,
respectively.
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TABLE 2: Sign samples of calcification, lobulation, spiculation, and nonsolid/GGO texture.

Noncentral calcification

5.0 5.0

Subtlety

Internal structure 1.0 1.0
Calcification 4.0 6.0
Sphericity 3.33 2.67 425
Margin 3.67 4.67 45
Lobulation 1.67 2.0 4.25
Spiculation 1.33 1.33 2.25
Texture 5.0 4.67 4.75

Lobulation

FEEm

Spiculation Nonsolid/GGO texture

4.0 4.0 5.0 3.67
1.0 1.0 1.0 1.0
6.0 6.0 6.0 6.0
4.0 5.0 5.0 4.33
4.0 2.0 4.0 2.67
4.0 4.0 1.0 2.67
4.0 4.0 5.0 1.67
4.0 5.0 4.0 1.33

TABLE 3: Number of selected instances of LISS.

CISL Category # of Lesion Regions
GGO 45
Lobulation 41
Spiculation 29
Pleural Indentation 45
Negative 80

(2) Train the GAN until the discrepancy cost reaches a
balance, as illustrated in Figure 8.

(3) Train a primary fuzzy Co-forest based on the original
samples, utilizing the features exported from the
trained DCGAN discriminator in Step (2).

(4) Input a random vector to DCGAN and transmit the
generated features to the concomitant random fuzzy
decision forest E; in the primary Co-forest until W, >
&, W, /&, for all classes.

In this process, if the maximal weight of the fuzzy
label from E; exceeds the threshold 6, store both
features with the matched label; otherwise, discard the
generated image and generate a new image.

(5) Retrain the corresponding tree e; of E;.

(6) Test the performance of the system.

As a comparison, we trained a C4.5 random forest according
to the same scheme which has been used by G2C-CAD, as the
baseline method.

We also conducted experiments on samples obtained
from LISS.

5. Results

We divided the dataset into two parts, 90% for training and
10% for validation. In this way, the nodule distribution in the
validation subsets is consistent with the nodule distribution
of the original dataset according to the radiologists’ consensus
of their evaluations at the nodule level. The number of trees in
the Co-forest classification model was 6, primary training was
conducted on the training data, and finally, the system was

further validated on the remaining 10%. The sensitivity and
specificity of each class instance was calculated and compared
using the ROC curves shown in Figure 9.

In Figure 9, the AUCs of noncentral calcification, negative
image samples, lobulation, spiculation and nonsolid/GGO
texture are 0.946, 0.939, 0.912, 0.908, and 0.887, respectively.
From the curves in Figure 9, we can see that the G2C-CAD
system achieves the highest overall classification accuracy on
the calcification sign. Compared to noncentral calcification
and negative image samples, the AUCs of lobulation, spicula-
tion, and nonsolid/GGO texture are relatively lower.

To show the underlying classification error distribution, a
confusion matrix of the 5 classification results is presented in
Figure 10.

The diagonal numbers in the confusion matrix represent
the recognition accuracy rates of the corresponding category,
and the nondiagonal elements are misclassification rates, i.e.,
the ratio of other category test samples that were misclassified
to this class. From Figure 10 we can see that the noncentral
calcification sign has the highest classification accuracy,
while the nonsolid/GGO texture sign has the highest mis-
classification rate. Misclassified spiculation signs are mostly
recognized as lobulation. By comparing the test samples,
we find that many of these two types of samples have very
similar textures. From the confusion matrix, we can also
see that most misclassifications occur between lobulation,
spiculation, and nonsolid/GGO texture signs.

6. Discussion

We performed a performance comparison on each category
between G2C-CAD and the C4.5 random forest model
using the confusion matrix. First, we constructed confusion
matrices reflecting the accuracies of G2C-CAD and C4.5.
Then, we calculated the difference matrix for those two
confusion matrices as shown in Figure 11. The float numbers
on the diagonal represent the differences between G2C-
CAD and C4.5 regarding their classification accuracy for
the corresponding category, while the float numbers on the
nondiagonal represent their differences in the classification
error rate, showing the numbers for each class that were
misclassified into the corresponding category.
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ROC Curves
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Negative, A = 0.939

Lobulation, A = 0.912
Spiculation, A = 0.908

Non-solid/GGO Texture, A = 0.887

F1GURE 9: ROC curves for the 5 categories of sign ROI recognition results.

Consequently, positive numbers on the diagonal and
larger values indicate that G2C-CAD achieved a better
performance than that of C4.5. For the elements that are
not on the diagonal, the situation is the opposite. As shown
in Figure 11, no positive values occur in the nondiagonal
elements, which means that G2C-CAD possesses greater
discrimination ability between each category. The element
values on the diagonal are all positive, and the average value
of the diagonal numbers in the difference confusion matrix
is 0.144, demonstrating that our method has a better overall
performance.

To verify the effectiveness of the fuzzy algorithm, we also
conducted multiclassification experiments using G2C-CAD
without the fuzzy algorithm and compared the performances
of the two algorithms using a difference confusion matrix as
shown in Figure 12.

From Figure 12, we can see that the discrimination perfor-
mance of the CAD system employing the fuzzy algorithm is
obviously better than that of the nonfuzzy one. Furthermore,
as shown in Figure 12, the CAD performance of the fuzzy
algorithm better distinguishes the difficult lobulation sign
from the spiculation sign.
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The experimental result on LISS shows higher perfor-
mance; the areas under the ROC curve of GGO, lobulation,
spiculation, pleural indentation, and negative image samples
are 0.972, 0.964, 0.941, 0.967, and 0.953, respectively. By
comparing the training dataset and test samples, we found
that the main reason may be that the samples in different
categories are more separable visually.

7. Conclusion

In this paper, by coupling a GAN with a semisupervised
learning approach, we proposed a G2C-CAD method to
detect signs that are highly correlated with malignant pul-
monary nodules. We first trained a DCGAN on a small
sample set. Then, we extracted the features from the CNN
discriminator trained with the training samples and used
them to train a primary fuzzy Co-forest classifier. Then, we
use the trained DCGAN to generate large amounts of realistic

2
) & 2

FIGURE 11: Performance difference matrix of G2C-CAD and C4.5.

fake samples. Based on these fake samples, we conducted
semisupervised learning with the fuzzy Co-forest and finally
obtained a classifier with excellent performance. By validating
on the LIDC dataset, the area under the ROC curve for five
sign types, noncentral calcification, negative image samples,
lobulation, spiculation, and nonsolid/GGO texture, reached
0.946, 0.939, 0.912, 0.908, and 0.887, respectively. On the LISS
dataset, the proposed system showed comprehensively higher
classification performances than those of a trained C4.5
classifier. The experimental results show that the proposed
G2C-CAD is an appropriate method for solving the problem
of insufficient samples in the medical image analysis field.
Moreover, our system can also be used to establish a training
sample library for CAD classification diagnosis, which holds
great significance for future medical image analysis.

In future work, we plan to combine this method with
multiple-instance learning to perform weak supervised learn-
ing directly on CT slice images or to extend the algorithm,
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FIGURE 12: Performance difference matrix of fuzzy G2C-CAD and nonfuzzy G2C-CAD.

making it suitable for use in the 3D medical image classifica-
tion field.
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