

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-
19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Correspondence

Sequence similarity suggests molecular mimicry-induced cardiovascular symptoms in multisystem inflammatory syndrome in children (MIS-C)

ARTICLE INFO

Keywords

Multisystem inflammatory syndrome in chil-
dren
Severe acute respiratory syndrome coronavirus
2
Coronavirus disease 2019
Group A streptococcus
Molecular mimicry

To the Editor,

Cardiovascular symptoms are the hallmark of multisystem inflammatory syndrome in children (MIS-C) [1]. The pathophysiology includes cardiomyocyte invasion, endothelium injury and microvascular injury [2]. Molecular mimicry is a suspected mechanism of MIS-C pathogenesis after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Several 6-mer or 7 -mer viral peptides were revealed to mimic human proteins, which may result in autoimmune reaction in various tissues [3,4]. However, potential cardiovascular molecular mimicking targets of SARS-CoV-2 are rarely reported.

Group A streptococcus (GAS) is the pathogen with bacterial components mimicking epitopes of human cardiovascular system [5]. We compared target protein sequences of GAS with SARS-CoV-2 via PSI-BLAST (https://www.ebi.ac.uk/Tools/sss/psiblast/) UniProtKB COVID19 database with default parameters. Human myosin heavy chain 6 (MYH6) and proteins in human heart valve proteomes, which were studied in GAS autoimmune reaction [6,7], were included. The FASTA formatted protein sequences were obtained by UniProt (https://www. uniprot.org/). Based on this strategy, we identified eight 6 -mer or 7-mer consecutively identical peptides (Table 1).

The comparison with Basic Local Alignment Search Tool (BLAST) in

SARS-CoV-2 studies needs more evidence to illustrate its autoimmune property [8]. We applied NetMHCcons-1.1 to confirm the class I human leukocyte antigen (HLA) affinity of the above-mentioned peptides [9]. The sequences with their three up- and three down- stream amino acids were input, and the "Peptide length" was set to " $8-11$ mer peptides". All alleles in "HLA supertype representative" were selected. As the results in Table 1, some peptides have a certain affinity to different class I HLAs.

The A02, B35, C04 allele group combination has been considered to increase MIS-C susceptibility [10,11]. In our study, the peptide EKMVSLL mimicking MYH6 possesses strong binding affinity to the vast majority of the alleles in A02 and weak binding affinity to nearly $1 / 3$ alleles in B35 and 3/4 alleles in C04 (Table 2), while other peptides do not show this property. Additionally, we found that the previously reported peptide IVDTVSA mimicking mitochondrial alanine-tRNA ligase (AARS2) also possesses a broad affinity to A02, B35, C04 allele group combination [4]

In conclusion, molecular mimicry may contribute to MIS-C cardiovascular symptoms similar to GAS targets.

[^0]Table 1
Affinity of potential molecular mimicking peptides of SARS-CoV-2 to class I HLA supertype representatives.

[^1]Table 2
Affinity of peptide EKMVSLL to class I HLAs in A02, B35, C04 combination.

Allele groups	Alleles [1-log50k; peptide] Strong binding		Weak binding
A02	HLA-A02:01 [0.672; KMVSLLSVL] [0.671;	HLA-A02:139 [0.805; KMVSLLSV] [0.670;	HLA-A02:02 [0.618; KMVSLLSV]
	KMVSLLSV]	KMVSLLSVL]	HLA-A02:04 [0.474; KMVSLLSVL]
	HLA-A02:02 [0.746; KMVSLLSVL]	HLA-A02:140 [0.828; KMVSLLSV] [0.691;	HLA-A02:05 [0.564; KMVSLLSVL]
	HLA-A02:03 [0.789; KMVSLLSVL] [0.718;	KMVSLLSVL]	HLA-A02:06 [0.633; KMVSLLSVL]
	KMVSLLSV]	HLA-A02:141 [0.848; KMVSLLSV] [0.719;	HLA-A02:07 [0.253; KMVSLLSVL]
	HLA-A02:04 [0.667; KMVSLLSV]	KMVSLLSVL]	HLA-A02:08 [0.567; KMVSLLSV] [0.437;
	HLA-A02:05 [0.702; KMVSLLSV]	HLA-A02:142 [0.822; KMVSLLSV] [0.662;	KMVSLLSVL]
	HLA-A02:06 [0.830; KMVSLLSV]	KMVSLLSVL]	HLA-A02:10 [0.451; KMVSLLSVL]
	HLA-A02:07 [0.410; KMVSLLSV]	HLA-A02:144 [0.806; KMVSLLSV]	HLA-A02:14 [0.596; KMVSLLSVL]
	HLA-A02:09 [0.828; KMVSLLSV] [0.691;	HLA-A02:145 [0.828; KMVSLLSV] [0.691;	HLA-A02:17 [0.366; KMVSLLSVL]
	KMVSLLSVL]	KMVSLLSVL]	HLA-A02:18 [0.253; KMVSLLSVL]
	HLA-A02:10 [0.660; KMVSLLSV]	HLA-A02:146 [0.656; KMVSLLSV]	HLA-A02:19 [0.544; KMVSLLSVL]
	HLA-A02:11 [0.940; KMVSLLSV] [0.863;	HLA-A02:147 [0.828; KMVSLLSV] [0.691;	HLA-A02:20 [0.568; KMVSLLSVL]
	KMVSLLSVL]	KMVSLLSVL]	HLA-A02:21 [0.609; KMVSLLSVL]
	HLA-A02:12 [0.857; KMVSLLSV] [0.750;	HLA-A02:148 [0.785; KMVSLLSV] [0.674;	HLA-A02:28 [0.609; KMVSLLSVL]
	KMVSLLSVL]	KMVSLLSVL]	HLA-A02:33 [0.486; KMVSLLSVL]
	HLA-A02:13 [0.851; KMVSLLSV] [0.746;	HLA-A02:149 [0.828; KMVSLLSV] [0.691;	HLA-A02:34 [0.567; KMVSLLSVL]
	KMVSLLSVL]	KMVSLLSVL]	HLA-A02:35 [0.574; KMVSLLSVL]
	HLA-A02:14 [0.739; KMVSLLSV]	HLA-A02:150 [0.828; KMVSLLSV] [0.691;	HLA-A02:36 [0.518; KMVSLLSVL]
	HLA-A02:16 [0.869; KMVSLLSV] [0.738;	KMVSLLSVL]	HLA-A02:37 [0.571; KMVSLLSVL]
	KMVSLLSVL]	HLA-A02:151 [0.809; KMVSLLSV] [0.691;	HLA-A02:39 [0.547; KMVSLLSVL]
	HLA-A02:17 [0.542; KMVSLLSV]	KMVSLLSVL]	HLA-A02:45 [0.573; KMVSLLSVL]
	HLA-A02:18 [0.410; KMVSLLSV]	HLA-A02:153 [0.828; KMVSLLSV] [0.691;	HLA-A02:46 [0.606; KMVSLLSVL]
	HLA-A02:19 [0.777; KMVSLLSV]	KMVSLLSVL]	HLA-A02:48 [0.615; KMVSLLSVL]
	HLA-A02:20 [0.753; KMVSLLSV]	HLA-A02:154 [0.642; KMVSLLSV]	HLA-A02:51 [0.609; KMVSLLSVL]
	HLA-A02:21 [0.806; KMVSLLSV]	HLA-A02:155 [0.808; KMVSLLSV] [0.742;	HLA-A02:54 [0.467; KMVSLLSVL]
	HLA-A02:22 [0.849; KMVSLLSV] [0.735;	KMVSLLSVL]	HLA-A02:55 [0.329; EAFEKMVSLL] [0.315;
	KMVSLLSVL]	HLA-A02:156 [0.665; KMVSLLSV]	EAFEKMVSL]
	HLA-A02:24 [0.828; KMVSLLSV] [0.691;	HLA-A02:157 [0.828; KMVSLLSV] [0.691;	HLA-A02:56 [0.395; KMVSLLSVL]
	KMVSLLSVL]	KMVSLLSVL]	HLA-A02:57 [0.393; KMVSLLSVL]
	HLA-A02:25 [0.828; KMVSLLSV] [0.691;	HLA-A02:158 [0.876; KMVSLLSV] [0.770;	HLA-A02:60 [0.590; KMVSLLSVL]
	KMVSLLSVL]	KMVSLLSVL]	HLA-A02:61 [0.609; KMVSLLSVL]
	HLA-A02:26 [0.834; KMVSLLSV] [0.709;	HLA-A02:159 [0.828; KMVSLLSV] [0.691;	HLA-A02:62 [0.465; KMVSLLSVL]
	KMVSLLSVL]	KMVSLLSVL]	HLA-A02:64 [0.578; KMVSLLSVL]
	HLA-A02:27 [0.810; KMVSLLSV] [0.677;	HLA-A02:160 [0.828; KMVSLLSV] [0.691;	HLA-A02:65 [0.367; KMVSLLSV] [0.342;
	KMVSLLSVL]	KMVSLLSVL]	KMVSLLSVL]
	HLA-A02:28 [0.806; KMVSLLSV]	HLA-A02:161 [0.842; KMVSLLSV] [0.720;	HLA-A02:72 [0.609; KMVSLLSVL]
	HLA-A02:29 [0.804; KMVSLLSV] [0.650;	KMVSLLSVL]	HLA-A02:78 [0.430; KMVSLLSVL]
	KMVSLLSVL]	HLA-A02:162 [0.828; KMVSLLSV] [0.691;	HLA-A02:79 [0.609; KMVSLLSVL]
	HLA-A02:30 [0.828; KMVSLLSV] [0.691;	KMVSLLSVL]	HLA-A02:80 [0.513; KMVSLLSVL]
	KMVSLLSVL]	HLA-A02:163 [0.828; KMVSLLSV] [0.691;	HLA-A02:84 [0.569; KMVSLLSVL]
	HLA-A02:31 [0.828; KMVSLLSV] [0.691;	KMVSLLSVL]	HLA-A02:87 [0.593; KMVSLLSVL] [0.579;
	KMVSLLSVL]	HLA-A02:164 [0.828; KMVSLLSV] [0.691;	KMVSLLSV]
	HLA-A02:33 [0.671; KMVSLLSV]	KMVSLLSVL]	HLA-A02:91 [0.609; KMVSLLSVL]
	HLA-A02:34 [0.774; KMVSLLSV]	HLA-A02:165 [0.828; KMVSLLSV] [0.691;	HLA-A02:92 [0.606; KMVSLLSVL]
	HLA-A02:35 [0.790; KMVSLLSV]	KMVSLLSVL]	HLA-A02:99 [0.635; KMVSLLSVL]
	HLA-A02:36 [0.741; KMVSLLSV]	HLA-A02:166 [0.828; KMVSLLSV] [0.691;	HLA-A02:101 [0.614; KMVSLLSVL]
	HLA-A02:37 [0.770; KMVSLLSV]	KMVSLLSVL]	HLA-A02:103 [0.333; KMVSLLSVL]
	HLA-A02:38 [0.825; KMVSLLSV] [0.724;	HLA-A02:167 [0.829; KMVSLLSV] [0.701;	HLA-A02:106 [0.609; KMVSLLSVL]
	KMVSLLSVL]	KMVSLLSVL]	HLA-A02:108 [0.338; KMVSLLSVL]
	HLA-A02:39 [0.707; KMVSLLSV]	HLA-A02:168 [0.828; KMVSLLSV] [0.691;	HLA-A02:110 [0.462; KMVSLLSVL]
	HLA-A02:40 [0.828; KMVSLLSV] [0.691;	KMVSLLSVL]	HLA-A02:112 [0.424; KMVSLLSVL] [0.381;
	KMVSLLSVL]	HLA-A02:170 [0.806; KMVSLLSV]	KMVSLLSV]
	HLA-A02:41 [0.800; KMVSLLSV] [0.645;	HLA-A02:171 [0.834; KMVSLLSV] [0.709;	HLA-A02:114 [0.461; KMVSLLSVL]
	KMVSLLSVL]	KMVSLLSVL]	HLA-A02:117 [0.558; KMVSLLSVL]
	HLA-A02:42 [0.814; KMVSLLSV] [0.687;	HLA-A02:172 [0.702; KMVSLLSV]	HLA-A02:122 [0.615; KMVSLLSVL]
	KMVSLLSVL]	HLA-A02:173 [0.828; KMVSLLSV] [0.691;	HLA-A02:126 [0.609; KMVSLLSVL]
	HLA-A02:44 [0.822; KMVSLLSV] [0.662;	KMVSLLSVL]	HLA-A02:127 [0.601; KMVSLLSVL]
	KMVSLLSVL]	HLA-A02:174 [0.828; KMVSLLSV] [0.691;	HLA-A02:129 [0.531; KMVSLLSVL] [0.500;
	HLA-A02:45 [0.697; KMVSLLSV]	KMVSLLSVL]	KMVSLLSV]
	HLA-A02:46 [0.718; KMVSLLSV]	HLA-A02:175 [0.828; KMVSLLSV] [0.691;	HLA-A02:130 [0.253; KMVSLLSVL]
	HLA-A02:47 [0.819; KMVSLLSV] [0.758;	KMVSLLSVL]	HLA-A02:136 [0.582; KMVSLLSV]
	KMVSLLSVL]	HLA-A02:176 [0.828; KMVSLLSV] [0.691;	HLA-A02:137 [0.609; KMVSLLSVL]
	HLA-A02:48 [0.745; KMVSLLSV]	KMVSLLSVL]	HLA-A02:143 [0.571; KMVSLLSV]
	HLA-A02:49 [0.802; KMVSLLSV] [0.697;	HLA-A02:177 [0.828; KMVSLLSV] [0.691;	HLA-A02:144 [0.609; KMVSLLSVL]
	KMVSLLSVL]	KMVSLLSVL]	HLA-A02:146 [0.504; KMVSLLSVL]
	HLA-A02:50 [0.875; KMVSLLSV] [0.780;	HLA-A02:178 [0.693; KMVSLLSV]	HLA-A02:152 [0.367; KMVSLLSV] [0.342;
	KMVSLLSVL]	HLA-A02:179 [0.702; KMVSLLSV]	KMVSLLSVL]
	HLA-A02:51 [0.806; KMVSLLSV]	HLA-A02:180 [0.806; KMVSLLSV]	HLA-A02:154 [0.494; KMVSLLSVL]
	HLA-A02:52 [0.806; KMVSLLSV] [0.684;	HLA-A02:181 [0.828; KMVSLLSV] [0.691;	HLA-A02:156 [0.499; KMVSLLSVL]
	KMVSLLSVL]	KMVSLLSVL]	HLA-A02:169 [0.620; KMVSLLSV] [0.434;
	HLA-A02:54 [0.719; KMVSLLSV]	HLA-A02:182 [0.828; KMVSLLSV] [0.691;	KMVSLLSVL]
	HLA-A02:56 [0.567; KMVSLLSV]	KMVSLLSVL]	HLA-A02:170 [0.609; KMVSLLSVL]

Table 2 (continued)

Allele groups	Alleles [1-log50k; peptide] Strong binding		Weak binding
	HLA-A02:57 [0.532; KMVSLLSV]	HLA-A02:183 [0.828; KMVSLLSV] [0.691;	HLA-A02:172 [0.564; KMVSLLSVL]
	HLA-A02:58 [0.798; KMVSLLSV] [0.703;	KMVSLLSVL]	HLA-A02:178 [0.488; KMVSLLSVL]
	KMVSLLSVL]	HLA-A02:184 [0.757; KMVSLLSV]	HLA-A02:179 [0.564; KMVSLLSVL]
	HLA-A02:59 [0.828; KMVSLLSV] [0.691;	HLA-A02:185 [0.828; KMVSLLSV] [0.691;	HLA-A02:180 [0.609; KMVSLLSVL]
	KMVSLLSVL]	KMVSLLSVL]	HLA-A02:184 [0.626; KMVSLLSVL]
	HLA-A02:60 [0.764; KMVSLLSV]	HLA-A02:186 [0.808; KMVSLLSV] [0.742;	HLA-A02:188 [0.548; KMVSLLSVL]
	HLA-A02:61 [0.806; KMVSLLSV]	KMVSLLSVL]	HLA-A02:191 [0.344; KMVSLLSVL]
	HLA-A02:62 [0.702; KMVSLLSV]	HLA-A02:187 [0.828; KMVSLLSV] [0.691;	HLA-A02:195 [0.465; KMVSLLSVL]
	HLA-A02:63 [0.808; KMVSLLSV] [0.742;	KMVSLLSVL]	HLA-A02:217 [0.398; KMVSLLSVL]
	KMVSLLSVL]	HLA-A02:188 [0.704; KMVSLLSV]	HLA-A02:219 [0.253; KMVSLLSVL]
	HLA-A02:64 [0.747; KMVSLLSV]	HLA-A02:189 [0.828; KMVSLLSV] [0.691;	HLA-A02:224 [0.488; KMVSLLSVL]
	HLA-A02:66 [0.828; KMVSLLSV] [0.691;	KMVSLLSVL]	HLA-A02:229 [0.581; KMVSLLSVL]
	KMVSLLSVL]	HLA-A02:190 [0.828; KMVSLLSV] [0.691;	HLA-A02:232 [0.564; KMVSLLSVL]
	HLA-A02:67 [0.828; KMVSLLSV] [0.691;	KMVSLLSVL]	HLA-A02:233 [0.635; KMVSLLSVL]
	KMVSLLSVL]	HLA-A02:191 [0.475; KMVSLLSV]	HLA-A02:242 [0.547; KMVSLLSVL]
	HLA-A02:68 [0.828; KMVSLLSV] [0.691;	HLA-A02:192 [0.828; KMVSLLSV] [0.691;	HLA-A02:244 [0.451; KMVSLLSVL]
	KMVSLLSVL]	KMVSLLSVL]	HLA-A02:246 [0.461; KMVSLLSVL]
	HLA-A02:69 [0.935; KMVSLLSV] [0.860;	HLA-A02:193 [0.828; KMVSLLSV] [0.691;	HLA-A02:247 [0.512; KMVSLLSVL]
	KMVSLLSVL]	KMVSLLSVL]	HLA-A02:248 [0.609; KMVSLLSVL]
	HLA-A02:70 [0.828; KMVSLLSV] [0.691;	HLA-A02:194 [0.828; KMVSLLSV] [0.691;	HLA-A02:249 [0.576; KMVSLLSVL]
	KMVSLLSVL]	KMVSLLSVL]	HLA-A02:254 [0.605; KMVSLLSVL]
	HLA-A02:71 [0.828; KMVSLLSV] [0.691;	HLA-A02:195 [0.608; KMVSLLSV]	HLA-A02:255 [0.160; KMVSLLSVL]
	KMVSLLSVL]	HLA-A02:196 [0.828; KMVSLLSV] [0.691;	HLA-A02:259 [0.609; KMVSLLSVL]
	HLA-A02:72 [0.806; KMVSLLSV]	KMVSLLSVL]	HLA-A02:261 [0.235; KMVSLLSVL]
	HLA-A02:73 [0.837; KMVSLLSV] [0.725;	HLA-A02:197 [0.828; KMVSLLSV] [0.691;	HLA-A02:264 [0.253; KMVSLLSVL]
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:74 [0.828; KMVSLLSV] [0.691;	HLA-A02:198 [0.828; KMVSLLSV] [0.691;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:75 [0.828; KMVSLLSV] [0.691;	HLA-A02:199 [0.828; KMVSLLSV] [0.691;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:76 [0.810; KMVSLLSV] [0.666;	HLA-A02:200 [0.828; KMVSLLSV] [0.691;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:77 [0.828; KMVSLLSV] [0.691;	HLA-A02:201 [0.828; KMVSLLSV] [0.691;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:78 [0.654; KMVSLLSV]	HLA-A02:202 [0.828; KMVSLLSV] [0.691;	
	HLA-A02:79 [0.806; KMVSLLSV]	KMVSLLSVL]	
	HLA-A02:80 [0.677; KMVSLLSV]	HLA-A02:203 [0.828; KMVSLLSV] [0.691;	
	HLA-A02:81 [0.688; KMVSLLSVL] [0.653;	KMVSLLSVL]	
	KMVSLLSV]	HLA-A02:204 [0.828; KMVSLLSV] [0.691;	
	HLA-A02:84 [0.754; KMVSLLSV]	KMVSLLSVL]	
	HLA-A02:85 [0.828; KMVSLLSV] [0.691;	HLA-A02:205 [0.828; KMVSLLSV] [0.691;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:86 [0.828; KMVSLLSV] [0.691;	HLA-A02:206 [0.828; KMVSLLSV] [0.691;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:89 [0.828; KMVSLLSV] [0.691;	HLA-A02:207 [0.828; KMVSLLSV] [0.691;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:90 [0.844; KMVSLLSV] [0.695;	HLA-A02:208 [0.828; KMVSLLSV] [0.691;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:91 [0.806; KMVSLLSV]	HLA-A02:209 [0.808; KMVSLLSV] [0.742;	
	HLA-A02:92 [0.718; KMVSLLSV]	KMVSLLSVL]	
	HLA-A02:93 [0.828; KMVSLLSV] [0.691;	HLA-A02:210 [0.828; KMVSLLSV] [0.691;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:95 [0.828; KMVSLLSV] [0.691;	HLA-A02:211 [0.828; KMVSLLSV] [0.691;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:96 [0.828; KMVSLLSV] [0.691;	HLA-A02:212 [0.828; KMVSLLSV] [0.691;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:97 [0.828; KMVSLLSV] [0.691;	HLA-A02:213 [0.828; KMVSLLSV] [0.691;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:99 [0.791; KMVSLLSV]	HLA-A02:214 [0.828; KMVSLLSV] [0.691;	
	HLA-A02:101 [0.779; KMVSLLSV]	KMVSLLSVL]	
	HLA-A02:102 [0.808; KMVSLLSV] [0.742;	HLA-A02:215 [0.828; KMVSLLSV] [0.691;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:103 [0.402; KMVSLLSV]	HLA-A02:216 [0.828; KMVSLLSV] [0.691;	
	HLA-A02:104 [0.849; KMVSLLSV] [0.735;	KMVSLLSVL]	
	KMVSLLSVL]	HLA-A02:217 [0.553; KMVSLLSV]	
	HLA-A02:105 [0.835; KMVSLLSV] [0.721;	HLA-A02:218 [0.828; KMVSLLSV] [0.691;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:105 [0.806; KMVSLLSV]	HLA-A02:219 [0.410; KMVSLLSV]	
	HLA-A02:107 [0.828; KMVSLLSV] [0.691;	HLA-A02:220 [0.828; KMVSLLSV] [0.691;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:108 [0.442; KMVSLLSV]	HLA-A02:221 [0.828; KMVSLLSV] [0.691;	
	HLA-A02:109 [0.828; KMVSLLSV] [0.691;	KMVSLLSVL]	
	KMVSLLSVL]	HLA-A02:224 [0.719; KMVSLLSV]	
	HLA-A02:110 [0.548; KMVSLLSV]	HLA-A02:228 [0.828; KMVSLLSV] [0.691;	
	HLA-A02:111 [0.828; KMVSLLSV] [0.691;	KMVSLLSVL]	

Table 2 (continued)

Allele groups	Alleles [1-log50k; peptide] Strong binding		Weak binding
	KMVSLLSVL]	HLA-A02:229 [0.701; KMVSLLSV]	
	HLA-A02:114 [0.640; KMVSLLSV]	HLA-A02:230 [0.868; KMVSLLSV] [0.774;	
	HLA-A02:115 [0.808; KMVSLLSV] [0.742;	KMVSLLSVL]	
	KMVSLLSVL]	HLA-A02:231 [0.690; KMVSLLSV] [0.499;	
	HLA-A02:116 [0.817; KMVSLLSV] [0.680;	KMVSLLSVL]	
	KMVSLLSVL]	HLA-A02:232 [0.702; KMVSLLSV]	
	HLA-A02:117 [0.692; KMVSLLSV]	HLA-A02:233 [0.812; KMVSLLSV]	
	HLA-A02:118 [0.828; KMVSLLSV] [0.691;	HLA-A02:234 [0.828; KMVSLLSV] [0.691;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:119 [0.828; KMVSLLSV] [0.691;	HLA-A02:235 [0.828; KMVSLLSV] [0.691;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:120 [0.828; KMVSLLSV] [0.691;	HLA-A02:236 [0.828; KMVSLLSV] [0.691;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:121 [0.828; KMVSLLSV] [0.691;	HLA-A02:237 [0.828; KMVSLLSV] [0.691;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:122 [0.781; KMVSLLSV]	HLA-A02:238 [0.828; KMVSLLSV] [0.691;	
	HLA-A02:123 [0.828; KMVSLLSV] [0.691;	KMVSLLSVL]	
	KMVSLLSVL]	HLA-A02:239 [0.828; KMVSLLSV] [0.691;	
	HLA-A02:124 [0.688; KMVSLLSVL] [0.653;	KMVSLLSVL]	
	KMVSLLSV]	HLA-A02:240 [0.828; KMVSLLSV] [0.691;	
	HLA-A02:126 [0.806; KMVSLLSV]	KMVSLLSVL]	
	HLA-A02:127 [0.793; KMVSLLSV]	HLA-A02:241 [0.828; KMVSLLSV] [0.691;	
	HLA-A02:128 [0.890; KMVSLLSV] [0.758;	KMVSLLSVL]	
	KMVSLLSVL]	HLA-A02:242 [0.707; KMVSLLSV]	
	HLA-A02:130 [0.410; KMVSLLSV]	HLA-A02:243 [0.814; KMVSLLSV] [0.668;	
	HLA-A02:131 [0.870; KMVSLLSV] [0.772;	KMVSLLSVL]	
	KMVSLLSVL]	HLA-A02:244 [0.660; KMVSLLSV]	
	HLA-A02:132 [0.828; KMVSLLSV] [0.691;	HLA-A02:245 [0.837; KMVSLLSV] [0.725;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:133 [0.828; KMVSLLSV] [0.691;	HLA-A02:246 [0.640; KMVSLLSV]	
	KMVSLLSVL]	HLA-A02:247 [0.646; KMVSLLSV]	
	HLA-A02:134 [0.828; KMVSLLSV] [0.691;	HLA-A02:248 [0.806; KMVSLLSV]	
	KMVSLLSVL]	HLA-A02:249 [0.708; KMVSLLSV]	
	HLA-A02:135 [0.594; KMVSLLSV] [0.594;	HLA-A02:251 [0.828; KMVSLLSV] [0.691;	
	KMVSLLSVL]	KMVSLLSVL]	
	HLA-A02:136 [0.621; KMVSLLSVL]	HLA-A02:252 [0.828; KMVSLLSV] [0.691;	
	HLA-A02:137 [0.806; KMVSLLSV]	KMVSLLSVL]	
	HLA-A02:138 [0.828; KMVSLLSV] [0.691;	HLA-A02:253 [0.868; KMVSLLSV] [0.774;	
	KMVSLLSVL]	KMVSLLSVL]	
		HLA-A02:254 [0.759; KMVSLLSV]	
		HLA-A02:255 [0.319; KMVSLLSV]	
		HLA-A02:256 [0.828; KMVSLLSV] [0.691;	
		KMVSLLSVL]	
		HLA-A02:257 [0.828; KMVSLLSV] [0.691;	
		KMVSLLSVL]	
		HLA-A02:258 [0.868; KMVSLLSV] [0.774; KMVSLLSVL]	
		HLA-A02:259 [0.806; KMVSLLSV]	
		HLA-A02:260 [0.828; KMVSLLSV] [0.691;	
		KMVSLLSVL]	
		HLA-A02:261 [0.369; KMVSLLSV]	
		HLA-A02:262 [0.830; KMVSLLSV] [0.702;	
		KMVSLLSVL]	
		HLA-A02:263 [0.839; KMVSLLSV] [0.705; KMVSLLSVL]	
		HLA-A02:264 [0.868; KMVSLLSV] [0.774;	
		KMVSLLSVL]	
		HLA-A02:265 [0.410; KMVSLLSV]	
		HLA-A02:266 [0.828; KMVSLLSV] [0.691;	
		KMVSLLSVL]	
B35	N/A		HLA-B35:02 [0.341; EAFEKMVSL] [0.293;
			EAFEKMVSLL]
			HLA-B35:03 [0.171; EAFEKMVSL]
			HLA-B35:04 [0.341; EAFEKMVSL] [0.293;
			EAFEKMVSLL]
			HLA-B35:06 [0.265; EAFEKMVSL] [0.220; EAFEKMVSLL]
			HLA-B35:09 [0.341. EAFEKMVSL] [0.293;
			EAFEKMVSLL]
			HLA-B35:11 [0.448; EAFEKMVSL]
			HLA-B35:12 [0.341; EAFEKMVSL] [0.293;
			EAFEKMVSLL]
			HLA-B35:18 [0.225; EAFEKMVSL]
			HLA-B35:09 [0.465; EAFEKMVSL] [0.429;
			EAFEKMVSLL]
			(continued on

Table 2 (continued)

Table 2 (continued)

* HLA binding affinity is scored by 1-log50k; EKMVSLL (bold) with three upstream and three downstream amino acids were included in scoring. Records were excluded when amino acid length in EKMVSLL is shorter than 6.

Funding

This work was supported in part by National Natural Science Foundation of China (81873462).

Declaration of Competing Interest

None.

References

[1] V. Opoka-Winiarska, E. Grywalska, J. Roliński, PIMS-TS, the new paediatric systemic inflammatory disease related to previous exposure to SARS-CoV-2 infection"rheumatic fever" of the 21st century, Int. J. Mol. Sci 22 (9) (2021).
[2] T. Alsaied, A.H. Tremoulet, J.C. Burns, A. Saidi, A. Dionne, S.M. Lang, J. W. Newburger, S. de Ferranti, K.G. Friedman, Review of cardiac involvement in multisystem inflammatory syndrome in children, Circulation 143 (1) (2021) 78-88.
[3] G. Lucchese, A. Flöel, Molecular mimicry between SARS-CoV-2 and respiratory pacemaker neurons, Autoimmun. Rev. 19 (7) (2020), 102556.
[4] A. Dotan, S. Muller, D. Kanduc, P. David, G. Halpert, Y. Shoenfeld, The SARS-CoV-2 as an instrumental trigger of autoimmunity, Autoimmun. Rev. 20 (4) (2021), 102792.
[5] M.W. Cunningham, Molecular mimicry, autoimmunity, and infection: the crossreactive antigens of group a streptococci and their sequelae, Microbiol. Spectr. 7 (4) (2019).
[6] K.C. Faé, D.D. da Silva, S.E. Oshiro, A.C. Tanaka, P.M. Pomerantzeff, C. Douay, D. Charron, A. Toubert, M.W. Cunningham, J. Kalil, L. Guilherme, Mimicry in recognition of cardiac myosin peptides by heart-intralesional T cell clones from rheumatic heart disease, J. Immunol. (Baltimore, Md.: 1950) 176 (9) (2006) 5662-5670.
[7] L. Passos, P.K. Jha, D. Becker-Greene, M.C. Blaser, D. Romero, A. Lupieri, G. K. Sukhova, P. Libby, S.A. Singh, W.O. Dutra, M. Aikawa, R.A. Levine, M. Nunes, E. Aikawa, Prothymosin alpha: a novel contributor to estradiol receptor alphamediated CD8+ T-cell pathogenic responses and recognition of type 1 collagen in rheumatic heart valve disease, Circulation 145 (7) (2022) 531-548.
[8] J. Damoiseaux, A. Dotan, M.J. Fritzler, D.P. Bogdanos, P.L. Meroni, D. Roggenbuck, M. Goldman, N. Landegren, P. Bastard, Y. Shoenfeld, K. Conrad, Autoantibodies and SARS-CoV2 infection: the spectrum from association to clinical implication:
report of the 15th Dresden symposium on autoantibodies, Autoimmun. Rev. 21 (3) (2022), 103012.
[9] E. Karosiene, C. Lundegaard, O. Lund, M. Nielsen, NetMHCcons: a consensus method for the major histocompatibility complex class I predictions, Immunogenetics 64 (3) (2012) 177-186.
[10] R.A. Porritt, L. Paschold, M.N. Rivas, M.H. Cheng, L.M. Yonker, H. Chandnani, M. Lopez, D. Simnica, C. Schultheiß, C. Santiskulvong, J. Van Eyk, J.K. McCormick, A. Fasano, I. Bahar, M. Binder, M. Arditi, HLA class I-associated expansion of TRBV11-2 T cells in multisystem inflammatory syndrome in children, J. Clin. Invest. 131 (10) (2021).
[11] K. Sacco, R. Castagnoli, S. Vakkilainen, C. Liu, O.M. Delmonte, C. Oguz, I. M. Kaplan, S. Alehashemi, P.D. Burbelo, F. Bhuyan, A.A. de Jesus, K. Dobbs, L. B. Rosen, A. Cheng, E. Shaw, M.S. Vakkilainen, F. Pala, J. Lack, Y. Zhang, D. L. Fink,, V. Oikonomou, A.L. Snow, C.L. Dalgard, J. Chen,, B.A. Sellers, G. A. Montealegre Sanchez, K. Barron, E. Rey-Jurado, C. Vial, M.C. Poli, A. Licari, D. Montagna, G.L. Marseglia, F. Licciardi, U. Ramenghi, V. Discepolo, A. Lo Vecchio, A. Guarino, E.M. Eisenstein, L. Imberti, A. Sottini, A. Biondi, S. Mató, D. Gerstbacher, M. Truong, M.A. Stack, M. Magliocco, M. Bosticardo, T. Kawai, J. J. Danielson, T. Hulett, M. Askenazi, S. Hu, J.I. Cohen, H.C. Su, D.B. Kuhns, M.
S. Lionakis, T.M. Snyder, S.M. Holland, R. Goldbach-Mansky, J.S. Tsang, L. D. Notarangelo, Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19, Nat. Med. 28 (5) (2022) 1050-1062.

Heng Wang ${ }^{\mathrm{a}}$, Gangning Wu^{b}, Yan Yang ${ }^{\mathrm{c}}$, Feng Lian ${ }^{\mathrm{a}}$, Song Xue ${ }^{\mathrm{a}, *}$
${ }^{\text {a }}$ Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital,China
${ }^{\mathrm{b}}$ Shanghai Jiao Tong University College of Basic Medicine, China
${ }^{\text {c }}$ Shanghai Jiao Tong University School of Medicine Affiliated Ninth
People's Hospital, China

* Corresponding author. E-mail address: xuesong64@163.com (S. Xue).

[^0]: Abbreviations: MIS-C, multisystem inflammatory syndrome in children; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; GAS, group A streptococcus; MYH6, human myosin heavy chain 6; BLAST, basic local alignment search tool; HLA, human leukocyte antigen; AARS2, mitochondrial alanine-tRNA ligase.

[^1]: * Sequence of Human and SARS-CoV-2 are placed on the upper and lower sides respectively.
 * HLA binding affinity is scored by 1 -log50k; 6-mer or 7 -mer consecutively identical peptides (bold) with three upstream and three downstream amino acids were included in scoring.
 \# Weak binding.

