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Abstract

To fulfill existing guidelines, applicants that aim to place their genetically modi-

fied (GM) insect-resistant crop plants on the market are required to provide

data from field experiments that address the potential impacts of the GM plants

on nontarget organisms (NTO’s). Such data may be based on varied experi-

mental designs. The recent EFSA guidance document for environmental risk

assessment (2010) does not provide clear and structured suggestions that

address the statistics of field trials on effects on NTO’s. This review examines

existing practices in GM plant field testing such as the way of randomization,

replication, and pseudoreplication. Emphasis is placed on the importance of

design features used for the field trials in which effects on NTO’s are assessed.

The importance of statistical power and the positive and negative aspects of

various statistical models are discussed. Equivalence and difference testing are

compared, and the importance of checking the distribution of experimental

data is stressed to decide on the selection of the proper statistical model. While

for continuous data (e.g., pH and temperature) classical statistical approaches –
for example, analysis of variance (ANOVA) – are appropriate, for discontinuous

data (counts) only generalized linear models (GLM) are shown to be efficient.

There is no golden rule as to which statistical test is the most appropriate for

any experimental situation. In particular, in experiments in which block designs

are used and covariates play a role GLMs should be used. Generic advice is

offered that will help in both the setting up of field testing and the interpreta-

tion and data analysis of the data obtained in this testing. The combination of

decision trees and a checklist for field trials, which are provided, will help in

the interpretation of the statistical analyses of field trials and to assess whether

such analyses were correctly applied.

Introduction

In field experiments on plant effects on the soil habitat, for

instance with genetically modified (GM) plants, five com-

ponents need consideration. These are the hypothesis with

respect to the effects, the experimental design, experimen-

tal execution, statistical analysis, and data interpretation

(Hurlbert 1984). Obviously, the hypothesis, experimental

design, and execution are of primary importance, as, if it is

not sound by any criterion, even a well-conducted experi-

ment may fail to bring any novelty. Importantly, the func-

tion of the statistics applied is to show the clarity,

conciseness, and objectivity with which the results are pre-

sented and interpreted. Thus, statistical design, analyses,

and interpretations are critical aspects of experimentation.

And, if any statistical or interpretative errors are made, the

data need to be reanalyzed, which is an achievable task,

given that the proper data set is available.
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There are differences in the statistical approaches used

by investigators that perform field trials with GM plants

to study potential impacts on so-called nontarget organ-

isms (NTO’s). Generally, the aim of such experiments is

to make comparisons between the impacts of GM plants

compared to those of their near-isogenic counterparts.

Unfortunately, such field experiments often follow a

flawed experimental design, such as the use of insufficient

numbers of replicates or improper blocking (for instance,

a field separated in several unequal parts). In addition,

the statistical analyses are sometimes incorrectly chosen.

In this review, we examine the statistical approaches

used in current studies on the effects of GM plants on

NTOs in the field, mainly focusing on arthropods and

other invertebrates. Such studies are characterized by sev-

eral features, such as a high variation in the abundance of

NTOs (in contrast to an analysis of species diversity) with,

often, nonnormal distributions (Druart et al. 2011; Hoss

et al. 2011; Oliveira-Filho et al. 2011; Yamamori 2011). It

is important to state that the experimental design (e.g., the

field lay-out, sample size, sampling method, number of

(sub) samples, and replicates, and the way in which the

treatments are randomized over the experimental units)

defines how the data should be analyzed. In other words,

an appropriate choice of the experimental design, taking

into account all sources of variation and establishing repli-

cate numbers on the basis of these, is primordial. As we

deal with field studies, we will first examine the design of

experiments with respect to the statistical requirements

posed by the scientific question.

Experimental Design

Depending on the purpose of the study, any field design

for GM plant impact analysis should take into account

the level of accuracy of the data needed in relation to the

expected or observed variability. In particular, under- or

overestimated impacts of, for example, GM plant cultivars

should be avoided. For instance, a half-field (a field sepa-

rated in two equal parts, a common example of blocking)

design in comparison to paired fields has a high potential

of reduction in environmental variability and so of mea-

sured impact. The reason is that two halves of a field are

more likely to be similar in previous management, soil

type, and surrounding habitat, than sites that are located

away from each other (Perry et al. 2003). However, care

must be taken to avoid interferences between experimen-

tal units that are located so closely together. Establish-

ment of separation distances, or buffer zones, according

to agronomical rules (e.g., 50 m for rape and 6 m for

beet; Perry et al. 2003) between half-field units will help

to minimize interference problems as well as to maintain

the purity of crops.

Structure of blocks, randomization, and
replication

There are two fundamentally different experimental set-

ups in which data can be obtained: (1) a designed experi-

ment (control over experimental conditions and ability to

vary these conditions) and (2) an observational study (in

which conditions are beyond the control of the experi-

menter). For designed experiments, the main principles of

randomization, replication, and across-unit homogeneity

(blocking) are important. All designed experiments are

usually set up as comparative experiments, in which a

change in a variable is to be shown in relation to a cause

(e.g., the presence of a transgene in the GM plant). A

properly designed experiment must follow three rules/

principles:

(1) are randomly allocated to experimental units to neu-

tralize the effects of location (or other uncontrolled

factors, e.g., weather effects);

(2) are sufficiently replicated to allow an adequate esti-

mation of experimental error variance;

(3) experimental units are (e.g., often, different fields or

plots) grouped into homogeneous blocks prior to

application of the treatment in order to minimize the

impact of other controllable factors, such as differ-

ences in soil composition (Schabenberger and Pierce

2002).

If a variable by which the experimental units should be

blocked is not taken into account, the experimental

design can lead to relatively large errors and thereby make

it more difficult to find treatment effects. The resulting

design might thus be inefficient as a result of this large

error. Moreover, statistical tests that are applied might be

lacking power. If treatments are replicated but not ran-

domly assigned to experimental units, the data should be

treated as observational, because the effect of location is

not neutralized by randomization. Thus, some previously

conducted NTO studies should be characterized as obser-

vational studies (e.g., Yamamori 2011) due to the lack of

(controlled) replicates and/or randomization.

While blocking (Fig. 1) eliminates the effects of system-

atic factors in a well-designed experiment, randomization

(Fig. 2) can neutralize the effects of unknown factors and

allow to estimate treatment differences and variance

components without systematic bias. On the other hand,

replication does not necessarily lead to unbiased calcula-

tions of treatment effects (Schabenberger and Pierce 2002).

Experimental unit size

To determine the proper experimental design, measure-

ments of variables (e.g., the density and dispersal rates of

NTOs) should be taken at different locations in the
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experimental unit (e.g., a field) before an experiment is

performed. A pilot study can be used for this. It is also

possible to use general knowledge on the level of variation

and possible distributions, for example, from other trials

or from the literature (Table 1). These measurements will

provide information about the appropriate buffer zones

between plots and the level of expected variation in the

field, thus indicating an optimal experimental design as

well as the statistical approach to be used. Furthermore, it

is important to know how many samples have to be taken

for each field assessment, the minimally required sample

size, and to determine the size of each sample (e.g., the

size of the area to be sampled in one sampling). One has

to balance the efforts in terms of allowing a higher num-

ber of samples per experimental unit or a lower one in

exchange for more experimental units. However, a general

rule of experimentation is that it is more efficient to have

more experimental units with fewer samples per unit than

fewer units with more samples. Clark et al. (2006) com-

pared the influence of herbicide management of a trial

with herbicide-tolerant (GM) and conventional crops on

local weed densities and indicated the effective number of

samples which allowed distinguishing the effects of GM

from those of non-GM crops. High variability in the val-

ues of variable indicators is usually counterbalanced by

increasing numbers of samples, meaning that for indica-

tors with lower variability, smaller numbers of samples

can be used (Clark et al. 2006). This is dependent on the

size of the effect. Thus, a trade-off exists between an

increase in the size of a sample (e.g., field size) and an

increase in the sample number (e.g., replicates).

Sample number and size

Sample numbers are restricted by various pragmatic limi-

tations. Thus, they need to be handled in reasonable time

and with reasonable investment of labor and money. The

expected variation in the variable to be assayed must first

be determined by analysis of a small number of samples,

for instance, in a pilot experiment. Thus, the mean of the

preliminary pool might be required to be within, for

example, 10% of the real population mean. This 10%

value is considered to be accurate enough for most

purposes (Perry et al. 2009).

n ¼ Z2S2=d2 (1)

(where n – number of replicates; Z – probability [Z0.05 =
1.96]; S2 – error variance of samples, and d2 – margin of

error for the plot) allows to calculate the required num-

ber of samples. This formula (1) is one of the most com-

monly used, although it might underestimate n (Kupper

and Hafner 1989). However, nowadays the number of

replicates can be easily calculated by using any of many

statistical packages that are able to estimate the required

sample size under different experimental designs, taking

into account the effect size, the variance, the degrees of

freedom, and other factors (see also the Power analysis

described below).

Sample numbers and sizes, in relation to the levels

of variability, have thus to be adequate to test the

assumption that there is no significant influence of GM

plant cultivars as compared to non-GM ones. Many

aspects of field experiments (e.g., experimental design and

(A) (B) (C)

Figure. 1. Linked to the type of randomization, treatment effects may

interfere with nontreatment effects. For instance, in a completely

randomized experimental block design, all replicates of treatment A1

may lie in the west of the field, whereas those of A2 lie in the East (A).

In this case, wind or water flows from a certain direction might cause

treatment differences by nontreatment effects. Such randomization

might be done with a more balanced arrangement (B). East–west

effects can be controlled by blocking (C) with a restriction for each

treatment to appear two times in the east and two times in the west.

Figure. 2. Several acceptable (A modes) and

unacceptable ways of treatments (B modes) in

a two-treatment experiment (shaded and

unshaded). Each unit is assumed to have been

treated independently of the other units in the

same treatment (Hurlbert 1984).

ª 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 2741

A. V. Semenov et al. Use of Statistical Tools in Field Testing



size of the unit of replication) have been discussed in the

literature (Clark et al. 2006; Perry et al. 2003; Duan et al.

2006), but there is no consensus as to how many replica-

tions are needed to detect a difference between a GM crop

and its isogenic counterpart. This is obvious, as it depends

on the magnitude of the putative difference, the plot size,

the variability in the data, the design, the degrees of free-

dom, the trophic interactions, and other factors.

Independency of samples and
pseudoreplication

A fundamental assumption of all statistical analyses is that

the data obtained from experimental studies represent

independent observations of representative samplings

from the population of interest (Andow 2003). The mea-

surements or observations are independent if the value of

each observation is in no way influenced by, or related

to, the value of other observations (LeBlanc 2004). Hence,

sampling a similar location twice, or even in different sea-

sons or years can be a source of pseudoreplication.

Most models for statistical analysis require a particular

level of true replication, which permits the estimation of

variability within a treatment. Without estimating vari-

ability within treatments, it is impossible to perform sta-

tistical inference of differences. Repeated measures or

pseudoreplicates are often confused with true replicates.

Pseudoreplication represents a typical violation of the

sample independency assumption. The term pseudorepli-

cation (Hurlbert 1984) refers to “the use of inferential

statistics to test for treatment effects with data from

experiments where either treatments are not replicated

(though samples may be) or replicates are not statistically

independent.” The following example illustrates the way

this can occur (Fig. 3). It is sometimes possible to deal

with pseudoreplication by using the mean of the subsam-

ples or repeated measures in GLM analysis (discussed

below). Doing statistical inference using pseudoreplicates

rather than true replicates might cause an underestimation

of variability. This will result in confidence intervals being

too small and an inflated probability of a Type I error

(falsely rejecting a true null hypothesis) occurs. For NTO

Table 1. Experimental unit (plot) size should be chosen in such a way that interference between plots is likely to be absent.

Dispersal

rate Taxa

Appropriate size

of the plots References

Low Snails; mites; flightless aphids; springtails; larval

stages winged insects

25 m2 Schilthuizen and Lombaerts 1994, 2005; Gil et al. 2004;

Auclerc et al. 2009; Lehmitz et al. 2012.

Moderate Adult spiders; adult soil-dwelling beetles

(e.g., ground beetles); thrips

250 m2 den Boer 1970; Liebherr 1988; Bonte et al. 2008;

Morsello et al. 2008.

Fairly high Adult bugs; other (winged) beetles, adults; winged

aphids

2500 m2 Smith King 1987; Hazell et al. 2005.

High Bees; adult butterflies; adult flies; adult moths;

juvenile spiders

25,000 m2 Feder et al. 1994; Cameron et al. 2009; Bonte

et al. 2008; Løjtnant et al. 2012; Slatkin 1985.

Distances (buffers) between fields should be at least the same as plot widths.

Such interference is likely to result partly from the fact that the individual dispersal distances of NTOs may overlap with more than a single plots,

and thus effects of treatment in one plot may show up in a different plot. To choose the appropriate plot size, therefore, some rules of thumb

may be applied based on characteristic rates of commonly studied NTO’s. Note that studies on immobile larval stages would require a smaller

plots size than those on mobile adults.

Figure. 3. The figure (after Hurlbert 1984) represents the three most

common types of pseudoreplication. Shaded and unshaded boxes

represent experimental units which receive different treatments. Each

dot represents a sample or measurement. Pseudoreplication is a

consequence (in each example) of statistical testing for a treatment

effect by means of procedures which assume that the four data for

each treatment have appeared from four independent experimental

units. Important remark: example A cannot be analyzed properly,

while B can, by taking the means for each unit.
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field testing, it means that the chance to reject the null

hypothesis is higher.

Statistical Power

The power of a statistical test is related to the probability

of distinguishing an effect (e.g., of a GM plant in com-

parison with its near-isogenic counterpart) as a function

of the magnitude of the effect intended to be detected,

the variability in the data and the number of values used

to calculate the means (Andow 2003). Therefore, all field

studies should justify the sample sizes used (size of the

sample and number of replicates). An analysis of statisti-

cal power (power analysis), as part of the analysis, is also

a prerequisite of every study. A prospective statistical

power analysis in order to confirm that the trial design

fits the purpose of the study, is preferred above a retro-

spective power analysis (Andow 2003; EFSA 2010).

Power analyses also provide the confidence that the

level of replication is neither too small to detect the

effects that are present, nor too large to avoid that,

unnecessarily, extra resources are used for trial experi-

ments. It is important to apply difference tests (null

hypothesis of no difference between the impact of a GM

plant and a non-GM plant) for each experiment done to

support an environmental risk assessment (ERA).

In practice, values of 70% (Prasifka et al. 2008) and

80% (Perry et al. 2003) are commonly used in field trials

as the desired level of statistical power. Many field trials

study NTOs, with separate fields as replicates. Therefore,

large numbers of replicates are needed over several

seasons to test the hypotheses in the face of effect of

confounding environmental variables. A power analysis

indicated that replication of 20 experimental units (fields)

per crop per year over 3 years (in total, 60 replicates)

should yield adequate power (>80%) to detect differ-

ences of 1.5 fold or to detect 50% difference (Perry et al.

2003). This minimum sample size will increase if the

heterogeneity of the spatial distribution of the NTOs

increases.

For data that approximately follow a normal distribu-

tion, the power of standard tests (e.g., ANOVA) can be

calculated routinely. Based on the assessment of statistical

power for trial experiments, a simple scheme is proposed

(Fig. 4) which can help to avoid the most common prob-

lems encountered with the setup of a field trial.

Statistical Models for Data Analysis

Any data set obtained in an experiment has a particular

distribution. It is the distribution of the data (i.e., the

dependent variable or the response variable) that dictates

what statistical tools are appropriate for use. Analysis of

variance (ANOVA) can only be used in cases in which

the data follow a normal distribution, possibly after

applying a transformation, such as the logarithmic one

(Fernandez 1992; McCulloch 2006; Zuur 2009). ANOVA

provides a statistical test of whether or not the means of

several groups are equal, and therefore generalizes the

t-test (test of the null hypothesis that the means of two

normally distributed populations are equal) to more than

two groups. The most common use of ANOVA is a linear

relation of the response to the treatments and blocks.

ANOVA should follow several assumptions: 1) indepen-

dency of units (section 2.4); 2) the distributions of the

residuals are normal; 3) equality (or “homogeneity”) of

variances, and 4) the variance of data in groups should be

similar. In case of skewed distributions of the data,

restricted maximum likelihood has to be used (Bolker

et al. 2009).

There are three classes of models used in ANOVA, that

is, fixed effects models (FEM), random effects models

(REM), mixed models (MM).

FEM, REM, MM

The statistical tools to be used are commonly aggregated

under so-called models, like FEM, REM, MM, next to

GLM and generalized linear mixed models (GLMM) (see

below). A FEM is a statistical model that represents

observed quantities (a numerical property that can exist

as a magnitude or multitude) in terms of explanatory

variables that are treated as if they were fixed (Zuur

2009). The FEM applies to situations in which the experi-

menter applies one or more treatments to the subjects of

the experiment (e.g., using two levels of herbicide vs. a

Figure. 4. A scheme which helps to avoid the most common

problems encountered with the setup of a field trial, based on the

importance of statistical power.
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control without herbicide) to see if the response variable

values change (e.g., the level of beetles vs. the control).

This is in contrast to REM in which explanatory variables

might be treated as if they arise randomly. Such models

(REM) assist in controlling for unobserved heterogeneity

when this heterogeneity is constant over time and corre-

lated with independent variables. However, REMs are

rarely used in NTO studies, because these studies all have

at least one fixed factor, that is, a factor of which the levels

are experimentally determined, such as differences among

treatments, the influence of GM plants on NTOs. An

MM is a statistical model containing both fixed and ran-

dom effects. MMs are particularly useful in settings

where repeated measurements are made on the same sta-

tistical parameters or if other sources of random varia-

tion (e.g., site effects) need to be accommodated for.

This means that, in most of the cases, the MM is an

appropriate model for NTO studies, as NTOs are usually

sampled over time in multiple plot replicates.

GLM and GLMM

The GLM is a flexible generalization of ordinary linear

regression and analysis of (co)variance. Sometimes the

data can be transformed (e.g., a logarithmic transforma-

tion; Fernandez 1992) to stabilize the variance. GLMs

generalize linear regression by allowing a linear model to

be related to the mean of the underlying distribution via

a nonlinear link function (explained below) and by

allowing the magnitude of the variance of each measure-

ment to be a function of the mean. In addition to con-

tinuous data (data that are continuous in a selected

range, e.g., pH or concentration of dissolved carbon),

GLMs allow the modeling of discontinuous (count) data

(e.g., numbers of beetles counted per area) and propor-

tions as well as the cases when many zeros in a data set

are present (which is often the case for NTO data, and

is a complicating factor for the statistical analysis).

While there are other approaches (e.g., Chi-square) to

analyze count data, none of them can be efficient and

flexible enough as GLM or GLMM, especially not if the

testing needs to take into account the effect of addi-

tional covariates or random effects. Thus, Chi-square

tests can handle only the most simple tests, for instance

the comparison of two treatments without blocking and

time continuity. This is rarely possible for properly

designed field trials.

GLMs consist of three elements:

(1) probability distribution such as the normal, exponen-

tial, binomial, Poisson etc.

(2) The linear predictor, which is the quantity which

incorporates information about independent variables

(such as temperature, concentration of herbicides)

that may have an influence into the model. It is

related to the expected value of the data through the

link function.

(3) The link function (mathematical function that links

response variables to predictors), which provides the

relationship between the linear predictor and the

mean of the distribution function. There are many

commonly used link functions, and their choice can

be somewhat arbitrary. The link function can linear-

ize the expected response value as well as homogenize

the (expected) variances.

Finally, the GLMM is a particular mixed model. It is

an extension of the GLM, in which the linear predictor

contains random effects (e.g., blocking) in addition to the

usual fixed effects (e.g., the level of herbicide). These ran-

dom effects are usually assumed to have a normal distri-

bution. In the GLMM, it is numerically difficult to

estimate parameters. Various so-called approximate esti-

mation methods have been developed, but unfortunately

none has good properties for all possible models and data

sets (e.g., for ungrouped binary data). For this reason,

numerical methods involving the Markov Chain Monte

Carlo method (Berg 2004) have increasingly been used, as

increasing computing power and advances in methods

have made them more practical. However, drawbacks

exist here too, as the underlying distribution needs to be

specified in advance.

Overdispersion

Overdispersion is the condition by which the variability

of data in a data set exceeds the variability expected

under a particular probability distribution. Thus, data

which are normally distributed are never overdispersed.

However, overdispersion can occur in GLM in which the

mean and variance are functionally dependent. Counts

may exhibit more variability than is possible under the

Binomial or Poisson probability models. McCullagh and

Nelder (1989) suggested that overdispersion may be the

normal situation in many environmental studies (includ-

ing effects of GM plants on NTOs) rather than being an

exception. This might be due to the fact that experiment-

ers resort to a small number of probability distributions

to model their data. In most of the cases, this leads to the

Binomial or Poisson distributions for counts. It is also

important to choose a proper distribution model that

permits higher dispersion if necessary, such as a Beta-

binomial instead of Binomial model and a Negative Bino-

mial instead of a Poisson model. Overdispersion can also

occur due to an improper selection of independent

variables (e.g., the concentration of herbicides vs. envi-

ronmental parameters) and effects to model the data.

Such cases must be solved by altering the set of effects
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and independent variables and not by selecting a different

probability distribution for the data. In many cases (Scha-

benberger and Pierce 2002), overdispersion might be

addressed by addition of random effects and coefficients

to the linear predictor of GLM. In general, low levels of

overdispersion can be handled very well by inflating the

variance function with a fixed factor (which itself is then

called the dispersion parameter). This approach turns a

GLM into a GLMM.

Equivalence testing

In most field trials to study the impact of GM crops on

selected variables like NTO’s, a difference test is used (dif-

ference between effects of a GM and non-GM crop). From

the statistical point of view, there are several major reasons

why this common statistical procedure may require review.

The error of most concern in a difference test is of

falsely inferring that no impacts (possibly indicating no

hazards) exist where, in reality, there are. Because the tra-

ditional statistical null hypothesis is one of equality (no

difference between GM and non-GM crop), this error is

relatively difficult to estimate and/or set to a desired mag-

nitude. This disadvantage is overcome by the equivalence

test, sometimes referred to as a “proof of safety,” as here

the null hypothesis is one of inequality, however, the

error of most concern may not be assessed easily (Andow

2003). The advantage of equivalence testing is therefore

that the responsibility is placed back onto those who wish

to demonstrate the safety of GM plants to do high-qual-

ity, well-replicated experiments with sufficient statistical

power (Perry et al. 2009).

Equivalence testing contrasts with other biological exper-

imentation. In the past, the experimenter tested the null

hypothesis of inequality between a GM organism (GMO)

and its control, which needed to be actively disproved to

reach the conclusion that the GMO is equivalent to the

comparator. The null hypothesis of the equivalence test is

“there is a difference between the GMO and its reference of

a certain minimum size” against the alternative hypothesis

“there is no or only a small difference between the GMO

and its reference”. Therefore, in this testing procedure, a

significant result (rejection of the null hypothesis) is

required in order to conclude that the GMO and the refer-

ence are equivalent in their effects. For example, Marvier

et al. (2007) reported a meta-analysis of 42 field experi-

ments that indicated that nontarget invertebrates were gen-

erally more abundant in Bt-cotton and Bt-maize fields than

in nontransgenic fields managed conventionally with insec-

ticides. However, in comparison with insecticide-free con-

trol fields, certain NTO taxa were less abundant in the Bt

crop fields (Perry et al. 2009). A successful test needs

equivalence limits, which are difficult to select for NTO

field studies (Van der Voet et al. 2011). Equivalence limits

could be estimated from field studies with concurrent ref-

erence varieties, which are typically the same studies in

which also the GM and its non-GM counterpart are tested.

Therefore, Van der Voet et al. (2011) suggested to establish

a two-step procedure, the first step being the setting of equiv-

alence limits, the second their use for assessing equivalence.

Van der Voet et al. (2011) suggested that statistical

methodology should not be focused exclusively on either

differences or equivalences, but should rather provide a

better understanding within which the conclusions of

both types of assessment are allowed (Van der Voet et al.

2011). Both approaches are complementary: statistically

significant differences may point at biological changes

caused by the genetic modification, but may not be rele-

vant from the viewpoint of ERA (Environmental Risk

Assessment). Equivalence assessments may identify differ-

ences that could be larger than natural variation, but such

cases may or may not indicate a true biological change

caused by the genetic modification. On the other hand,

Ward et al. (2012) suggested that comparisons with tradi-

tional equivalence testing are not very helpful, because

with such a test, the focus is on whether the difference

between two treatments is less than a prespecified

amount. A situation could arise in which two different

submissions with very similar profiles (e.g., GM, compar-

ator, and environment) could result in different conclu-

sions because the respective sets of reference varieties led

to different sets of equivalence limits (Ward et al. 2012).

Statistical Approaches and Real Data

In this section, various field experiments are discussed

and the merits of the experimental designs or statistical

analyses are highlighted (using Checklist for field trials,

Table 2). This analysis may assist us in setting up new

experiments and assessing the (biological) relevance of

results of field trials with GM plants.

A first example is offered by a study by Hoss et al.

(2011). They assessed the possible influence of GM maize

(expressing the insecticidal Cry3Bb1 protein), as com-

pared to non-GM maize, on the abundance of free-living

soil nematodes. While the experimental design (random-

ized complete block design) was fair for such a compari-

son (steps 1, 2, 3, and 4 in Table 2), the statistical

approach was rudimentary for its purpose. An ANOVA

with maize cultivar as the fixed factor and block as a

random factor (6.3. in Table 2) was carried out to test for

differences in the measured parameters (nematode counts)

between the two cultivars. As the measurements encom-

passed discontinuous (count) data, the use of a GLM on

the basis of a Poisson distribution would have been

appropriate (Premise 6.2.2. in Table 2 is violated). Count/
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Table 2. Checklist for field trials that provides guidance in the use of statistical principles related to field testing of GM crops.

Step Explanation

1. Statement of a hypothesis: in any field test, a hypothesis has to be formulated. As a hypothesis is a statement of the presumed

relationship between variables, it must be properly stated. The hypothesis suggests a particular relationship between variables and it

therefore narrows the problem to one that is specific and researchable. This makes the specification of independent and dependent

variables relatively easy.

2. Definition of variables: In order to observe whether the hypothesized relationship between variables exists, the latter must be clearly

defined. Definition of the variables in a trial experiment allows everyone (both the experimenter and the regulator) to know what is

being studied and facilitates interpretation of the results, thus, a description of the variables and the samples is required (e.g., what

species, what larval stage, where were samples taken, when, and how).

3. Specification of sample: The experimenter must clearly define which biological parameters (e.g., NTO) are studied and how:

Were all possible or a specific set of NTOs studied?

Were samples randomly selected?

Was the sample only one organism or many?

Were organisms made up in groups?

These clarifications will help to determine the generalizations that were made, the data collection procedures that were selected, and

the statistical analysis that was employed.

4. Experimental design: The experimental design chosen should allow the experimenter to test the hypothesis. In the design, the

experimenter should have provided answers to the following question and considerations:

Were the treatments blocked? If not, then use completely randomized design. If yes and only one variable was studied, then use a

randomized block design. If there was more than one variable, use a factorial randomized block design.

When the experimental design is selected, the following questions have to be answered positively:

4.1. Were the treatments (blocks) properly randomized? (Fig. 1).

4.2. Were the treatments (blocks) properly replicated? (Fig. 2).

4.3. Was the experimental unit size appropriate for a certain NTO? (Table 1). Justification should be provided.

4.4. Was the sample size appropriate for a certain NTO? (2.3. Sample size). Sample size calculation (or justification) should be provided

as well as timing, frequency, and duration.

4.5. Was true replication performed and pseudoreplication avoided? (Fig. 3). How were subsamples pooled?

5. Statistical power: statistical power is the probability that the test applied will reject the null hypothesis when the null hypothesis is

indeed false. It also provides the confidence that replication is neither too small to detect effects that are present, nor too great to

avoid that unnecessary extra resources are used for trial experiments. Values of 70% (Prasifka et al. 2008) and 80% (Perry et al. 2003)

are commonly used in field trials as the desired statistical power. The EFSA guidance document requires a prospective power analysis

in order to test whether the design and the sample size will be able to test the hypotheses at hand.

6. Statistical analysis: After the data have been collected, the experimenter must assess the relationships between independent and

dependent variables. Most of these assessments are based on statistical analyses.

6.1. Type of null hypothesis: This hypothesis, denoted H0, should be capable of being proven false using a test of observed data. The

null hypothesis typically corresponds to a general or default position. A set of data can only reject a null hypothesis or fail to reject it.

Test of difference (H0: l1 = l2) or equivalence test (H0: l1–l2 > r or H0: l1–l2 < �r).

6.2. What types of data were analyzed?

6.2.1. If data are continuous (e.g., pH) then consider the normal or log-normal distribution (i.e., use a log transformation) and

subsequently use ANOVA for balanced or REML for unbalanced (asymmetric) data. Check the residual plot.

6.2.2. If data are counts (e.g., numbers of larvae), then GLM with Poisson distribution and log-link function are used. Either use a GLM

for simple block design or a GLMM for designs such as split-plot design. In case of overdispersion, use a quasi-likelihood approach

(i.e., variance proportional to the mean). An alternative way to model overdispersion is by using the negative binomial distribution.

6.2.3. If data are proportions (e.g., the mortality of larvae), use GLM with binomial distribution and proper link function (e.g., logit).

Either use a GLM for simple block design or a GLMM for designs such as split-plot design. In case of overdispersion of the data, use a

quasi-likelihood approach. An alternative way to model overdispersion is by using the beta-binomial distribution. Overdispersion should

not be used for 0/1 data as overdispersion is then not possible.

6.3. Fixed and Random effects: these are the types of dependent variables in statistical analyses (Box 8). Check how the fixed and

random effects were selected.

6.4. Overdispersion: is the condition by which the variability of the data exceeds that expected under a certain probability distribution

(data which are normally distributed are never overdispersed).

- Check for overdispersion (the occurrence of more variance in the data than predicted by a statistical model), especially for data that

follow a Poisson (counts) or binomial distribution (proportions) (Box 10).

- In some cases, distribution models might have to be changed to Beta-binomial instead of Binomial and Negative Binomial instead of

Poisson to deal with overdispersion. Overdispersion might also be addressed by the addition of random effects and coefficients to the

linear predictor of GLM. This approach turns GLM to GLMM.

Most of the mistakes discussed in Section 5 can be avoided if the rules below are considered.
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Poisson-distributed data have the property that the vari-

ance increases with the mean, which violates the ANOVA

assumption of homogeneous variances. Thus, applying

ANOVA to such data can lead to inaccurate p-values.

Moreover, an analysis of the statistical power of the test

was not performed (5. in Table 2).On the basis of this, we

propose the initial structure of statistical considerations

that guide us to the appropriate test shown in Fig. 5.

Another example of fairly improper use of statistics can

be found in Oliveira-Filho et al. (2011). These authors

studied the influence of pest control agents on nontarget

invertebrates in soil. For comparison of the treatments,

they transformed the count data of invertebrates to per-

centages of a maximum (to distinguish relative changes),

after which differences in the percentages between the

treatments were evaluated by one-way ANOVA. The

authors did not check in their data whether the variance

increased with the mean. As in the above, a GLM (for

proportions) instead of ANOVA (for continuous data)

should have been used (Premise 6.2.3. in Table 2 is vio-

lated). A similar problem can be found in Post and Parry

(2011). These authors studied the effects of transgenic

blight-resistant American chestnut, as compared to a

non-GM variant, on insect herbivores in a completely

randomized block design (4. in Table 2). Although it was

appropriate to use one-way ANOVA for comparisons of

the growth rates (continuous data) of insect herbivores

(6.2.1.in Table 2), the use of this test to compare the

counts of the insect herbivores was not (6.2.2.in Table 2

is violated). Again, the use of a GLM on the basis of the

Poisson distribution would have been indicated. As we

can see from these examples, usage of the above decision

tree or Checklist for field trials (Table 2) assists us in

selecting the appropriate statistical analyses.

Furthermore, a farm-scale study (Spain) was initiated

in 2000 to assess the potential impact of Bt-maize on the

abundance and diversity of predatory arthropods (de

la Poza et al. 2005). The experimental setup was a ran-

domized block design (4. in Table 2)involving three treat-

ments, each with four (Lleida) or three (Madrid)

replicates. The treatments were: (1) Bt transgenic maize,

(2) the isogenic hybrid without insecticide treatment, and

(3) the isogenic hybrid with imidacloprid insecticide seed

treatment. In the combined ANOVA, a split-plot model

was used, in which year and location were considered as

the main plots. Subplots were the treatment (3 treat-

ments) and sub-subplots were the sampling dates. All fac-

tors, except blocks, were considered to be fixed and

crossed with each other, except, again, for blocks that

were nested within locations and years (6.3. in Table 2).

A priori comparisons of the means among treatments

within a given environment (year per location combina-

tions) were performed with the adjusted least square

means, using standard t-tests. To normalize the original

data, these were transformed by square root transforma-

tion prior to analysis (6. in Table 2). This study thus used

the appropriate statistical tools.

In the case of Druart et al. (2011), who studied the

influence of pesticide drift and transfer on nontarget

snails in soil, the experimental design (steps 1, 2, 3, and 4

in Table 2) and statistical analysis were also quite ade-

quate. Differences in snail mass or shell diameter were

assessed by a linear mixed effects model with zone as the

fixed explanatory variable and microcosm as the random

variable (6.3. in Table 2). The mortality for each treat-

ment between each zone and mortality between treat-

ments in all zones (pooled) were assessed by a binomial

GLM (see the tree above) (6.2.3. in Table 2), resulting in

an appropriate statistical analysis.

Proper statistical analysis can also be applied even if a

relatively complex experimental design is used. Thus,

Stoleson et al. (2011) studied the responses of bird com-

munities to an operational herbicide treatment over time.

They used a randomized block design (4. in Table 2), in

which half of each 8-ha block received herbicide and the

other half acted as control. As for the statistical analyses,

they used GLMMs to model the effects of year, site, her-

bicide treatment and cutting sequence on vegetation and

avian target variables (6. in Table 2). In all models, they

considered site as a random effect and year, herbicide

treatment, and cutting sequence as fixed effects (6.3. in

Table 2). Shannon indices were modeled using a Beta

distribution, while other diversity indices were modeled

with a normal distribution. Vegetation covers were mod-

eled using a log-normal distribution, whereas bird abun-

dances were modeled using a Poisson distribution. All

models used the restricted maximum likelihood method.

While standard maximum likelihood (used for classical

ANOVA to fit parameters) estimates the standard devia-

tions of the random effects assuming that the fixed-effect
Figure. 5. Initial structure of statistical considerations that helps to

select the appropriate test
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estimates are precisely correct, restricted maximum likeli-

hood averages some of the uncertainty in the fixed-effect

parameters to adjust the denominator degrees of freedom.

The analyses of species diversity indices are confounded

by effects over different spatial scales (Crist et al. 2003).

However, diversity indices are not recommended for gen-

eral GM plant impact assessment and univariate statistics

(e.g., the presence or density of a NTO) or multivariate

approaches may be more appropriate (Perry et al. 2009).

On the basis of the discussed weaknesses and strengths

of the methods used in the above described examples, we

modified the most common part (count and proportion

data for NTO) of the decision tree (Fig. 6).

From all examples one may conclude that, when apply-

ing significance tests for abundance data, we often face the

problem of uncertainty concerning the true effect (or the

width of confidence intervals, in case of equivalence tests).

This may become large for low abundances (power analy-

sis can provide insight into the size of the problem), small

numbers of replications and large residual variation.

Counting of individuals scattered randomly in the obser-

vational windows might yield data following the Poisson

distribution. However, large residual variation in abun-

dance data often occurs due to the clustering of individu-

als, termed extra-Poisson variation or overdispersion

(McCullagh and Nelder 1989). Therefore, the probability

to find a significant difference in the case that the GM

plant has no effect on the abundance of a species (Type I

error) may be high if rare species or species with high var-

iability in local or temporal abundance or activity are

investigated with a low number of replications. On the

other hand, several types of NTOs (e.g., collembola) might

be characterized as types for which a relatively low num-

ber of replications (due to their high density) is sufficient.

Thus, planning trials with a sufficient number of replica-

tions, based on available prior information concerning the

mean abundance and variability of the observations is an

important issue. For this purpose, we suggest to analyze

available datasets of a certain NTO (possibly obtained

from other field trials) concerning its mean abundance

and variability. In complex cases, it is important to simu-

late abundance data for different choices of mean abun-

dance, variability, and experimental design.

Discussion

This review summarizes the most important statistical

considerations with respect to the field testing of GM

(mainly insect-resistant) crop plants in relation to their

potential effects on NTOs. It is important to carefully

consider the following issues:

(1) The objective of the study and the thus required

experimental setup (see 3),

(2) Experimental unit (field) size and its implication for

NTO impact testing,

(3) Experimental setup, including design, randomization,

and replication,

(4) Statistical power testing,

(5) Type of the frequency distribution of the dependent

variable,

(6) Potential overdispersion of the data and implications

for statistics,

(7) Difference versus equivalence testing.

In the light of these points, it is essential for experi-

menters to plan field experiments in the most optimized

way concerning the expected types of effects, data, and

variability. Without a clear prior understanding of the

experimental hypothesis and how the results will be ana-

lyzed and interpreted, an incorrect statistical analysis may

be applied, which will lead to incorrect conclusions. Next

to considering the importance of proper randomization

and replication, avoiding pseudoreplication, an experi-

menter has to pay extra care to the specific rules that

apply to GM plant field testing, such as the size of the

Figure. 6. The improved structure of statistical

considerations for the most common part

(count and proportion data for NTO) of the

decision tree, based on the discussed

weaknesses and strengths of the methods.
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plots and consequently the size of the field required, to

test for impacts on NTOs. A common aspect of current

GM plant field trials is the fact that fields are too small to

adequately assess the impact on NTOs in a robust manner.

Moreover, the statistical power of the design has to be

checked routinely in order to be sure that the experimen-

tal trials are appropriate (e.g., the number of replicates

and the sample number per replicate). Considering exist-

ing field experiments, there are many examples (Section 5)

in which improper statistical analyses have been applied.

The most common flaw is that discontinuous data

(counts) are analyzed by ANOVA. This in spite of the fact

that only generalized linear models (GLM) are found to

be efficient enough for analysis of these kinds of data.

There is a Chi-square test that has been in use to analyze

count data, but it is not efficient and flexible enough as

compared to GLM or GLMM. Chi-square tests can handle

only the most simple tests, such as the comparison of two

treatments without blocking and time, which is rarely pos-

sible for properly designed GM plant field trials. Recently,

equivalence and difference testing have been proposed as

appropriate approaches to deal with NTO impact data

from GM plant field trials (Perry et al. 2003). There is no

a priori scientific justification for either of the two

approaches, and hence it can be argued that usually differ-

ence testing is as appropriate as equivalence testing, if both

the experimental design and statistical analyses are justi-

fied. Moreover, it is difficult to analyze discontinuous data

by equivalence testing for nonprofessional statisticians.

The guidance document by EFSA (2010) attempted to

harmonize approaches but it does not provide clear and

structured suggestions for statistics of field trials. The use

of the proposed decision trees and the “Checklist for field

trials” (Table 2) offers a reasonable approach and solution

to avoid improper statistical analyses. In particular, we

would like to stress that they highlight ways to overcome

or avoid the many common severe problems in the final

interpretation of the results of treatment comparisons in

field trials. Only professional statisticians are normally

able to provide the certainty that all steps of a chosen sta-

tistical approach are taken in a proper way, as minor

details or deviations can lead to incorrect final conclu-

sions. However, statisticians are still in debate about the

most proper statistical approaches for assessments of GM

and reference plant varieties, in particular when it comes

to NTO impact assessments (Ward et al. 2012).
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