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Metastasis is an important feature of malignant tumors, and is the primary cause of poor
prognosis and treatment failure, in addition to representing a potentially fatal challenge for
cancer patients. Exosomes are small extracellular vesicles 30–150 nm in diameter that
transmit cargo, such as DNA, RNA, and proteins, as a means of intercellular
communication. Exosomes play crucial roles in a range of human diseases, especially
malignant tumors. A growing number of studies have verified that circRNAs can be
enveloped in exosomes and transferred from secretory cells to recipient cells, thereby
regulating tumor progression, especially tumor metastasis. Exosomal circRNAs regulate
tumor cell metastasis not only by regulating the signaling pathways, but also by affecting
the tumor microenvironment. Moreover, exosomal circRNAs have the potential to serve as
valuable diagnostic biomarkers and novel therapeutic targets in cancer patients. In this
review, we summarize the mechanism by which exosomal circRNAs modulate metastatic
phenomena in various types of tumors, and put forward the prospects of clinical
applications of exosomal circRNAs in tumor therapy.
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INTRODUCTION

Metastasis is one of the ten essential characteristics of malignant tumors and a hot research topic
(Hanahan and Weinberg, 2011). It is a process that enables malignant cells to escape from the
primary tumor site, migrate through the lymphatic and/or blood circulation, and ultimately spread to
remote sites (Lazebnik, 2010; Tarin, 2011; Sun et al., 2015). The onset of tumor metastases is often
indicative of poor prognosis, and >90% of the cancer-related deaths result from metastases
(Chambers et al., 2002; Maishi and Hida, 2017; Jiang et al., 2019; Mattiuzzi and Lippi, 2020;
Wang et al., 2020d). Most metastatic lesions cannot be surgically eradicated because such lesion is
often indicative of more widespread systemic disease (Gupta and Massagué, 2006). Although an
increasing number or tumor treatments are being developed with advances in medical technology,
tumor metastasis remains one of the major causes of the extremely high mortality rate in a variety
cancers. Therefore, the search for tumor markers and therapeutic targets remains an important
strategy for improved cancer treatment (Sun L. et al., 2019; Stoletov et al., 2020; Wang J. et al., 2020).

Exosomes are extracellular vesicles that originate from the multivesicular bodies (MVBs) and are
present in intercellular space or circulate in biological fluids (Kalluri, 2016; Zhang and Yu, 2019; He
et al., 2021a). These vesicles can be internalized by neighboring cells or by remote receptor cells
through fusion with the target cell membrane, thereby altering the behavior of the target cell (Hessvik
and Llorente, 2018; Gonda et al., 2019). Exosomes play integral roles in mediating intercellular
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communication, regulating immune system function (Gao et al.,
2018; Yu et al., 2018), promoting cell development and
differentiation (Zhou et al., 2021), influencing viral replication,
and other physiological or pathological disease processes
(Alenquer and Amorim, 2015) that affect the progression of
many diseases, including tumors (Zhang and Yu, 2019).
Recent studies have revealed that exosomes are involved in
regulating several malignant biological behaviors of tumors by
transporting various growth factors, proteins, lipids, nucleic
acids, non-coding RNAs, and other molecules (Kalra et al.,
2016), including promoting malignant proliferation, metastasis,
and immune escape by tumor cells (Wortzel et al., 2019;
Kugeratski and Kalluri, 2021), and contributing to tumor
microenvironment (TME) (Meng et al., 2019; Wu et al., 2019).
The roles played by non-coding RNAs (ncRNA)—a class of
molecules present in high concentrations in exosomes,
i.e., microRNAs (miRNAs), long non-coding RNAs
(lncRNAs), and circular RNAs (circRNAs)—in tumor
metastasis are gradually gaining attention (Zhao et al., 2015;
Chen et al., 2020a; Guo et al., 2020). CircRNAs are covalently
closed ncRNA molecules, comprising 3′ and 5′ ends joined in a
non-collinear manner by reverse splicing (Zhang et al., 2016),
which exhibit properties and functions different from those of
linear RNA. Many studies have demonstrated that intracellular
circRNAs can regulate tumor metastasis in multiple ways.
However, the effect of exosomal circRNAs on tumor
metastasis cannot be fully explained. Herein, we performed a
systematic literature review of exosomal circRNAs in the context
of development and progression of tumor metastases.

TUMOR METASTASIS

Metastasis of tumor cells is a multi-step process (He et al., 2021b)
that includes the following steps: (I)tumor cells lose adhesion to
neighboring cells and detach from the primary tumor, a
phenomenon that results in the degradation of the
extracellular matrix (ECM), and the migration and invasion of
the cells into the surrounding tissues (Friedl and Wolf, 2003); (II)
infiltration of the tumor cells into the bloodstream, followed by
adaptation and escape from anoikis to survive in the circulation
(Zhan et al., 2004), (III) exudation of the tumor cells outside the
blood vessels (IV), and finally entry of the tumor cells into the
metastatic site, followed by adaptation and growth, resulting in
the eventual colonization of the site (Fidler, 2003; Nguyen et al.,
2009; Scully et al., 2012) (Supplementary Figure S1). Epithelial-
to-mesenchymal transition (EMT) is an important form of tumor
metastasis. EMT is a complex cellular pathway in which epithelial
cells lose intercellular adhesion (characterized by loss of
membrane E-Cad) and gain mesenchymal features
(characterized by increased N-cadherin expression and
migration capacity) (Bakir et al., 2020). Stephen Paget first
proposed the classic hypothesis of “seed and soil” in 1989. He
compared the primary tumor to a “plant”, the tumor cells to
“seeds”, and the host environment to “soil” (Paget, 1989), and
boldly hypothesized, “When a plant has seeds, its seeds can be
taken anywhere; but they can only survive and grow if they fall on

suitable soil”. This assumption is accepted as the fundamental
theory for explaining tumors and metastasis (Langley and Fidler,
2011; Ribelles et al., 2014). In this doctrine, it is believed that the
autonomous mechanisms of tumor cells are insufficient to
accomplish metastasis and that tumor metastasis is regulated
by other factors, including tumor microenvironment (TME)
(Quail and Joyce, 2013; McAllister and Weinberg, 2014).
Interactions between the TME and tumor tissue is gradually
gaining attention as a new field (Quail and Joyce, 2013; Liao et al.,
2021; Xiao and Yu, 2021). TME refers to the cellular environment
in which the tumor exists, and its composition includes tumor
cells as well as surrounding blood vessels, ECM, signaling
molecules, and non-malignant cells such as fibroblasts and
immune cells (Luo et al., 2016). Several studies have shown
that the TME has an inhibitory effect on the growth of
malignant tumors (Holmgren et al., 1995; Suzuki et al., 2006).
However, in most malignant tumors, these inhibitions are
overcome, resulting in the use of support cells by malignant
tumors to increase their metastatic potential and promote their
own growth and relocation to remote sites (Marx, 2013; Massagué
and Obenauf, 2016). Tumor cells in highly aggressive primary
tumors are more adept at exploiting this particular tissue
microenvironment. Moreover, stromal cells and fibroblasts can
also secrete growth factors such as hepatocyte growth factor
(HGF), chemokines (e.g., CXCL12), and exosomes, which can
promote the forming of pre-metastatic niche (PMN) (Filipazzi
et al., 2012; Liu and Cao, 2016; Whiteside, 2016). These growth
factors not only directly promote the growth and survival of
malignant cells, but also act as decoys to stimulate other cells to
migrate to the TME and indirectly promote tumor invasion and
metastasis (Spaeth et al., 2008; Hanahan and Coussens, 2012).
Metastasis is “a long journey” for the tumor cells themselves, as
there are many rate-limiting steps in the formation of metastatic
cancer, including extravasation, distal organ survival, and the
establishment of sustained growth (Psaila and Lyden, 2009;
Acharyya and Massague, 2016). Microenvironmental cues play
important roles in all steps of metastasis. Thus, successful
metastasis depends on the ability of cancer cells to adapt to
different microenvironments at each step of the metastatic
cascade (primary tumor, body circulation and final metastatic
site) (Zhuang et al., 2019).

BIOLOGICAL CHARACTERISTICS OF
EXOSOMAL CIRCRNAS

Exosomes are lipid bilayer nano-vesicles with a “spherical”
morphology (30–150 nm) that are thought to be released by
almost all cell types (Théry et al., 2002). These vesicles display
a number of surface molecular markers, such as CD9, CD63, and
CD81 (Mathivanan et al., 2010; Kowal et al., 2016). Exosome
formation comprises four stages, i.e., initiation, endocytosis,
formation of MVBs, and exosome secretion. In this process,
the endosomal sorting complex required for transport
(ESCRT) can select ubiquitin-tagged proteins, lead them to
MVBs, and separate and release them from the peripheral
membrane by a process similar to cytoplasmic division and
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viral outgrowth (Hanson and Cashikar, 2012; van Niel et al., 2018;
Xu et al., 2018). Exosomes are widely available and have become
essential mediators of intercellular communication in
physiological and pathological states (Meldolesi, 2018; Delpech
et al., 2019; Asghar et al., 2020). As a signal vector for intercellular
communication, the content of exosomes varies with different
physiological and pathological conditions and primary cell types
(Bebelman et al., 2018). Many studies have reported that
exosomes regulate tumor progression by carrying or delivering
multiple biomodulator “cargoes” (including ncRNAs and
proteins) (He et al., 2019; Li R. et al., 2019). Exosomes are key
contributors to a wide range of biological processes during tumor
growth and progression.

Exosomes contain a variety of RNA molecules, including
mRNAs, miRNAs, lncRNAs, and circRNAs (Braicu et al.,
2015; Yang and Li, 2018). Compared to other types of RNA,
circRNAs are abundant and specific non-coding RNAs that are
still not fully understood (Nie et al., 2020). CircRNAs was first
discovered in Sendai virus and plant-like viruses by electron
microscopy in 1976 (Kolakofsky, 1976). It has long been
believed that these closed-loop covalent RNA molecules are a
byproduct of rare error responses and have no specific functions
(Cocquerelle et al., 1993). However, in recent years, many
advances have been made in the study of circRNAs: circRNAs
are produced by reverse splicing a 3’ splice donor to an upstream
5’ splice acceptor (Wilusz and Sharp, 2013). Because of this
specific structure, circRNAs are resistant to exonucleases and
exhibit greater stability than linear non-coding RNAs (such as
miRNAs and lncRNAs) (Salzman et al., 2012; Jeck et al., 2013).
CircRNA can be found in the cytoplasm, nucleus, or extracellular
vesicles external to the cell. They usually perform different
functions depending on their localization and distribution
(Lasda and Parker, 2016; Ou et al., 2020). Although we have
not been able to provide a complete explanation for the biological
origins and functions of circRNAs, a large number of studies have
confirmed that the main function of circRNAs is to effectively
sponge miRNAs through a competitive endogenous RNA
(ceRNA) mechanism, reduce their inhibitory effect on target
genes (Hansen et al., 2013; Hu Y. et al., 2019; Liang et al.,
2020), and activate or inhibit downstream signaling pathways
by interacting with proteins (Du et al., 2017; Zang et al., 2020).
Endogenous circRNAs have been reported to have the potential
for translation (Legnini et al., 2017; Lei et al., 2020), and the
products of translation may play important roles in disease
progression.

CircRNAs can be encapsulated into exosomes that can be
shared between cells. The entry of circRNAs into exosomes is
influenced in part by the levels of relevant miRNAs in the parent
cells (Li et al., 2015). The sorting of circRNAs species into
exosomes may be positively regulated. This suggests that
circRNAs are selectively encapsulated within exosomes (Hou
et al., 2018). Interestingly, related studies have shown that
circRNAs are much more enriched in exosomes than in the
cells producing them (Dignat-George and Boulanger, 2011; Dou
et al., 2016), and that exosomal circRNAs levels are only
moderately correlated with the cellular circRNAs levels (Li
et al., 2015). Many questions still remain about the

mechanisms involved in exosomal circRNAs enrichment.
Emerging data indicate that exosomal circRNAs have multiple
functions, such as promoting inflammatory responses, regulating
hormone levels in the body, and modulating immunity (Table 1).
For example, Wang et al. (Wang S. et al., 2020) found that
circRNA-0077930 in exosomes released from endothelial cells
induces vascular smooth muscle cell senescence in high-glucose
environments. This study provides new insights into the
mechanism of smooth muscle cell aging in a high-glucose
environment. This finding has significant implications for the
prevention of diabetic vascular disease and the exploration of new
drug targets. Exosomes released from astrocytes deliver
circSHOC2 (Chen et al., 2020b) to neuronal cells, thereby
ameliorating ischemia-induced apoptosis and protecting
neurons from ischemic injury. In case of hypoxia, circHIPK3
(Wang et al., 2020e) is transferred to myocardial endothelial cells
via exosomes released from cardiomyocytes. CircHIPK3-
mediated VEGFA overexpression significantly increases cell
proliferation and migration, which preserves the function and
integrity of post-infarction myocardial endothelial cells and
exhibits cardioprotective effects.

Recently, Li et al. (Li et al., 2015) first revealed the presence and
enrichment of circRNAs in cancer-derived exosomes by RNA-seq
analysis. CircRNAs play significant roles in regulating
tumorigenesis, tumor cell progression, metastasis, and drug
resistance development. For instance, Xiao et al. (Dai et al.,
2018) transferred circRNA_100284 secreted by arsenite-
transformed human liver epithelial cells (L-02) to normal L-02
cells via exosomes. CircRNA_100284 acted as a sponge for
miRNA-217 to accelerate the cell cycle and promote cell
proliferation, thereby inducing malignant transformation of L-
02 cells. This mechanism provides a new explanation for arsenite-
induced cancer. Glioma-derived exosomal circRNA-0001445 (Han
et al., 2021) significantly promotes proliferation and inhibits the
apoptosis of glioma cells via the miRNA-1275p/SNX5 signaling
pathway. Shi et al. (Xiao and Shi, 2020) found that exosomal
circRNA_400068 produced by renal cell carcinoma cells promotes
the proliferation of healthy kidney cells, significantly inhibits their
apoptosis, and promotes their transformation to malignancy,
which may be due to signaling through regulation of the
miRNA-210-5p/SocS1 axis pathway. Circ_UBE2D2 was found
to be upregulated in exosomes isolated from triamcinolone-
resistant breast cancer cells (Hu et al., 2020). Exosomes enhance
the resistance of breast cancer cells to triamcinolone by mediating
the transfer of circRNA_UBE2D2 into non-triamcinolone-
resistant breast cancer cells. This mechanism may suggest the
prospect of a promising candidate biomarker and therapeutic
target for drug resistance in breast cancer.

FUNCTIONS AND MECHANISMS OF
EXOSOMAL CIRCRNA IN TUMOR
METASTASIS
Interestingly, researchers have identified that tumor cells produce
more than 10 times more exosomes than normal cells. The
enrichment and stable presence of circRNAs in exosomes and
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their intercellular transmission strongly implicate them in tumor
metastasis (Li et al., 2015; Bao et al., 2016; Bai et al., 2019). There
is increasing evidence that exosomal circRNAs play a key role in
the metastasis of various cancers. Exosomal circRNAs may
regulate tumor metastasis through a variety of different
mechanisms, 1) cytoplasmic circRNAs adsorb miRNAs by
sponging and de-repress miRNA-regulated genes, 2) circRNAs
delivered to recipient cells can act as a protein sponge or decoy by

adsorbing one or more proteins through specific binding sites, 3)
exosomal circRNAs are able to regulate the TME through
interactions with the immune system cells (Figure 1).

Figure 1 The potential mechanisms of exosomal circRNAs
regulate tumor metastasis. After taken up by cancer cells,
exosomal circRNAs can regulate the tumor metastasis by
interacting with miRNAs or proteins. Exosomal circRNAs
regulate tumor metastasis by sponging miRNAs.

TABLE 1 | Role of exosomal circRNAs in human diseases.

Diseases Exosomal
circRNA

Secreting cells Recipient cells Effect Ref.

Diabetic retinopathy CircRNA-
cPWWP2A

Vascular epidural cells Endotropical cells Involved in diabetes-induced retinal
vascular dysfunction

Liu et al.
(2019)

Diabetic vascular
disease

CircRNA-0077930 Endothelial cells Vascular smoothmuscle cells Induced vascular smooth muscle cell
senescence

Wang et al.
(2020c)

Polycystic ovary
syndrome

CircLDLR KGN cells KGN cells Regulation of estrogen secretion Huang et al.
(2020b)

Myocardial infarction CircHIPK3 Cardiomyocytes Cardiac endothelial cells Promotes angiogenesis at the border
around the infarcted area

Wang et al.
(2020e)

Ischemic stroke CircSHOC2 Astrocyte Neuronal cells Inhibits neuronal apoptosis and ameliorates
neuronal damage

Chen et al.
(2020b)

Intervertebral disc
degeneration

CircRNA_0000253 Degenerative nucleus
pulposus cells

Normal nucleus pulposus
cells

Promotes apoptosis and inhibits
proliferation of Normal nucleus pulposus
cells

Song et al.
(2020)

Osteoarthritis CircRNA3503 Synovium mesenchymal
stem cells

Chondrocyte Promotes chondrocyte proliferation and
migration

Tao et al.
(2021)

Breast cancer Circ_UBE2D2 Triamcinolone-resistant
breast cancer cells

Non-triamcinolone-resistant
breast cancer cells

Enhance the resistance of breast cancer
cells to triamcinolone

Hu et al.
(2020)

Glioma CircRNA-0001445 Glioma cells Glioma cells Promotes proliferation and inhibits the
apoptosis of glioma cells

Han et al.
(2021)

FIGURE 1 | The potential mechanisms of exosomal circRNAs regulate tumor metastasis. After taken up by cancer cells, exosomal circRNAs can regulate the tumor
metastasis by interacting with miRNAs or proteins.
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CircRNAs represent upstream regulatory molecules with a
large number of miRNA response elements (MREs) (Memczak
et al., 2013; Lasda and Parker, 2014). CircRNAs can be delivered
to recipient cells via exosomes and bind to miRNAs, acting as an
“miRNA sponge” by blocking the binding of miRNAs to target
gene 3’- untranslated regions (UTRs) to disable miRNAs and
restore the translation of proteins inhibited by specific miRNA-
mRNA binding events, thereby regulating tumor metastasis
(Zhong et al., 2018; Verduci et al., 2019). CircRNAs exhibit
more preferential binding to miRNAs than other endogenous
RNAs (e.g., lncRNAs), hence the name (Shi et al., 2020) “super
sponge”. Xie et al. (Xie et al., 2020) found that exosome
circSHKBP1 increased HUR expression in gastric cancer (GC)
tissues through sponging of miR-582-3p. HUR is reported to be
part of the VEGF signaling pathway that promotes VEGF
secretion and induces angiogenesis, which promotes GC
metastasis. In triple-negative breast cancer (TNBC) (Yang S.-j.
et al., 2021, 1), breast cancer cell metastasis is promoted through
the direct targeting of AKT1 via the exosome circPSMA1 that
functions as a sponge for miR-637, which activates the AKT1/
β-catenin signaling pathway to regulate cell proliferation and
migration. High expression of AKT1 and low expression of mir-
637 are highly correlated with poor prognosis in TNBC patients
with lymph node metastasis. CircPSMA1 overexpression
significantly enhances the metastatic capacity in the liver and
lungs of mice. Zeng et al. (Zeng et al., 2020) found that
overexpression of circFNDC3B severely inhibits angiogenesis
in a mouse model of colorectal cancer (CRC). Treatment with
exosomal circFNDC3B inhibits CRC cell growth, angiogenesis,
and liver metastasis in vivo. Liu et al. (Liu et al., 2020) found that
circ_MMP2 could be delivered to less invasive hepatocellular
carcinoma (HCC) cells via exosomes derived from highly invasive
HCC cells. Circ_MMP2 can upregulate the expression of its host
gene matrix metallopeptidase 2 (MMP2) by acting as a sponge for
miR-136-5p, a metastasis-associated RNA that promotes HCC
cell metastasis.

EMT is one of the initiating steps of primary tumor invasion
(Nishiyama et al., 2018; Shang et al., 2019). Exosomal circRNAs
can promote tumor metastasis by sponging miRNAs, thereby
promoting the EMT phenotype. For example, circPRMT5 (Chen
et al., 2018) is expressed at abnormally high levels in urothelial
carcinoma of the bladder (UCB) cells, and can be secreted into the
blood and urine via exosomes. High levels of exosomal
circPRMT5 in the serum and urine are positively correlated
with lymph node metastasis and tumor progression.
CircPRMT5 contributes to a significant reduction in SNAIL1
downregulation by reducing the inhibitory effect of miR-30c,
which in turn promotes UCB cell invasiveness and EMT.
Statistical analyses showed that high expression of circPRMT5
in UCB tissues is positively correlated with late T and N stages,
and is associated with low disease-free survival (DFS). CircNRIP1
is a promoter of EMT in GC (Zhang et al., 2019). The exosomal
circNRIP1 sponges miR-149-5p to regulate the expression of
AKT1 in GC, which in turn exerts a tumor-promoting effect in
the context of EMT. Circ_PVT1 (Wang H. et al., 2020) can enter
exosomes originating in cervical cancer cells and function as a
tumor promoter by inducing EMT in cervical cancer cells by

targeting miR-1286, which in turn promotes tumor metastasis
(Table 2).

RNA binding proteins (RBPs), a class of proteins involved in
gene transcription and translation, are essential elements of
circRNA function. Bioinformatic analysis of circRNA
sequences reveals a low enrichment of RBP-binding sites
compared to the corresponding linear RNAs. However, the
unique tertiary structure of circRNA leads to a greater protein
binding capacity than linear RNA sequences, allowing better
interaction with proteins (Hentze and Preiss, 2013; You et al.,
2015; Liang et al., 2018; Huang A. et al., 2020). CircRNAs can
function as protein sponges (Yang et al., 2017), decoys
(Abdelmohsen et al., 2017), scaffolds, or recruiters (Zeng et al.,
2017; Sun Y.-M. et al., 2019) in different physiological and
pathological environments. CircRNA-protein interactions also
play pivotal roles in the regulation of tumor metastasis.

In HCC, the exosomal circ-0004277 (Zhu et al., 2021) derived
from HCC cells blocks the binding of HuR to ZO-1 mRNA by
competitive interactions with HuR protein, which in turn
stimulates EMT progression by inhibiting ZO-1. Moreover,
exosome-delivered circ-0004277 induces EMT in adjacent
normal cells, further promoting the invasion of HCC cells into
the surrounding normal tissues. Similarly, Xie et al. (Xie et al.,
2020) found that exosomal circSHKBP1 could not only promote
GC progression by regulating the miR-582-3p/HUR/VEGF
pathway, but also promotes tumor growth and lung metastasis
by sequestering HSP90 away from STUB1. Xu et al. (Xu Y. et al.,
2021) explored the function of circ-CCAC1 in
cholangiocarcinoma (CAA), and found that circ-CCAC1 could
translocate into vascular endothelial cells via exosomes and bind
to EZH2 in the cytoplasm to inhibit the expression of intercellular
junctional proteins (ZO-1 and occludin) that control endothelial
cell permeability. Decreased expression of intercellular linker
proteins disrupts the vascular endothelial barrier and induces
angiogenesis, thereby promoting the formation of pre-metastatic
ecological niches and providing a supportive microenvironment
for the spread of cancer cells.

EXOSOMAL CIRCRNA INTERACTS WITH
THE TUMOR MICROENVIRONMENT TO
REGULATE TUMOR METASTASIS
The TME is complicated and ever-evolving. In addition to
stromal cells, fibroblasts, and endothelial cells, the TME
includes both innate and adaptive immune cells (Hinshaw and
Shevde, 2019). Adaptive immune cells are mainly T lymphocytes,
which can directly contribute to, or stimulate other cells in the
TME to influence tumor growth. They can be classified as “Th1”
and “Th2” cells based on their differentiation status. Th1 cells
control the pro-inflammatory phenotype, and Th2 cells
coordinate the immunosuppressive phenotype (McGuirk and
Mills, 2002). The innate immune cell types include
macrophages, dendritic cells (DCs), neutrophils, myeloid-
derived suppressor cells (MDSCs), natural killer cells (NK),
and innate lymphocytes (ILC). The innate immune response
can have a significant impact on the TME (Joyce and Pollard,
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TABLE 2 | Regulatory model of “Exosomal circRNA-miRNAs-mRNA” in tumor metastasis.

Tumor types Exosomal circRNA miRNA Targeted gene Signaling pathways Ref.

GC CircSHKBP1 miR-582-3p HUR VEGF signaling pathway Xie et al. (2020)
CircNRIP1 miR-149-5p AKT1 mTOR pathway Zhang et al. (2019)

HCC Circ-ZNF652 miR-29a-3p GUCD1 — (Li et al. (2020b)
CircPTGR1 miR-449a MET — Wang et al. (2019a)
Circ_MMP2 miR-136-5p MMP2 — Liu et al. (2020)

NSCLC Circ_100395 miR-141-3p LATS2 Hippo/YAP signaling pathway Zhang et al. (2021)
CircSETDB1 miR-7 sp1 — Xu et al. (2021a)
CircARHGAP10 miR-638 FAM83F — Jin et al. (2019)

CRC CircPACRGL miR-142-3p/miR-506-3p TGF-β1 — Shang et al. (2020)
CircFNDC3B miR-937-5p TIMP3 VEGF signaling pathway Zeng et al. (2020)
CircIFT80 miRNA-1236-3p HOXB7 — Feng et al. (2019)
Circ-133 miR-133a GEF-H1/RhoA — Yang et al. (2020)

Ovarian Cancer CircRNA051239 miR-509-5p PRSS3 — Ma et al. (2021)
Prostate Cancer Circ_0044516 miR-29a-3p _ — Li et al. (2020a)
Triple-negative breast cancer CircPSMA1 miR-63 AKT1 AKT1/β-catenin signaling pathway Yang et al. (2021b)
Esophageal Cancer Circ-048117 miR-140 TLR4 — Lu et al. (2020)
Cervical Cancer Circ-PVT1 miR-1286 — — Wang et al. (2020a)
Pancreatic Cancer Circ-IARS miR-122 RhoA — Li (2018)

CircPED8A miRNA-338 MACC1 MET/AKT and ERK pathway Li et al. (2018b)
Laryngeal squamous cell carcinoma CircRASSF2 miRNA-302b-3p IGF-1R — Linli et al. (2019)

Exosomal circRNAs regulate tumor metastasis by binding proteins.

FIGURE 2 | The crosstalk “Non-tumor cells to tumor cells” via the exosomal circRNAs to regulate the tumor metastasis. (A) CAF-derived exo-circ_0088300 and
exo-circSLC7A6 promote the tumor metastasis through regulating the miR-1305/JAK1/STAT1 axis and the expression of CXCR5. (B) Tumor-derived exosomal circ-
0048117 promotes the polarization of M2 macrophages by regulating the miR-140/TLR4 axis, thereby enhancing the metastatic potential of tumor cells. (C) AMSC-
derived exosomal circ_100395 inhibits the tumor metastasis via regulating the miR-141-3p/LATS2/Hippo/YAP pathway. (D) BM-MSC-derived exosomal
circ_0030167 promotes tumor metastasis by regulating the miR-338-5p/Wif1/WNT8/β-catenin axis in tumor cells. Regulation of mesenchymal stem cells promotes
tumor metastasis.
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2009) either directly or indirectly (through control of T-cell fate)
(Hinshaw and Shevde, 2019). In addition, immune cells interact
with stromal cells, thus influencing tumor development (Tlsty
and Coussens, 2006). Here, we focus on mesenchymal stem cells
(MSCs), macrophages, and tumor-associated fibroblasts
(Figure 2).

Regulation of MSCs Promotes Tumor
Metastasis
MSCs are cells with multiple differentiation capabilities that can
differentiate into osteoblasts, chondrocytes, adipocytes, and other
cells of mesenchymal origin. It is well known that MSCs are
recruited to tumor site thanks to the secretion of soluble factors.
Based on this phenomenon, MSCs were explored to determine
whether they could regulate nearby cancer cells at the primary site
(Ridge et al., 2017). MSCs can produce exosomes, which may
deliver signaling molecules by acting as paracrine mediators.
Therefore, multiple cellular pathways are controlled to regulate
tumor cell proliferation, angiogenesis, and metastasis (Zhao et al.,
2020). Currently, whether MSC-derived exosomes promote or
suppress tumors remains controversial, depending on the source
of exosomes AND the model/tumor cells used as recipient for
these exosomes (Vakhshiteh et al., 2019).

In recent years, exosomes released by MSCs have emerged as
key regulators of tumor progression in various malignancies. Yao
et al. (Yao et al., 2021) found that bone marrowMSC (BM-MSC)-
derived exosome circ_0030167 enhances Wif1 expression
through regulation of miR-338-5p, which in turn inhibits the
Wnt8/β-catenin pathway, promoting invasion, migration, and
proliferation, as well as tumor stemness in pancreatic cancer cells.
Its emergence thus offers a new perspective for the treatment of
pancreatic cancer. Interestingly, exosomal circ_100395 from
adipose-derived MSC (AMSC) (Zhang et al., 2021) adsorbs
miR-141-3p to increase the expression of LATS2, a protein
that inhibits tumor cell proliferation, promotes apoptosis, and
induces YAP phosphorylation, thereby reducing Hippo pathway
activity. The YAP/Hippo pathway promotes EMT and
progression of non-small cell lung cancer (NSCLC) cells.
Therefore, exosomal circ_100395 inhibits progression and
metastasis through the Hippo/YAP signaling pathway that
regulates the miR-141-3p/LATS2 axis.

Regulation of Tumor-Associated
Macrophages Promote Tumor Metastasis
Macrophages are among the most plastic, versatile cells of the
body. However, these characteristics may be exploited by tumors
to trigger different functions at different stages of tumor
development (Qian and Pollard, 2010). Macrophages present
in tumors are commonly referred to as tumor-associated
macrophages (TAMs) and exhibit two distinct polarization
phenotypes: Classical activation type (M1) and alternative
activation type (M2). M1 macrophages promote the early
stages of tumorigenesis by creating an inflammatory
microenvironment (Mantovani and Sica, 2010). During tumor
progression, TAMs undergo a phenotypic switch to the M2

phenotype. TAM cell populations composed of M2
macrophages play roles in clearing cellular debris, enhancing
angiogenesis, and promoting tumor invasion and metastasis
(Biswas et al., 2008; Maniecki et al., 2012).

Through both in vivo and in vitro experiments, Wang et al.
(Wang et al., 2021) demonstrated that hsa_circ_00074854
secreted by HCC cells can be delivered to macrophages via
exosomes, inducing macrophage M2 polarization, thereby
promoting migration, invasion, and metastasis of HCC cells.
In lung cancer, Katopodi et al. (Katopodi et al., 2021) found
that upregulation of exosomal circHIPK3/PTK2 expression
promotes the differentiation of monocytes into CD163 + M2
macrophages, which may play an important role in directing
lymph node metastasis. In addition, Lu et al. (Lu et al., 2020)
found that esophageal squamous cell carcinoma cells in a hypoxic
microenvironment produced hsa-circ-0048117-rich exosomes,
which promote the polarization of M2 macrophages and
enhance the invasiveness and metastatic ability of tumor cells.
Other researchers have suggested that macrophages represent a
part of the malignant cell population in human tumors.
Furthermore, studies have confirmed that TAMs also secrete
exosomes, and whether TAMs can influence tumor metastasis
through exosomal circRNAs is a direction worthy of future
investigations. In conclusion, the roles of macrophages in
metastasis require further investigation.

Regulation of Tumor-Associated
Fibroblasts Promotes Tumor Metastasis
Fibroblasts are a major multifunctional cell type in connective
tissue that deposit ECM and basement membrane components,
regulate related epithelial differentiation events and immune
responses, and mediate homeostasis (Li Y.-Y. et al., 2018).
Cancer-associated fibroblasts (CAFs) are important
components of the TME. CAFs are a major source of
secretory growth factors, such as VEGF and pro-inflammatory
factors, that are thought to contribute to tumor proliferation,
invasion, and metastasis (Kato et al., 2018; Fan et al., 2020).

CAFs have been shown to deliver functional circ_0088300 (Shi
et al., 2021) to GC cells via exosomes, thereby promoting the
proliferation, migration, and invasive capacity of such cells. The
inhibition of exosomal circ_0088300 may represent a new
therapeutic strategy for GC. In addition, CAF-derived
exosomes also promote metastasis and invasion of CRC (Hu
J. L. et al., 2019; Gu et al., 2020), breast cancer (Chen et al., 2021)
and endometrial cancer cells (Bl et al., 2019), but the roles of
exosomal circRNAs remain to be explored.

EXOSOMAL CIRCRNAS AS NOVEL
BIOMARKERS AND TARGETS OF TUMOR
METASTASIS
Exosomal CircRNA may Serve as Novel
Biomarkers of Tumors Metastasis
Exosomes have been found to be widely present in various body
fluids, including saliva, plasma, urine, breast milk, amniotic fluid,
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and bile, which is very convenient for non-invasive testing (Kim
et al., 2007). CircRNAs are conserved, stable, and cell- and tissue-
specific (Perez de Acha et al., 2020). All of these properties provide
strong support for exosomal circRNAs as candidate molecular
diagnostic and therapeutic prognostic markers, showing good
promise for application as molecular markers in non-invasive
tests. Many studies have shown that variable expression of
exosomal circRNAs in body fluids is associated with tumor
metastasis. Zhang et al. (Zhang et al., 2020) reported that the
expression of exosomal circSATB2 is associated with lymphatic
metastasis in lung cancer. The expression of circSATB2 was higher
in exosomes derived from sera of patients with metastatic lung
cancer than in non-metastatic lung cancer, and the receiver
operating characteristic (ROC) curve analysis showed its high
sensitivity and specificity as a blood test for the diagnosis of
lung cancer and lung cancer metastasis. It has also been
reported that the expression of exosomal hsa_circRNA_0056616
(He et al., 2020) is significantly lower in patients with lymph node
metastasis in lung adenocarcinoma than in patients without lymph
nodemetastasis, and its expression is correlated with tumor-lymph
node metastasis (TNM) staging. Plasma exosomal
hsa_circRNA_0056616 may be a potential biomarker for
predicting lymph node metastasis in lung adenocarcinoma, and
its expression level may be a valuable biomarker for the treatment
of lymph nodemetastasis in lung adenocarcinoma. There aremany
similar studies in other cancer models, and here we list the most
representative ones (Table 3). Circ-IARS is abundant in plasma
exosomes of patients with metastatic pancreatic cancer (Li et al.,
2018). Its high expression is associated with tumor vascular
infiltration, liver metastasis, and TNM stage. Similarly, Wu
et al. (Li Z. et al., 2018) found that high expression of plasma
exosomal circ-PDE8A is associated with duodenal and vascular

infiltration, or tumor TNM staging in pancreatic ductal
adenocarcinoma, which is correlated with tumor progression
and prognosis. Exosomal circ-PDE8A may be a useful marker
of pancreatic ductal adenocarcinoma progression. In addition, Li
et al. (Li et al., 2020) analyzed the expression of circ_0044516 in
patients with high or low levels of metastases in prostate cancer.
They found that circ_0044516 levels were higher in blood
exosomes of highly metastatic prostate cancer cases than in
blood exosomes of low metastatic prostate cancer patients. This
finding indicates that exosomal circ_0044516 may be used as a
serum marker to measure prostate cancer metastasis, opening a
new direction for the treatment of this malignancy. Interestingly,
exosomes levels are not only meaningful when measured in blood,
but also have value when detected in other body fluids. In urinary
exosomes from patients with UCB (Chen et al., 2018), the
expression of circPRMT5 is substantially increased compared to
that in healthy controls, and its expression level is also associated
with lymph node metastasis and tumor progression. Although our
research surrounding exosomal circRNAs is still in its infancy,
many studies have demonstrated the potential of circRNAs as
markers of cancer.

Exosomal CircRNAs as Targets of Tumors
Metastasis
Many tumor metastasis-associated exosomal circRNAs have
potential clinical applications (Figure 3). By comparing mice
injected with circFNDC3B-containing exosomes and normal
control exosomes, Zeng et al. (Zeng et al., 2020) found that
mice separately injected with exosomal circFNDC3B had reduced
tumor volume and weight, and a substantial reduction in VEGFR
expression relative to mice injected with normal control

TABLE 3 | Exosomal circRNA serve as novel biomarkers of tumor metastasis.

Tumor types Exosomal
CircRNAs

Sample
types

Expression Relationship to
clinicopathological features

AUC Ref.

NSCLC CircSATB2 Serum Upregulated Distant metastasis 0.797 Zhang et al. (2020)
Circ-0056616 Plasma Downregulated TNM Stages 0.812 He et al. (2020)
CicHIPK3/PTK2 Serum Upregulated Lymph node metastasis — Katopodi et al.

(2021)
CircRNA-102481 Serum Upregulated TNM Stages; Brain metastasis — Yang et al. (2021a)

SCLC Exo-FECR1 Serum Upregulated Lymph node metastasis; Stages — Li et al. (2019a)
Nasopharyngeal Carcinoma CircMYC Serum Upregulated TNM Stages — Luo et al. (2020b)
Oral squamous cell
carcinoma

Circ_0000199 Serum Upregulated TNM Stages — Luo et al. (2020a)

Prostate Cancer Circ_0044516 Serum Upregulated — — Li et al. (2020)
Pancreatic Cancer Circ-PDE8A Plasma Upregulated Duodenal infiltration; Vascular invasion; TNM

Stages
— Li et al. (2018b)

Circ-IARS Upregulated Liver metastasis; TNM Stages — Li, (2018)
Esophageal Cancer Circ_0026611 Serum Upregulated Lymph node metastasis 0.724 Liu et al. (2021)

Circ-0048117 Upregulated TNM Stages — Lu et al. (2020)
HCC Circ-100338 Serum Upregulated TNM Stages; Vascular invasion; Pulmonary

metastasis
— Huang et al.

(2020c)
UCB CircPRMT5 Serum/Urine Upregulated Lymph node metastasis — Chen et al. (2018)
CRC Circ-0004771 Serum Upregulated TNM Stages 0.88 Pan et al. (2019)
Cholangiocarcinoma Circ_0000284 Plasma Upregulated TNM Stages — Wang et al. (2019b)

Circ-CCAC1 Serum Upregulated TNM Stages 0.759 Xu et al. (2021b)
Bile 0.857

Exosomal circRNAs as targets of tumors cell metastasis.
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exosomes. This result demonstrates that treatment with exosomal
circFNDC3B inhibits CRC tumor growth, angiogenesis, and liver
metastasis. Zhang et al. (Zhang et al., 2019) examined the role of
exosomal circNRIP1 in distant metastasis through tail vein
injection of GC cells co-cultured with circNRIP1-containing
exosomes and normal control exosomes into BALB/c nude
mice. They found that lung and peritoneal metastases were
more frequent in nude mice injected with circNRIP1-
containing exosomes than in mice treated with normal control
exosomes, indicating that exosomal circNRIP1-treated GC cells
exhibit greater metastatic potential. To investigate the role of
exosomal circWHSC1 in the peritoneal dissemination of ovarian
cancer, Zong et al. (Zong et al., 2019) injected CAOV3 cells
intraperitoneally into nude mice to generate tumors, and then
injected exosomes containing circWHSC1 or PBS every 2 days.
They found that for the exosome-treated group, the number of
peritoneal tumor nodules increased significantly and induced
changes in their EMT. Recently, exosome-based transport
systems have become an innovative platform for the transport
of RNAs (siRNAs, microRNAs) or active-drug substances with
enhanced specificity, and greater safety and stability compared to
other carriers. Exosomes can be used as novel nanomaterials to
deliver cargoes of circRNA inhibitors and agonists for
suppressing tumor metastasis. However, we are still in the
mapping stage of the clinical application of exosomal
circRNAs, and no circRNA drug has entered clinical trials at
the time of writing this review. MiRNAs are the most
comprehensively understood non-coding RNAs, and several
clinical studies have been conducted on miRNA-based
interventions with respect to the progression of malignant
tumors (Hong et al., 2020). A few examples are the first phase
I clinical trial of cobomarsen (anti-miR-155 oligonucleotide) in
patients with cutaneous T-cell lymphoma (CTCL) (Seto et al.,

2018) and a phase I clinical trial of a miR-16 analogue in patients
with malignant pleural mesothelioma (van Zandwijk et al., 2017)
or NSCLC. It is believed that, in the near future, circRNAs will
also be used in clinical applications.

FUTURE PERSPECTIVES

With the rapid development of high-throughput sequencing
technology, an increasing number of exosomal circRNAs have
been discovered and identified, and have been studied and proven
to play important roles in tumorigenesis. The covalently closed
loop structure of circRNAs prevents them from being easily
degraded by nucleases. Compared with exosomal proteins and
ncRNAs (miRNA, lncRNA), exosomal circRNAs from tissues
and blood are more conserved, stable, and exhibit greater target
specificity, which is characteristic of tumor metastasis-related
markers. In addition, as exosomal circRNAs play important
regulatory roles in tumor metastasis, they have significant
potential as important candidate targets for tumor metastasis-
related therapies, which opens new avenues for curing
tumorigenic diseases. As the study of exosomal circRNAs is
still in its infancy, many aspects remain limited. 1) The
technology for the isolation and purification of exosomes is
not yet sufficiently developed. Currently, there are four main
methods for isolating and purifying extracellular vesicles,
i.e., ultra-high speed centrifugation, ultrafiltration,
precipitation, and immune-enrichment (van Niel et al., 2018).
It is difficult to distinguish between exosomal and non-vesicular
components using established purification methods, and this may
affect subsequent experimental procedures involving exosomal
circRNA, both in vivo and in vitro; 2) Although high-throughput
sequencing techniques have identified many exosomal circRNAs

FIGURE 3 | The application of exosomal circRNAs as targets of tumors cell metastasis in vivo. After establishing the mouse xenograft model, exosomal
circFNDC3B (A), exosomal circNRIP1 (B), and exosomal circWHSC1 (C) will be injected into the mouse xenograft model to analyze the organ-spectific metastasis.
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that are aberrantly expressed in tumor tissues, their specific
mechanisms of action and biological functions are still not
fully understood; 3) The factors that determine the
endogenous and exogenous nature of exosomes remain
undetermined, which in part leads to the difficulty in using
exosomal circRNAs as clinical markers of tumor metastasis;
4) Although an increasing number of studies have focused on
exploring the use of exosomal circRNAs as biological markers for
the diagnosis of certain tumors, only a few clinical trials have
confirmed their feasibility.

In conclusion, this review has discussed the regulation of the
occurrence and transport of exosomal circRNAs in various
biological, physiological, or pathological processes by
describing them as stellar molecules that have attracted much
attention over recent years. Exosomal circRNAs are enriched in
tumors and regulate tumor metastasis through mechanisms such
as by acting as sponges for miRNAs, binding to proteins, and
interacting with the TME. Although our current understanding of
the functions of exosomal circRNAs is undoubtedly only the tip
of the iceberg, the development of new technologies and assays
would enable us to understand the regulatory mechanisms
involving exosomal circRNAs, which will provide superior
evidence for their use as early, novel markers of tumor
metastasis, and as promising candidate therapeutic targets.
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GLOSSARY

AMSC adipose-derived MSC

CAA cholangiocarcinoma

CAFs Cancer-associated fibroblasts

ceRNA competitive endogenous RNA

circRNAs circular RNAs

CRC colorectal cancer

DCs dendritic cells

DFS disease-free survival

ECM extracellular matrix

BM-MSC bone marrow MSC

EMT Epithelial-to-mesenchymal transition

ESCRT endosomal sorting complex required for transport

GC gastric cancer

HCC hepatocellular carcinoma

ILC innate lymphocytes

lncRNAs long non-coding RNAs

MDSCs myeloid-derived suppressor cells

miRNAs microRNAs

MMP2 matrix metallopeptidase 2

MREs miRNA response elements

MSCs Mesenchymal stem cells

MVBs multivesicular bodies

NK cells natural killer cells

NSCLC non-small cell lung cancer

PMN pre-metastatic niche

RBPs RNA binding proteins

ROC receiver operating characteristic

SCLC Small cell lung cancer

TAMs tumor-associated macrophages

TME tumor microenvironment

TNBC triple-negative breast cancer

TNM tumor-lymph node metastasis

UCB urothelial carcinoma of the bladder

UTRs untranslated regions
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