
Sequence analysis

Analyzing large scale genomic data on the cloud

with Sparkhit

Liren Huang1,2,3, Jan Krüger1,2 and Alexander Sczyrba1,2,3,*

1Faculty of Technology, Bielefeld University, Bielefeld 33615, Germany, 2Center for Biotechnology – CeBiTec,

Bielefeld University, Bielefeld 33615, Germany and 3Computational Methods for the Analysis of the Diversity and

Dynamics of Genomes, Bielefeld University, Bielefeld 33615, Germany

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on July 14, 2017; revised on November 9, 2017; editorial decision on December 11, 2017; accepted on December 14, 2017

Abstract

Motivation: The increasing amount of next-generation sequencing data poses a fundamental chal-

lenge on large scale genomic analytics. Existing tools use different distributed computational plat-

forms to scale-out bioinformatics workloads. However, the scalability of these tools is not efficient.

Moreover, they have heavy run time overheads when pre-processing large amounts of data. To

address these limitations, we have developed Sparkhit: a distributed bioinformatics framework

built on top of the Apache Spark platform.

Results: Sparkhit integrates a variety of analytical methods. It is implemented in the Spark

extended MapReduce model. It runs 92–157 times faster than MetaSpark on metagenomic frag-

ment recruitment and 18–32 times faster than Crossbow on data pre-processing. We analyzed 100

terabytes of data across four genomic projects in the cloud in 21 h, which includes the run times of

cluster deployment and data downloading. Furthermore, our application on the entire Human

Microbiome Project shotgun sequencing data was completed in 2 h, presenting an approach to

easily associate large amounts of public datasets with reference data.

Availability and implementation: Sparkhit is freely available at: https://rhinempi.github.io/sparkhit/.

Contact: asczyrba@cebitec.uni-bielefeld.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome and transcriptome projects have provided unprecedented

knowledge and insights for life science by interpreting large amounts

of next-generation sequencing data (Consortium and Auton, 2015;

Peterson et al., 2009; R Genomes Project, 2014; Wyatt et al., 2014).

These genomic datasets, sequenced from thousands of samples, take

days or weeks to analyze on private clusters (Bao et al., 2014). For

researchers with limited computational resources, processing tera-

bytes (TB) of data remains a fundamental bottleneck. Although sev-

eral existing tools have been developed and utilized on single

computers (Bray et al., 2016; Langmead and Salzberg, 2012; Li and

Durbin, 2009; Li et al., 2009, 2008; Niu et al., 2011; Wood and

Salzberg, 2014), most of the parallelizations on multi-computer net-

worked clusters are done by manually splitting and distributing in

smaller batches (Droop, 2016). To be compatible with a cluster,

methods involving message passing and graph representation between

computers must be re-implemented with higher level programming

interfaces (Gropp et al., 1996). To address this challenge, we need

both easy-access to large computational infrastructure and bioinfor-

matics tools that are compatible and scalable on such platforms.

Cloud infrastructure and platform services (IaaS and PaaS) have

been well established in the informatics discipline (Dean and

Ghemawat, 2008; Schadt et al., 2010; Shvachko et al., 2010;

Zaharia et al., 2012). To fully exploit distributed cloud computing

systems, methods and programs should be scalable, fault tolerant

and platform independent. In genomics applications, there are sev-

eral tools [e.g. ABySS (Simpson et al., 2009) and Ray (Boisvert

et al., 2010)] using the message passing interface (MPI) for distrib-

uted implementations. However, programming on top of MPI has to

tangle with thread synchronization and load balance. Moreover,

VC The Author(s) 2017. Published by Oxford University Press. 1457

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 34(9), 2018, 1457–1465

doi: 10.1093/bioinformatics/btx808

Advance Access Publication Date: 15 December 2017

Original Paper

https://rhinempi.github.io/sparkhit/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/


there is no complete fault tolerance mechanism built inside of MPI.

The conventional Apache Hadoop framework is designed to offer

higher scalability and a supervised fault tolerance mechanism by

providing a distributed data storage system called HDFS (Shvachko

et al., 2010) and a distributed computing engine, Hadoop

MapReduce (Dean and Ghemawat, 2008). Cloudburst (Schatz,

2009) is a Hadoop based sequence mapping tool programmed in the

MapReduce model. The common seed and extend alignment pipe-

line is split and implemented in ‘map’ and ‘reduce’ steps, where the

‘map’ step searches K-mer matches (as seeds) and the ‘reduce’ step

extends the seeds to apply dynamic alignments. The limitation for

such method is that the ‘reduce’ step introduces large data shuffling

across cluster nodes that impacts its performance. Crossbow

(Langmead et al., 2009), Halvade (Decap et al., 2015) and Myrna

(Langmead et al., 2010), on the other hand, directly use Hadoop to

invoke existing sequence aligner [Bowtie (Langmead, 2010)] and

SNP caller [SOAPsnp (Li et al., 2008) or GATK (McKenna et al.,

2010)] for sequence mapping and genotyping on large datasets. The

three tools have successfully reduced the run times for mapping, gen-

otyping and gene expression quantification. Yet, their data prepro-

cessing step introduces a heavy overhead and their options for

handling distributed data are limited.

The more recent Apache Spark framework addresses these weak-

nesses with its unique data sharing primitive, called resilient distrib-

uted dataset (RDD) (Zaharia et al., 2012). RDD offers a ‘cache’

function to store distributed data in the memory across computers

on a cluster, thus, avoiding run time overhead of iterative data I/O

(input and output). Moreover, Spark has more build-in functions for

RDD to facilitate methods implementation and data handling via its

application programming interface (API). These advantages make

Spark suitable for large scale genomic data analysis. Nevertheless,

existing Spark based bioinformatics tools have their own limita-

tions. For instance, SparkBWA (Abuin et al., 2016) adopts the same

idea of Crossbow by using Spark to invoke the BWA (Li and

Durbin, 2009) aligner. However, it does not provide data prepro-

cessing functions for large amounts of compressed sequencing data.

Thus, manually decompressing the sequencing data introduces a sig-

nificant run time overhead. Instead of directly invoking existing

aligners, MetaSpark (Zhou et al., 2017) re-implemented a fragment

recruitment algorithm (Rusch et al., 2007). It has the same ‘seed and

extend’ pipeline as Cloudburst, but implemented its algorithm on

top of Spark. Thus, it also introduces large data shuffling in the

reduce step that impacts its run time performance. Moreover, it

requires a self-defined input format rather than the standard Fastq

and Fasta format, which introduces an overhead to manually covert

large Fastq files (Table 1).

We present Sparkhit, an open source computational framework

that is easy to use on a local cluster or on the cloud (Fig. 1). Sparkhit

is built on top of the Apache Spark platform, integrates a series of

analytical tools and methods for various genomic applications:

(i) We have natively implemented a metagenomic fragment recruit-

ment tool and a short-read mapping tool (Sparkhit-recruiter and

Sparkhit-mapper). The short-read mapper implements the pigeonhole

principle to report the best hit of a sequencing read. Whereas the frag-

ment recruitment tool implements the q-Gram algorithm to allow

more mismatches during the alignment, so that extra information is

provided for the metagenomic analysis; (ii) For using external soft-

ware on Sparkhit, we built a general tool wrapper (Sparkhit-piper) to

invoke and parallelize existing executables, biocontainers [e.g. Docker

containers (Merkel, 2014)] and scripts; (iii) For downstream data

mining, we integrated and extended Spark’s machine learning library.

All methods and tools are programmed and implemented in a new

MapReduce model extended by Spark, where parallelization is opti-

mized (load balanced) and supervised (fault tolerance).

Our benchmarks on Sparkhit demonstrated its high scalability.

In comparison, Sparkhit ran 18–32 times faster than Crossbow on

data preprocessing and Sparkhit-recruiter ran 92–157 time faster

than MetaSpark on fragment recruitment (Figs 2 and 3). Utilizing a

powerful compute cloud, Sparkhit can quickly analyze large

amounts of genomic data (Fig. 4). Our use case presents a 21 h’ pay-

as-you-go’ cloud application that analyzed 100 TB genomic data

from 3 genome projects and a transcriptomics study (Wyatt et al.,

2014). The analysis on the Human Microbiome Project (HMP),

associated public ‘big data’ with private datasets, demonstrates how

Sparkhit can be widely applied in different genomic studies

(Supplementary file S2, Figs S1, S2 and S3). Thus, our framework

enables the broader community to engage genomic investigations by

leveraging cloud computing resources.

Table 1. Features of different cloud based bioinformatics tools

Tools Platform Implementation Application Methods and tools

Cloudburst (Schatz, 2009) Hadoop Native Java re-implementation Mapping Seed and extend

Crossbow (Langmead et al., 2009) Hadoop Invoking external utilities Mapping and genotyping Bowtie and SOAPsnp

(Li et al., 2008)

Halvade (Decap et al., 2015) Hadoop Invoking external utilities Mapping BWA and GATK

(McKenna et al., 2010)

Myrna (Langmead et al., 2010) Hadoop Invoking external utilities Mapping and gene

expression profiling

Bowtie (Langmead, 2010)

CS-BWAMEM (Chen et al., 2015) Spark Native Scala re-implementation Mapping Burrows-Wheeler

transform

SparkSW (Zhao et al., 2015) Spark Native Scala re-implementation Mapping Smith-Waterman

SparkBWA (Abuin et al., 2016) Spark Invoking external utilities Mapping BWA (Li and Durbin,

2009)

MetaSpark (Zhou et al., 2017) Spark Native Scala re-implementation Fragment recruitment Seed and extend

Sparkhit Spark Both native and external Fragment recruitment,

mapping, genotyping,

taxonomy profiling

and gene expression

profiling

Seed and extend and a

collection of tools

1458 L.Huang et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data


2 Materials and methods

2.1 Spark cluster’s architecture and cloud deployment
The architecture of Sparkhit is organized by a Spark cluster, which

virtualizes each computer and forms a network consists of one or

more master node(s) and worker nodes. To organize all virtual com-

pute nodes, a master node is selected to supervise worker nodes,

allocate resources and balance workloads, whereas worker nodes

carry out assigned tasks (Fig. 1A). On such architecture, Spark

extends and integrates the MapReduce model into RDD’s functions,

where the ‘map’ step loads, processes and saves data in parallel on

each worker node and the ‘reduce’ step sorts, shuffles and aggregates

intermediate data. We used Spark-ec2 and BiBiGrid (https://github.

com/BiBiServ/bibigrid), a Java-based tool developed in our research

group, to easily setup Spark clusters on the Amazon cloud with one

command line (see Supplementary file 1 Method-1.2).

2.2 Parallel data downloading
Downloading and decompressing large genomic files are significant

bottlenecks before the actual data analysis begins. Spark’s architec-

ture can greatly benefit from high-performance networks during

large data transfers. In particular, when commencing a download

task, files can be split into chunks and transferred from distributed

storage system, such as Amazon simple storage service (S3), to each

worker node. This parallel transfer method fully utilizes high net-

work bandwidth of a distributed cluster (Fig. 1A).

When downloading data from Amazon S3 to HDFS, we have

used Hadoop Distcp (distributed copy), a tool designed for large

inter-cluster copying. For downloading data from Amazon S3 to a

shared network file system (NFS), we used a Java-based tool devel-

oped in our research group called BiBiS3 (https://wiki.cebitec.uni-bie

lefeld.de/bibiserv/index.php/BiBiS3). BiBiS3 not only parallelizes

downloading jobs to multiple computer nodes, but also applies

multi-thread downloading on each computer node to fully exploit

the capacities of every computer’s network connection (see

Supplementary File 1 Method-1.3).

2.3 Parallel data decompression
Most genomic datasets are compressed and stored on public reposi-

tories. To directly access and analyze the compressed data, we also

improved the performance on data preprocessing by introducing

parallel decompression after downloading the data. We developed a

parallel decompression tool, Sparkhit-spadoop, that is built on top

A

G

H

E F
D

B C

Fig. 1. A distributed computational framework for large scale genomic analysis. (A) Architecture of a Spark cluster deployed on the Amazon cloud. The yellow

boxes represent Amazon EC2 instances that are virtualized into Spark master/worker nodes. (B) Distributed implementation of Sparkhit-recruiter. The reference

index, illustrated in blue dashed box, is built on a driver node and broadcasted to each worker node. Sequencing reads, illustrated in Red dashes, are loaded into

an RDD and queried to the broadcasted reference index in parallel as a ‘Map’ step. A ‘Reduce’ step is followed to summarize the mapping result. (C) Pipeline of

Sparkhit-recruiter. The reference genome, illustrated in bold blue dash, is extracted and built into a K-mer hash table. The sequencing read, illustrated in bold red

dash, will be searched against the reference hash table for exact matches. A smaller Kmer is used to apply the q-Gram filter. (D) Pipeline of Sparkhit-mapper. It is

similar to (C), but uses the pigeonhole principle. (E, H) Using external tools and Docker containers for different analyses. Genomic data is loaded into an RDD and

distributed across worker nodes. Each partition of the RDD is sent to external tools to be processed independently. (F) Different modules of the machine learning

library. Colored dots denote vectors of either genotypes or gene expressions. (G) Parallel decompression. A Bzip2 file is split into blocks and stored in three

worker nodes. Each block is decompressed independently (Color version of this figure is available at Bioinformatics online.)

Sparkhit: a bioinformatics framework on the cloud 1459

https://github.com/BiBiServ/bibigrid
https://github.com/BiBiServ/bibigrid
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://wiki.cebitec.uni-bielefeld.de/bibiserv/index.php/BiBiS3
https://wiki.cebitec.uni-bielefeld.de/bibiserv/index.php/BiBiS3
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data


of the Apache Hadoop (Spark’s parallel decompression has a thread

safety issue at 2.0.0 version) and included it in our toolkit.

Since Bzip2 files are compressed in blocks (900 KB per block by

default), a large Bzip2 compressed file with sequencing data can be

decompressed in parallel. In particular, each block is an independent

component that is delimited by a 48-bit pattern, which makes it pos-

sible to find the block boundaries. When block boundaries are

found, parallel decompression can be applied to each block and

processed by multiple CPUs, so that more compute cores are uti-

lized. Then, we distributed all processes in a Hadoop MapReduce

A

C

E F K

D I J M

B G H L

Fig. 2. Performance benchmarks for Sparkhit. (A–D) Run time comparisons between different aligners. The comparisons were carried out across different sizes of

input fastq files, different sizes of reference genomes and different numbers of worker nodes. (E) Run time performance of Sparkhit-recruiter for recruiting

100–1000 GB sequencing data to a 72 MB reference genome on a 30 nodes Spark cluster deployed on the Amazon EC2 cloud. Each node has 32 vCPUs.

(F) Scaling performance of Sparkhit-recruiter. When increasing the number of worker nodes, the mean speed ups are measured by comparing their run times to

the run time on 10 worker nodes. We recruited 1.3 TB fastq files (Data-1) to a 72 MB reference genome (Ref-2) on the same cluster of (E). (G) Run time compari-

sons between Crossbow and Sparkhit for preprocessing 338 TB compressed fastq files on 50 and 100 worker nodes. (H) Comparing the recruited number of reads

between Crossbow and Sparkhit-recruiter when mapping 1.3 TB fastq files to a 72 MB reference genome. (I–J) Run times of the machine learning library on a pri-

vate cluster and the Amazon EC2 cloud. All computations were performed on a 200 GB VCF file cached in the memory. (K) Run times for different iterations of the

K means clustering. We ran iterations on the same VCF file from I, J, with data caching and non data caching. (L–M) Sensitivity and accuracy comparisons

between mapping tools

A B

Fig. 3. Comparisons between Sparkhit-recruiter and MetaSpark on metagenomic fragment recruitment. (A) Run times on recruiting simulated sequencing reads

to 72 MB and 142 MB reference genomes. All tests were carried out on 10, 20 and 30 worker nodes Spark clusters. Each worker node has 16 vCPUs. Run times

are presented in logarithmic scale base 2. (B) Numbers of recruited reads on recruiting 6 million simulated reads to 72 MB reference genome and 1 million simu-

lated reads to 142 MB reference genome

1460 L.Huang et al.



job that creates a ‘mapper’ for each chunk of the input HDFS data.

Each ‘mapper’ loads a data chunk and commences a decompression

process on the Bzip2 blocks in the chunk. (see Supplementary file 1

Method-1.4)

2.4 Data loading and saving
The Spark RDD stores data chunks in line-based text format, where

identifying entries requires finding line boundaries denoted by new-

line characters. After decompression, most NGS data is stored in

line-based text files, e.g. fastq, SAM and VCF files. For SAM and

VCF files, each line is an independent unit that contains its corre-

sponding information (mapping records or genotypes). Thus, when

loading these files, each line is read and stored as an element of an

RDD. However, a fastq file stores its basic information in a four-

line unit, where each line is an essential part of a sequencing read.

When loading fastq files into Spark RDD, a filter step is applied to

check each four-line unit before sending it out to be processed.

Both loading and saving run in parallel on each partition of the

RDD (the sequencing data) with a default size of 256 MB per parti-

tion. Sparkhit can also directly load and save data from and to both

HDFS and Amazon S3 by using the HDFS and the S3 URL scheme.

2.5 Fragment recruitment and short-read mapping

implementations of Sparkhit
In metagenomic studies, fragment recruitment is a key step to under-

stand the genome structure, evolution, phylogenetic diversity and

gene functions of biological samples (Rusch et al., 2007). As a spe-

cial case of read mapping, fragment recruitment supports more mis-

matches during the alignment. Thus, the computational complexity

for fragment recruitment can be higher than for standard short read

mapping.

We implemented a fast and sensitive fragment recruitment tool,

called Sparkhit-recruiter. Sparkhit-recruiter extends the Fr-hit (Niu

et al., 2011) pipeline and is implemented natively on top of the

Apache Spark. The pipeline consists of four steps: (i) building refer-

ence index, (ii) searching candidate blocks, (iii) block filtering and

(iv) banded alignment (Fig. 1C). When building the reference index,

we use a K-mer hash table to store each K-mer’s location on the

reference genome (Fig. 1C in blue color). Once the index is built, we

extract the K-mers from sequencing reads (Fig. 1C in red color) and

search against the reference hash table for exact matches. The

matched K-mers will be placed on the genome as seeds to extend

candidate blocks. The block filtering step incorporates a q-Gram

threshold to remove badly matched blocks, therefore, improves run

time performance. After filtering, banded alignment is applied to

give a final mapping result.

We also implemented a short-read aligner, called Sparkhit-

mapper (Fig. 1B and D). It adopts the same pipeline of Sparkhit-

recruiter, but uses a more strict pigeonhole principle for the filtering

step. Compared to the q-gram filter implementation in Sparkhit-

recruiter, the pigeonhole principle allows fewer mismatches on the

sequence so that less identical blocks are filtered and high similarity

candidate blocks are preserved (see Supplementary file 1 Method-

1.5.5). In this case, less candidate blocks are sent to the next step for

banded alignment, resulting in much faster runtime than Sparkhit-

recruiter.

To implement the pipelines in a distributed fashion, we split the

mapping processes into two parts: building the reference index and

A B C D

E
F

Fig. 4. Large scale genomic data analyses on the cloud with Sparkhit. (A) Run time comparison between three auto-scaling tools for deploying a Spark cluster on

the Amazon EC2 cloud. Durations include pending for approval of EC2 spot request and waiting for SSH connection to each EC2 instance. EMR, Amazon Elastic

MapReduce service. (B) Run times for processing all WGS data from the Human Microbiome Project. Mapping was carried out using Sparkhit-recruiter while

profiling was carried out using Sparkhit invoked Kraken. (C) Run times for processing 15 TB BAM files of the 3000 Rice Genome Project. We uploaded the variant

calling result to Amazon S3. (D) Run times for processing 5.6 TB compressed sequencing data. Mapping was carried out using Sparkhit invoked BWA aligner. We

uploaded the SAM files to Amazon S3. (E) Run times for processing 3.2 TB RNA-seq data. Gene expression profiling is carried out using Sparkhit invoked

Kallisto. (F) Fast access to genomic data on public repositories. Datasets of the Human Microbiome Project, the 3000 Rice Genome Project and the 1000 Genomes

Project are hosted in different regions on Amazon S3. Whereas the RNA-seq data of a prostate cancer transcriptomic study is stored on the ENA ftp server

Sparkhit: a bioinformatics framework on the cloud 1461

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data


querying sequencing reads (Fig. 1C, D, blue and red dashed boxes).

When starting a Sparkhit-recruiter job, the reference index is, firstly,

built on the driver node (usually the master node), where the main

Spark program runs. Once the reference index is built, the driver

program executes a ‘broadcast’ command to ship one copy of the

index to each worker node shared by all local querying tasks. On the

worker nodes, sequencing data chunks are loaded from HDFS to a

Spark RDD. Each partition of the RDD is, then, independently

queried to the broadcasted reference index as a ‘map’ step of the

MapReduce pipeline. In the end, a ‘reduce’ step summarizes the map-

ping result (Fig. 1B, see also Supplementary file S1 Method-1.5).

2.6 Parallelizing external tools using Sparkhit
To be flexible for different kinds of analyses, we built a general tool

wrapper called Sparkhit-piper. It extends Spark’s ‘pipe’ function to

invoke existing tools for analyses like sequence mapping, taxonomic

profiling, gene expression quantification and genotyping (Fig. 1E).

We use Spark RDD to split and distribute NGS data across cluster

nodes. Then, distributed datasets are sent to the invoked tool via

a standard input (stdin) stream. The tool processes input data in a

batch and sends back the result to another RDD via a standard

output (stdout) stream. In this case, the Spark RDD splits and distrib-

utes NGS data, while external tools carry out correspond computa-

tions. Sparkhit-piper is intuitive and flexible for users to parallelize

their own scripts or tools directly without modifying their codes.

The implementation is based on Spark RDD’s ‘pipe’ function,

where the RDD is able to send its data out of the JVM for processing

in the operating system, like a Linux pipe operator (‘j’). The Java

code can be expressed as:

JavaRDD<String>MapRDD¼FastqRDD.pipe
(param.toolþparam.toolOptions);

where ‘FastqRDD’ is the input RDD that stores sequence data

and ‘MapRDD’ is the output RDD that stores mapping result. The

‘param.tool’ represents the full path of the tool executable while

‘param.toolOptions’ represents the corresponding tool parame-

ters. Together, they assemble an external command that runs as an

independent process on each partition of the input RDD.

2.7 Machine learning library
Downstream genomic data mining usually applies statistical tests

and machine learning methods to analyze upstream results (gene

abundance, taxonomic profile of different samples and genotypes of

a certain cohort). We extended Spark’s machine learning library

(Mllib) and integrated a variety of algorithms: (i) clustering, (ii)

regression, (iii) chi-square test, (iv) correlation test and (v) dimen-

sional reduction (Fig. 1F). These algorithms are implemented with

more RDD functions and iterative processes (see Supplementary file

1 Method-1.6).

3 Results

3.1 General performance benchmarking for Sparkhit
In the following section we present a series of benchmarks for our

framework (Fig. 2).

3.1.1 Run time comparison between different mappers

We first measured the run times of all Sparkhit based mappers and

compared them to Crossbow (Fig. 2A–D). Our toolkit ran faster

than Crossbow across different numbers of worker nodes (30 and

50), different sizes of input data (1.3 TB and 545 GB) and different

sizes of reference genomes (36 MB, 72 MB and 142 MB, see

Supplementary file 1 Materials and Methods). Although Sparkhit-

recruiter was slower than other Sparkhit based mappers, it recruited

many more reads than standard short-read mappers such as BWA

(Fig. 2H).

3.1.2 Scaling performance of Sparkhit-recruiter

Sparkhit-recruiter scaled linearly with the increasing amount of

input data on a 30 worker nodes Spark cluster (Fig. 2E). When

scaled-out to more compute nodes, Sparkhit experienced slight

slowdown after we increased the number of worker nodes to 60

(Fig. 2F). The slowdown is introduced by the overhead of building

the reference index. However, since metagenomic fragment recruit-

ment applications actively change reference genomes between differ-

ent studies, the index building overhead is quite small and it runs

much faster compared to other Burrows-Wheeler transform (BWT)

based methods (Supplementary file S2, Fig. S5 and Discussion

section).

3.1.3 Preprocessing comparison with Crossbow

Data preprocessing is a critical step for interpreting cloud stored

public datasets. Manually decompressed and distributed large

amounts of genomic data on a cluster introduce significant over-

heads before data analysis. Although, several existing cloud tools

have provided preprocessing functions (Decap et al., 2015;

Langmead et al., 2009; Schatz, 2009), their proprocessing speeds are

limited by their non-parallel implementations. We have compared

the run time performances on data preprocessing between Sparkhit

and Crossbow. For 338 TB Bzip2 compressed data (Data-1),

Sparkhit ran 18 to 32 times faster than Crossbow on 50 and 100

worker nodes (Fig. 2G). Since Sparkhit utilizes all vCPUs for parallel

decompression, its run time performance almost doubled from 50

nodes to 100 nodes, whereas Crossbow had similar run times on

both clusters (Supplementary file S2, Table S12).

3.1.4 Machine learning library benchmarking and run time

performances on different clusters

For modules of the machine learning library, we have compared

their run time performances on both a private cluster and the

Amazon EC2 cloud (Fig. 2I and J). For the private cluster, data was

stored on magnetic disks of a shared network file system (NFS).

Whereas on Amazon EC2, data was stored on an HDFS deployed

on solid state disks (SSD). We ran every module on both 20 and 40

nodes Spark clusters using a 200 GB VCF file from the 1000

Genomes Project and compared their run times between a private

cluster and Amazon EC2. Since each module opened 640 and 1280

I/O tasks (20 nodes and 40 nodes, each node has 32 cores) to read

input data and write output result, the run time performance on the

private cluster was significantly slower than on the Amazon EC2

cloud (Supplementary file S2, Table S14). We also observed a signif-

icant improvement on run time for cached iterative computations

(K-means clustering), compared to non-cached ones (Fig. 2K).

3.1.5 Fragment recruitment comparison with MetaSpark

We have compared Sparkhit-recruiter to another Spark based dis-

tributed fragment recruitment tool (Fig. 3), MetaSpark (Zhou et al.,

2017). Sparkhit-recruiter ran 92–157 times faster than MetaSpark

across different numbers of worker nodes (10, 20 and 30), different

numbers of input reads (1 million and 6 millions) and different sizes

of reference genomes (72 and 142 MB). Although our tool recruited

1462 L.Huang et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data


10–12% reads less than MetaSpark using the same K-mer size, we

have adjusted to a smaller K-mer size that recruits more reads than

MetaSpark, while still ran 47–124 times faster (see Discussion

section).

3.1.6 Accuracy and sensitivity of natively implemented tools

To assess the accuracy and sensitivity of Sparkhit-recruiter and

Sparkhit-mapper, we used public datasets from the Genome in a

Bottle Consortium (GIAB) (Zook et al., 2014) and simulated 6 data-

sets (doi: 10.4119/unibi/2914921) from three microbial reference

genome templates (Ref-1, Ref-2 and Ref-3; Supplementary file S2,

Table S2). In general, Sparkhit-recruiter has slightly higher accuracy

than Fr-hit, Bowtie2 and SOAP, while having slightly lower accu-

racy than BWA (Fig. 2M–L and Supplementary file S2, Table S1).

For sensitivity, Sparkhit-recruiter, Fr-hit, Bowtie2 and BWA are

higher than SOAP on 100 nt simulated reads. For 150 nt simulated

reads, all mappers have similar sensitivities. Sparkhit-mapper has

slightly higher accuracy and sensitivity than Sparkhit-recruiter on

the GIAB data.

3.2 Large scale genomic data analyses on the cloud
To demonstrate that large scale genomic analyses on the cloud can

be easily accessible with Sparkhit, we tested our framework on 100

TB of genomic data from 3 genome projects and a transcriptomics

study on the Amazon EC2 cloud (Fig. 4). These data were com-

pressed and stored in different regions around the world on Amazon

S3 and the European Nucleotide Archive (ENA) ftp server (Fig. 4F).

We rented 100 c3.8xlarge Amazon EC2 instances (3200 cores, 6TB

memory and 60TB disk space in total; see Supplementary file 1

Materials) with a total spot price around 38 dollars per hour.

Sparkhit completed the entire process, including cluster deployment,

data downloading, decompression and various data mining, in 21 h

(the entire duration that the cloud provider charges) with a total

cost less than 800 dollars (Fig. 4A–E).

We started deploying a Spark cluster of 100 worker nodes in

Ireland region using Spark-ec2 script, which is the slowest one

among three cluster deployment tools (the worst scenario for users’

cloud budget). This step took 39 min and 54 s on the entire run time

clock (Fig. 4A and Supplementary file S2, Table S3).

3.2.1 Processing all WGS data of the Human Microbiome Project

The Human Microbiome Project hosts 2.3 TB of compressed meta-

genomic whole genome shotgun (WGS) data on Amazon S3 located

in the Oregon region. The data enables comprehensive characteriza-

tion of the human microbiome and serves as a metagenomic data-

base for microbiome studies. To associate these public datasets with

microbial reference genomes, we downloaded all WGS data to the

Spark cluster located in the Ireland region. After decompression, we

recruited all sequencing reads to a collection of 21 microbial refer-

ence genomes (72 MB total, defined as Ref-2) and summarized the

fragment recruitment results. We also profiled the taxonomy

abundance using Sparkhit invoked Kraken (Wood and Salzberg,

2014). All processes were completed in 1:34:52 h (Fig. 4B and

Supplementary file S2, Table S4).

3.2.2 Genotyping on 3000 samples of the 3000 Rice Genomes

Project

The 3000 Rice Genomes Project hosts 200 TB of public data on

Amazon S3 (Virginia region). This data enables large scale discovery

of novel alleles for important rice phenotypes. Variant detection is a

particularly expensive step in analyzing whole genome or exome

sequencing data. To test the run time performance of Sparkhit on

variant detection, we downloaded 15 TB BAM files to the

Spark cluster. Using Sparkhit invoking Samtools-Mpileup (Li et al.,

2009), we genotyped 3000 rice samples and uploaded detected

variants to Amazon S3. This analysis took 10:49:54 h (Fig. 4C and

Supplementary file S2, Table S5).

3.2.3 Mapping 106 samples of the 1000 Genomes Project

The 1000 Genomes Project hosts all WGS data on Amazon S3

(Virginia region). It provides a detailed catalogue of human genetic

variants in the studied populations. Before variant detection, a map-

ping step is required to present all matches and mismatches on the

reference genome. To test the run time performance of Sparkhit on

whole genome sequence mapping, we downloaded 5.6 TB com-

pressed sequencing data to the Spark cluster. Using Sparkhit invok-

ing BWA (Li and Durbin, 2009), we mapped 106 samples to a

human reference genome. After sequence mapping, all results

(SAM format) were uploaded to Amazon S3 for persistent storage.

The entire process was completed in 5:31:17 h (Fig. 4D and

Supplementary file S2, Table S6).

3.2.4 Gene expression profiling on prostate cancer RNA-seq data

Profiling tumor specific gene expression is a critical step for cancer

research. To enable fast transcriptome quantification on the cloud,

we tested the run time performance of Sparkhit on profiling 3.2 TB

compressed RNA-seq data of a prostate cancer transcriptomics

study (Wyatt et al., 2014). Since all datasets are archived on the

ENA ftp server (see Supplementary file 1 Materials), the download-

ing process consumed 1:29:28 h, whereas gene expression profiling

with Sparkhit invoked Kallisto (Bray et al., 2016) was completed in

21 min and 9 s (Fig. 4E and Supplementary file S2, Table S7). After

uploading the final result to Amazon S3, we shut down all EC2

instances.

3.3 Recruiting HMP metagenomic data to microbial

reference genomes
Metagenomics can capture and obtain genome fragments of unculti-

vated microbes (the microbial dark matter) by using shotgun

sequencing to aggregated microorganisms sampled directly from the

environment (Rinke et al., 2013). The Human Microbiome Project

applied metagenomic shotgun sequencing to characterize microbial

communities at different human body sites. As all HMP data is

hosted on Amazon S3, we can directly access and analyze these

metagenomic datasets on the cloud.

To demonstrate that associating HMP metagenomic data with

private datasets (e. g. cultured microbial genomes or uncultured

single cell genomes) can provide more biological insights, we

downloaded and recruited all HMP whole genome shotgun data

(2.3 TB compressed) to 12 selected microbial genomes (Ref-1, see

Supplementary file S2, Table S2). Based on the metadata of the

HMP samples, we present the fragment recruitment profile of 7 dif-

ferent microbial genomes across 6 different body sites (15 sub-body

sites) in Supplementary file S2, Figure S1. The abundance of each

microbial genome was normalized and illustrated across different

mapping identities (from 75 percent to 100 percent). In general, sub

body sites of the same main body site have similar profiles, but with

few exceptions. For instance, the abundances of Neisseria meningiti-

des are different between saliva and gingival plaque from the oral

body site. Streptococcus aureus has higher abundance in buccal

mucosa, attached gingivae and saliva compared to other sub body

sites in the oral body site. By changing the input reference genomes,

Sparkhit: a bioinformatics framework on the cloud 1463

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data


users can easily produce the abundance profile of other microbes

(see discussion).

3.4 Functional study based on HMP fragment

recruitment result
Mapping metagenomic sequences to a new strain could reveal

potential structural variances. A common method for functional

studies is based on the hypothesis that such structural variances can

have functional impact on the gene level. When recruiting HMP

data to the reference genomes, the recruitment result was sensitive

enough to pick up structural differences between genome sequences

of two E.coli strains (Supplementary file S2, Fig. S1A and B). We,

then, followed up a functional analysis, gene prediction and path-

way enrichment, based on the sequences (see Supplementary file 1

Method-1.10). We extracted all gaps on the E.coli O104: H4 strain

and predicted 158 new genes. These genes are enriched in two

pathogenic pathways: Shigellosis and Pathogenic E.coli infection

(Supplementary file S2, Fig. S2E–G). We annotated all genes and

identified two toxic genes (Shiga toxin 2 subunit A and B) present in

the E.coli strain that caused the 2011 German E.coli outbreak

(Rasko et al., 2011).

4 Discussion

In this study, we presented a Spark based distributed computational

framework for large scale genomic analytics, called Sparkhit.

Sparkhit incorporates a variety of tools and methods that are pro-

grammed in the Spark extended MapReduce model. We have

described (i) the implementation of a fragment recruitment tool and

a short-read mapping tool using Spark’s RDD API, (ii) the construc-

tion of a general tool wrapper to invoke and parallelize external

tools and (iii) the integration of Spark’s machine learning library for

downstream data mining. We also presented the architecture of

Sparkhit and the utilities that we used for deploying Spark clusters

and downloading public datasets. Sparkhit outperforms most

Hadoop and Spark based bioinformatics tools in computational run

time. Using our framework, we analyzed large amount of public

genomic data on the cloud within a short time.

The performance benchmarks demonstrated the scalability of

Sparkhit. Sparkhit-recruiter scaled linearly (Fig. 2E) with the

increasing amount of input data, as we utilized Spark RDD to bal-

ance data distribution and optimized the computational paralleliza-

tion. In addition, the distributed data I/O via HDFS further reduces

latency. On HDFS, data is distributed and loaded locally or from

the closest node (depending on the redundancy setting of HDFS),

avoiding massive data transfer across the network. We also observed

the advantage of using HDFS when comparing the run times of the

machine learning library between the Amazon EC2 cloud and the

private cluster, which stored input data on an NFS shared by all

worker nodes. On NFS, all data was read and written through the

network connection to a mounted volume that can saturate the

bandwidth. When scaling out to more worker nodes, a slight slow-

down was observed (Fig. 2F). The slowdown was caused by the

overhead of building the reference index, which runs solely on the

driver node. This can be improved by pre-building the reference

index using our locally implemented recruiter (a Java-based tool

included in our framework). Moreover, the overhead for construct-

ing reference index is small compared to the run time of the frag-

ment recruitment process.

Our tool had excellent run time performance on data preprocess-

ing compared to Crossbow (18–32 times faster) and significant run

time improvement on fragment recruitment compared to MetaSpark

(92–157 times faster). Although we recruited 10–12% less reads

than MetaSpark, we can adjust to a smaller K-mer size that recruits

slightly more reads than MetaSpark, while still ran 47–124 times

faster (Fig. 3). In addition, our tool has a reasonable accuracy and

sensitivity on sequence mapping (Supplementary file S2, Table S1).

Sparkhit-recruiter also offers more options for fragment recruit-

ment, such as an option for reporting the best match for each read

and an option to choose between global or local alignment, whereas

MetaSpark can only apply local alignment.

Spark and Hadoop based bioinformatics tools are not widely

used in genomic studies as they require users to comprehend certain

amount of knowledge on cloud computing. Therefore, we particu-

larly focus on providing a simple and comprehensive cloud applica-

tion to directly access and analyze public genomic datasets. We

described a simple way to setup a Spark cluster on the Amazon

cloud with one line of command. We also facilitated downloading

and preprocessing large amounts of data by leveraging distributed

Amazon S3 storage and optimizing parallel data decompression. In

addition, Sparkhit enables users to parallelize their own tools or

public bio-containers. Our large scale data analyses on 100 TB data

presented how we completed the entire cloud utilization cycle in

only 21 h. Moreover, the fragment recruitment application on all

WGS data of HMP was completed in less than 2 h on Amazon EC2.

The fragment recruitment application presented a study model

that users can easily query the entire HMP data to a personalized

reference dataset on the cloud. In microbial studies, combining

metagenomic data with microbial reference genomes has been com-

monly used (Eloe-Fadrosh et al., 2016). In our use case, we recruited

all WGS data of the HMP to two different strains of E.coli: a toxic

strain and a non-toxic strain. The intention is to find genome

sequence segments that are not presented in the metagenomic sam-

ples. These sequence segments, which are unique for the toxic strain,

might have functional impact that differs from the non-toxic one.

We applied a functional analysis using the sequence segments and

reproduced two toxic genes that caused the 2011 German E.coli

outbreak. The same method can be applied to other isolates or single

cell genomes.

Acknowledgements

We thank Georges Hattab for proof reading the preliminary manuscript.

Gratitude to Raunak Shrestha and Dr. Faraz Hach for bringing insights to the

project.

Funding

This project has been supported by the German-Canadian DFG international

research training group ‘Computational Methods for the Analysis of the

Diversity and Dynamics of Genomes’ (DiDy) GRK 1906/1. All Amazon cloud

benchmarks and applications are funded by an Amazon research grant.

Conflict of Interest: none declared.

References

Abuin,J.M. et al. (2016) Sparkbwa: speeding up the alignment of

high-throughput dna sequencing data. PLoS One, 11, e0155461.

Auton,A. et al. (2015) A global reference for human genetic variation. Nature,

526, 68–74.

Bao,R. et al. (2014) Review of current methods, applications, and data man-

agement for the bioinformatics analysis of whole exome sequencing. Cancer

Inf., 13, 67–82.

1464 L.Huang et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx808#supplementary-data


Boisvert,S. et al. (2010) Ray: simultaneous assembly of reads from a mix of

high-throughput sequencing technologies. J. Comput. Biol., 17, 1519–1533.

Bray,N.L. et al. (2016) Near-optimal probabilistic RNA-seq quantification.

Nat. Biotechnol., 34, 888–5257.

Chen,Y.-T. et al. (2015) Cs-bwamem: A fast and scalable read aligner at the

cloud scale for whole genome sequencing. In: High Throughput Sequencing

Algorithms and Applications (HITSEQ).

Dean,J. and Ghemawat,S. (2008) Mapreduce: simplified data processing on

large clusters. Commun. ACM, 51, 107–113.

Decap,D. et al. (2015) Halvade: scalable sequence analysis with mapreduce.

Bioinformatics, 31, 2482–2488.

Droop,A.P. (2016) qsubsec: a lightweight template system for defining sun

grid engine workflows. Bioinformatics, 32, 1267–1268.

Eloe-Fadrosh,E.A. et al. (2016) Global metagenomic survey reveals a new bac-

terial candidate phylum in geothermal springs. Nat. Commun., 7, 10476.

Gropp,W. et al. (1996) A high-performance, portable implementation of the

mpi message passing interface standard. Parallel Comput., 22, 789–828.

Langmead,B. (2010) Aligning short sequencing reads with bowtie. Curr.

Protoc. Bioinf., doi: 10.1002/0471250953.bi1107s32.

Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with bow-

tie 2. Nat. Methods, 9, 357–359.

Langmead,B. et al. (2009) Searching for snps with cloud computing. Genome

Biol., 10, R134.

Langmead,B. et al. (2010) Cloud-scale RNA-sequencing differential expres-

sion analysis with myrna. Genome Biol., 11, R83.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with

burrows-wheeler transform. Bioinformatics, 25, 1754–1760.

Li,H. et al. (2009) The sequence alignment/map format and samtools.

Bioinformatics, 25, 2078–2079.

Li,R. et al. (2008) Soap: short oligonucleotide alignment program.

Bioinformatics, 24, 713–714.

McKenna,A. et al. (2010) The genome analysis toolkit: a mapreduce frame-

work for analyzing next-generation dna sequencing data. Genome Res., 20,

1297–1303.

Merkel,D. (2014) Docker: lightweight linux containers for consistent develop-

ment and deployment. Linux J., 2014, 2.

Niu,B. et al. (2011) Fr-hit, a very fast program to recruit metagenomic reads to

homologous reference genomes. Bioinformatics, 27, 1704–1705.

Peterson,J. et al. (2009) The NIH human microbiome project. Genome Res.,

19, 2317–2323.

R Genomes Project. (2014) The 3,000 rice genomes project. Gigascience, 3, 7.

Rasko,D.A. et al. (2011) Origins of the E. coli strain causing an outbreak of

hemolytic-uremic syndrome in germany. N. Engl. J. Med., 365, 709–717.

Rinke,C. et al. (2013) Insights into the phylogeny and coding potential of

microbial dark matter. Nature, 499, 431–437.

Rusch,D.B. et al. (2007) The sorcerer ii global ocean sampling expedition:

northwest atlantic through eastern tropical pacific. PLoS Biol., 5, e77.

Schadt,E.E. et al. (2010) Computational solutions to large-scale data manage-

ment and analysis. Nat. Rev. Genet., 11, 647–657.

Schatz,M.C. (2009) Cloudburst: highly sensitive read mapping with mapre-

duce. Bioinformatics, 25, 1363–1369.

Shvachko,K. et al. (2010) The hadoop distributed file system. In: 2010 IEEE 26th

Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–10.

Simpson,J.T. et al. (2009) Abyss: a parallel assembler for short read sequence

data. Genome Res., 19, 1117–1123.

Wood,D.E. and Salzberg,S.L. (2014) Kraken: ultrafast metagenomic sequence

classification using exact alignments. Genome Biol., 15, R46.

Wyatt,A.W. et al. (2014) Heterogeneity in the inter-tumor transcriptome of

high risk prostate cancer. Genome Biol., 15, 426.

Zaharia,M. et al. (2012) Resilient distributed datasets: a fault-tolerant abstrac-

tion for in-memory cluster computing. In: Proceedings of the 9th USENIX

conference on Networked Systems Design and Implementation. USENIX

Association, p. 15–28.

Zhao,G. et al. (2015) Sparksw: scalable distributed computing system for

large-scale biological sequence alignment. In: 2015 15th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGrid).

IEEE, pages 845–852.

Zhou,W. et al. (2017) Metaspark: a spark-based distributed processing tool to

recruit metagenomic reads to reference genomes. Bioinformatics, 33,

1090–1092.

Zook,J.M. et al. (2014) Integrating human sequence data sets provides a resource

of benchmark snp and indel genotype calls. Nat. Biotechnol., 32, 246.

Sparkhit: a bioinformatics framework on the cloud 1465


