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1 Department of Chemistry, Poznań University of Life Sciences, 60-637 Poznan, Poland;
anna.przybylska@up.poznan.pl (A.P.-B.); kinga.stuper@up.poznan.pl (K.S.-S.)

2 Department of Menegment of Food Quality and Safety, Poznań University of Life Sciences, 60-637 Poznan,
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Abstract: Due to the health-promoting properties of elderberry fruits, which result from their rich
chemical composition, this raw material is widely used in herbal medicine and the food industry.
The aim of the study was to demonstrate the antibacterial activity of the elderberry fruit extracts.
The research showed that the content of phenolic acids and flavonoids in the extracts determined
their antibacterial activity. The research showed that the content of phenolic acids and flavonoids in
the extracts determined their antibacterial activity. The following phenolic acids were predominant:
chlorogenic acid, sinapic acid, and t-cinnamic acid. Their average content was, respectively, 139.09,
72.84, 51.29 mg/g extract. Rutin and quercetin (their average content was 1105.39 and 306.6 mg/g
extract, respectively) were the dominant flavonoids. The research showed that the elderberry
polyphenol extracts exhibited activity against selected strains of bacteria within the concentration
range of 0.5–0.05%. The following bacteria were the most sensitive to the extracts: Micrococcus luteus,
Proteus mirabilis, Pseudomonas fragii, and Escherichia coli. Of the compounds under analysis, apigenin,
kaempferol and ferulic, protocatechuic, and p-coumarin acids had the greatest influence on the high
antibacterial activity of elderberry extracts. The results of the microbiological and chemical analyses
of the composition of the extracts were analyzed statistically to indicate the bioactive compounds of
the greatest antimicrobial significance.

Keywords: Sambuci fructus; double hydrolysis; the antibacterial activity of the elderberry fruit extracts

1. Introduction

Elderberry is a plant species of the Adoxaceae family. Formerly it was also included in
the Sambucaceae and Caprifoliaceae families [1,2]. Currently there are about 20 intraspecific
taxa of elderberry around the world. The varieties growing in forests and parks are
predominant, but there are also cultivars grown for industrial purposes [3–7].

Elderberry fruits (Sambuci fructus) are spherical drupes, occurring in the form of
corymbs with several dozen pieces inside. Their color depends on the stage of ripeness. In
the beginning the fruit is green, but when it is fully ripe, it is black and violet [7–9]. Due to
the health-promoting properties of elderberry fruits, which result from their rich chemical
composition, this raw material is widely used in herbal medicine and the food industry.
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The chemical composition of elderberry fruits depends on various factors, including
the cultivar, environmental conditions (light, temperature, amount, and frequency of
rainfall, fertilization, cultivation methods), the processing method and storage conditions.
Ripe elderberry fruits contain carbohydrates, including dietary fiber, mainly hemicelluloses
and polygalacturonic acid, pectins, and simple sugars [10,11]. Elderberries contain small
amounts (2.7–2.9%) of protein, including seven exogenous amino acids [12,13]. They are
also rich in fatty acids, mainly linoleic acid, linolenic acid, and oleic acid [11,14]. Elderberry
fruits are a source of tannins and organic acids, including malic, acetic, valeric, tartaric,
shikimic, and benzoic acids [15,16]. Apart from that, elderberry fruits contain 0.01%
of essential oil, which is composed of over 30 different compounds, including phenyl
aldehydes (3–25.8% of the oil composition) and furfural (18%) [17,18]. Elderberry fruits
are also a source of minerals [19–22], considerably diversified amounts of vitamin C:
6–25 mg/100 g [23], 18–36 mg/100 g [21], 18–26 mg/100 g [24], 6–44 mg/100 g [19,20],
and even 132.1 mg/100 g [17], as well as a wide range of B vitamins: B2–65 mg/100 g;
B7–17 mg/100 g, B9–1.8 mg/100 g [21,24] and vitamin A (600 IU/100 g) [21].

The antioxidative properties of elderberries are mostly determined by anthocyanins,
which are a large group of bioactive compounds (cyanidin-3-glucoside: 65.7% of all antho-
cyanins) [25,26], as well as flavonoids, flavonols, and phenolic acids.

According to reference publications, there are significant differences between the
profile of bioactive compounds in the fruits of cultivated and wild plants [27]. Currently
Poland is a country with the best-documented tradition of picking wild edible plants [28,29].
The progressive nutritional trends oriented to traditional functional food have sparked
intensified research on wild edible plants [30,31]. The health-promoting and healing
properties of elderberry products and preparations were the basis of this study. So far, the
antimicrobial activity of ethanol-aqueous extracts from freeze-dried elderberry concentrates
has been investigated on 13 nosocomial pathogens, including Staphylococcus aurens, Bacillus
cereus, Salmonella poona, and Pseudomonas aeruginosa [32]. However, currently the most
important direction of research is the compounds contained in elderberry fruit products,
which exhibit antiviral activity, especially against group A (KAN-1 HSNI) and B viruses
(B/Mass) [33,34].

Literature data reported that extracts of black elder flowers as well fruits inhibited
Gram-positive (S. aureus, B. cereus) and Gram-negative bacteria (S. poona, P. aeruginosa).
Flavonons, flavonols dihydroflavonols presentin fruts, and flowers of black elder may
be responsible for their antimicrobial properties. Furthermore, they can contain lecithin,
peptides, and oligosaccharides which are inhibitors of transcription and metabolism of the
bacterial cells [32].

This study was conducted on extracts of bioactive compounds from freeze-dried
elderberry fruits growing wild in Poland. The extracts were obtained with an original
method described in detail in the Materials and Methods section.

The aim of this study was to assess the antimicrobial activity of aqueous solutions of
wild elderberry extracts obtained by double hydrolysis. The results of the microbiological
and chemical analyses of the composition of the extracts were analyzed statistically to indi-
cate the bioactive compounds of the greatest antimicrobial significance. Interdisciplinary
research was conducted to find interrelations between the factors under analysis and to
better understand the antimicrobial activity of elderberry extracts.

2. Results and Discussion

The samples of elderberries collected from 36 locations in Poland were subjected to the
extraction process described in the Materials and Methods section. The extract preparation
method was optimized to match the specificity and chemical composition of the material.
The main focus of the investigations was bioactive compounds, mainly antioxidants. The
average values of the results are shown below.

The first stage of the investigations involved analysis of the antioxidative activity
measured by means of ABTS+ (Table 1). A high value of the antioxidative activity indicated
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the presence of antioxidative compounds. The next stage of investigations involved
measurement of the total free phenolic acids content and total flavonoids content (TFC).
The elderberry extracts had a high amount of these compounds. By comparison, according
to reference publications, the content of polyphenols per 100 g of elderberry fruits is
diversified, e.g., 25.87–38.87 mg/g DM [23], 827 mg [35], 1336 mg [36], or 513.6 mg [37].

Table 1. The total phenolic content (TPC), total phenolic acid content (TAC), total flavonoid content
(TFC), and ABTS+ in the elderberry extracts.

Min Max Mean SD

ABTS+ (µmol Trolox
equivalent/g extract) 647.21 721.25 684.23 1.09.1975

TPC (mg GAE/g extract) 3.23 18.90 13.28 4.34

TFC (mg RUTE/g extract) 11.25 263.50 114.98 64.14

The next stage of the investigations involved analysis of the content of 15 selected
phenolic acids (Table 2) and 8 flavonoids (Table 2) in the extracts (Figure 1). The following
phenolic acids were predominant: chlorogenic acid, sinapic acid, and t-cinnamic acid. Rutin
and quercetin were the dominant flavonoids. However, it is noteworthy that the antimicro-
bial activity of these extracts results from the entire composition of bioactive compounds
rather than from individual compounds, as has been presented in scientific publications
so far. According to the reference publications, polyphenols contained total flavonoids
at a concentration of 186 mg/100 g in, where quercetin (about 73.4 mg/100 g) [14], iso-
quercitin, rutoside, and hyperoside were the dominant compounds [11,38]. Another
two groups of bioactive compounds described in the reference publications were total
flavonols (38.26–142.3 mg/100 g) [39,40] and total phenolic acids (20.00 mg/100 g) [37].
Like in our research, chlorogenic acid was also the dominant phenolic acid in other studies
(10–32 mg/100 g) [37,38,41].
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Table 2. The content of phenolic acids in the elderberry extract.

[mg/g Extract] Min Max Mean SD

gallic 0.34 8.32 3.34 1.82

4-hydroxybenzoic 0.19 6.21 1.36 1.21

vanillic 0.02 0.25 0.13 0.06

syringic 0.42 3.09 1.61 0.75

vanillin 0.84 6.19 3.13 1.44

benzoic 2.09 30.96 12.36 5.98

chlorogenic 25.50 254.07 139.09 60.93

protocatechuic 0.24 1.61 0.89 0.38

salicylic 0.79 4.43 2.56 1.03

caffeic 0.26 5.53 2.03 1.40

p-cumaric 0.16 1.21 0.61 0.26

ferulic 11.20 67.09 34.63 14.84

sinapic 18.45 164.75 72.84 30.96

t-cinnamic 12.60 90.24 51.29 21.98

rosmarinic 0.16 2.24 0.79 0.41

The content of flavonoids in the elderberry extract

[mg/g extract] Min Max Mean SD

apigenin 18.47 129.43 66.74 27.01

catechin 0.03 0.71 0.23 0.17

Table 2. Cont.

[mg/g Extract] Min Max Mean SD

kaempferol 0.28 2.50 1.01 0.61

luteolin 2.76 49.13 15.85 10.24

naringenin 8.53 65.27 30.71 12.83

quercetin 97.38 504.88 306.60 125.02

rutin 124.98 2773.71 1105.39 604.12

vitexin 0.13 2.98 1.35 0.90

Figure 1. Cont.
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Figure 1. Representative chromatograms elderberry fruits extracts from UPLC/PAD of samples (a)–phenolic acids, (b)–
flavonoids and a comparison of the most diversified samples (samples 5, 18, 20, and 36) (c)–phenolic acids (d)–flavonoids.
(phenolic acids: 1–gallic acid, 2–4-hydroxybenzoic acid, 3–vanillic acid, 4–syringic acid, 5–vanilin, 6–benzoic acid, 7–
chlorogenic acid, 8–protocatechuic acid, 9–salicylic acid, 10–caffeic acid, 11–p-coumaric acid, 12–ferulic acid, 13–sinapic
acid, 14–t-cinnamic acid, 15–rosmarinic acid; flavonoids: 1–apigenin, 2–catechin, 3–kaempferol, 4–luteoline, 5–naringenin,
6–quercetin, 7–rutin, 8–vitexin).

Organic acids were the next group of compounds analyzed in our research. Table 3
lists the content of organic acids and basic sugars: glucose and fructose. These parameters
indicate the degree of fruit ripeness and determine the organoleptic characteristics of
fruit products. The relation between acids and sugars should be inversely proportional.
On the one hand, a higher sugar content makes fruits and fruit products more desirable.
On the other hand, a high content of organic acids reduces the pH and stabilizes the
bonds and structures of phenolic acids, flavonoids, and anthocyanins. In consequence, the
antioxidative activity of the entire system of bioactive compounds increases. Citric acid
was the dominant acid, which is characteristic of berries.

Table 3. The content of organic acids (LMWOAS) and sugars in the elderberry extract.

[mg/g Extract] Min Max Mean SD

citric 0.76 1.24 1.03 0.14

malic 0.23 0.37 0.29 0.05

shikimic 0.03 0.25 0.14 0.06

fumaric 0.03 0.12 0.07 0.03

glucose 3.08 7.40 4.89 1.44

fructose 3.88 9.38 5.91 1.77

At the next stage the elderberry extracts were analyzed for the content of natural
pigments determining the color of ripe fruits. The analysis revealed the presence of
carotenoids, chlorophylls, and anthocyanins (Table 4). Anthocyanins were the compounds
with the highest total mean content, i.e., 109 mg/g of the elderberry fruit extract. According
to the data provided in the reference publications, the total anthocyanins content in 100 g
of fresh elderberries was considerably diversified, i.e., 200–1000 mg [42], 465.1 mg [37],
272.87 mg [40], 863.89 mg [43], 1265 mg [20]. The differences in the content of anthocyanins
may have been caused by differences between the varieties of elderberry fruit and the
weather conditions during ripening [44]. The authors of other studies mostly identified:
cyanidin-3-glycoside (65.7% of all anthocyanins), cyanidin-3-sambubioside (32.4%), and
cyanidin-3-diglycoside (0.8% of all anthocyanins) [26,45]. According to the data provided
in the reference publications, the content of anthocyanins in 100 g of fresh fruit amounted
to 529–664 mg in the Haschberg cultivar, 877 and 1815 mg in the Sampo cultivar, and 846
and 1634 mg in the Samyl cultivar. The content of anthocyanins in elderberry products
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depended on the degree of processing and technological conditions, since anthocyanins
are unstable compounds [11,44,46]. Elderberries usually contain 0.2–1% of anthocyanins
and about 0.01% of essential oil, which contains about 50 compounds. For this reason,
elderberries are used as a natural pigment and for the flavoring of food products [13,34,43].
Additionally, unripe fruits contain sambucin, and more precisely–sambunigrin. This
is a highly poisonous cyanogenic glycoside (benzaldehyde cyanohydrin). Therefore, the
consumption of raw elderberries may cause acute poisoning, weakness, and gastrointestinal
ailments [21]. The results of toxicological studies led to the conclusion that the consumption
of elderberries after thermal treatment is safe and does not cause any side effects [47–50].

Table 4. The content of pigments, carotenoids, chlorophyll, and anthocyanins in the elderberry extract.

[mg/g Extract] Min Max Mean SD

Total carotenoids 25.50 75.00 47.93 15.92

Total chlorophyll 0.08 0.54 0.29 0.14

TAC 75.18 149.78 109.81 22.62

The composition of extracts of phenolic compounds is an important determinant
affecting various directions of their activity. This study focused on the antibacterial effect
of the extracts.

Reference strains of the bacteria which are pathogenic mainly to humans and cause
food spoilage were selected for microbiological tests (Table 5). Before some of these bacterial
strains were not investigated thoroughly enough for their sensitivity to the activity of
polyphenolic bioactive compounds.

Table 5. The minimum inhibitory concentrations (MIC) [%] of the elderberry extracts.

Tested Bacteria Min Max Mean Value

Pathogenic bacteria

E. coli (PCM 2793) 0.05 0.5 0.275

S. enteritidis (PCM 2548) 0.1 0.5 0.3

L. inoccua (DSM 20649) 0.1 0.5 0.3

Food-spoilage bacteria

P. fluorescens (PCM 2123) 0.1 0.5 0.3

P. fragii (PCM 1856) 0.05 0.5 0.275

P. mirabilis (PCM 1361) 0.05 0.5 0.275

Control bacteria M. luteus (PCM 525) 0.05 0.5 0.275

The research showed that the elderberry polyphenol extracts exhibited activity against
selected strains of bacteria within the concentration range of 0.5–0.05%. The following bac-
teria were the most sensitive to the extracts: M. luteus, P. mirabilis, P. fragii, and E. coli. This
finding significantly broadened the current knowledge, because so far only selected tannins
derived from hydroxycinnamic, gallic, and caffeic acids, as well as triterpenes (oleanic
acid and α- and β-amarin) were considered antimicrobial substances [14,51]. The studies
conducted so far showed that selected polyphenols and their esters inhibited the growth
of bacteria of the following genera: Yersinia, Bacillus, Corynebacterium, Proteus, Staphylo-
coccus, Enterococcus, Klebsiella, Micrococcus, Escherichia, and Pseudomonas. Gallic, vanillic,
synaptic, and protocatechuic acids effectively inhibit the growth of Gram-positive and
Gram-negative bacteria, e.g., E. coli, Enterobacter cloacae DG-6, and Ps. acidovorans [52–57].
These acids are more effective against Gram-positive than Gram-negative bacterial cells,
because the cells of Gram-negative bacteria have an outer shell surrounding the cell wall,
which makes it difficult for hydrophobic compounds to diffuse through the liposaccharide
membrane into the cell. Caffeic, ferulic, and protocatechic acids are bioactive compounds
which inhibit the growth of bacteria responsible for food poisoning, e.g., Bacillus subtilis
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and Bacillus cereus. Phenolic acid derivatives also exhibit the bactericidal effect against
Y. enterocolitica rods. Among them o-coumaric acid compounds are more effective than
m-coumaric acid derivatives, which could be associated with both the chemical structure of
phenolic compounds and the resistance of these bacteria [57]. Martins et al. [58] observed
that polyphenol extracts inhibited the development of Candida species [59–61]. Kędzia and
Hołderna-Kędzia [62] used phenolic acids, i.e., p-coumaric acid, caffeic acid, and ferulic
acid in their research and observed that they inhibited the growth of St. aureus, E. coli,
K. pneumoniae, E. faecalis, and Ps. aeruginosa bacteria. Salicylic acid exhibited a relatively
stronger antibacterial effect (MIC 100–500 µg/mL). Gallic acid also exhibited a strong
antibacterial effect (the MIC for S. aureus was 150 µg/mL). On the other hand, syringic, gen-
tisic, and p-hydroxybenzoic acids had a very weak effect on S. aureus (MIC > 1000 µg/mL).
The same authors also found that depsides (chlorogenic acid, rosmarinic acid, ellagic acid)
exhibited weak antimicrobial activity against S. aureus, E. coli, K. pneumoniae, E. faecalis, and
Ps. aeruginosa [62]. Efenberger-Szmechtyk et al. [63] also used aqueous extracts of phenolic
acids to investigate their antimicrobial properties and observed that they effectively limited
the growth of the following bacteria: E. faecalis, B. thermosphacta, E. coli, Ps. fluorescens, L.
rhamnosus, P. mirabilis, and E. aerogenes [63]. Latest studies also confirmed the antibacterial
activity of six phenolic acids and showed the antibacterial potential of extracts against
Gram-positive bacteria (E. faecalis and L. monocytogenes) [64,65]. Camargo et al. [66] also
noted that phenolic acid extracts inhibited the growth of Gram-positive bacteria (B. cereus, S.
aureus, L. monocytogenes, Gb. stearothermophilus) and Gram-negative bacteria (Ps. aeruginosa,
Ps. fluorescens, S. enteritidis, S. typhimurium, E. coli) [66]. Other researchers studied the
activity of flavonoid extracts against Gram-negative bacteria, i.e., E. coli and Ps. aerugi-
nosa, and found that the level of their activity depended on their chemical structure [67].
Malterund et al. [68] studied the antibacterial properties of flavonoids and found that
only naringenin exhibited antibacterial activity against E. coli, S. aureus, and E. faecalis.
Iwagawa et al. [69] noted that some quercetin derivatives inhibited the growth of E. coli.
Basile et al. (1999) [70] found that apigenin, vitexin, and saponarin acted selectively against
some Gram-negative bacteria, i.e., P. vulgaris, P. mirabilis, Ps. aeruginosa, E. coli, K. pneumo-
niae, and E. cloacae. The minimum inhibitory concentration of apigenin was determined
in that study. The other flavonoids were not active against the strains tested. The same
scientists conducted an identical study on Gram-positive bacteria, i.e., S aureus and E.
faecalis, but the flavonoids they tested did not exhibit any lethal activity. Oksus et al. [71]
determined the MIC of apigenin (54–219 µg/mL) against the P. vulgaris, Ps. aeruginosa, E.
coli, and K. pneumoniae bacteria. Waage and Hedin [72] tested quercetin glycosides and
noted that quercetin-3-O-rhamnoside exhibited the highest activity against Ps. maltophilia
and E. cloacae. Liu et al. [73] observed that kaempferol glycosides were the most effective
against Gram-positive bacteria. The MICs of the kaempferol and chloramphenicol gly-
cosides against B. cereus were 16 µg/mL and 2 µg/mL, respectively [73]. The MICs of
kaempferol and chloramphenicol glycosides against Gram-positive S. aureus bacteria were
32 µg/mL and 64 µg/mL, respectively [74]. Wang et al. [75] studied various methyl and
acetyl derivatives of flavonoids and concluded that the presence of hydroxyl groups at the
C-5 and C-7 positions was very important for the antimicrobial activity. The presence of an
additional methoxy group at C7 or dihydroxy groups at C-3′ and C-4′ significantly reduced
the antimicrobial activity [75]. Van Puyvelde et al. [76] noted the antibacterial activity of
flavones, flavonols, flavanones, and isoflavones against P. vulgaris and S. aureus.

The canonical correlation analysis (CCA) showed a negative correlation between
flavonoids (excluding luteolin and rutin), hydroxycinnamic acids (excluding caffeic acid),
hydroxybenzoic acids (excluding chlorogenic and 4-hydroxybenzoic acids) and the pres-
ence of pathogenic and food spoilage microorganisms (Figure 2). The compounds with the
greatest potential to inhibit microbial growth were kempferol, apigenin, protocatechuic,
and ferulic acids.



Molecules 2021, 26, 2910 8 of 17

Figure 2. Canonical Correlation Analysis (CCA) (n = 38) Dependencies between groups of phenolic
acids, organic acids, pigments, sugars and their influence on the development of pathogenic and
food spoilage microorganisms.

There was an inversely proportional relation between glucose and citric and fumaric
acids as well as between anthocyanins and malic and shikimic acids.

The canonical variate analysis (CVA) enabled the creation of a CCA model. Progressive
stepwise analysis was used to determine which variables determined the activity of the
pathogenic and food spoilage microorganisms to the greatest extent. All the variables were
assessed and the ones that contributed most to the group discrimination based on the p
and F values for the variable under analysis were included in the model. This process was
repeated until the p value increased above 0.05 or the F value dropped below 2.00 for the
variable under analysis.

The analysis determined homogeneous groups of elderberry extracts in terms of their
content of compounds. There were three homogeneous groups in terms of the content of
polyphenols and flavonoids: the first one was closely correlated with luteolin and vanilin–
all the samples came from the Warmian-Masurian Voivodeship (Group I), the second
one was correlated with chlorogenic, 4-hydroxybenzoic, and benzoic acids–the samples
collected from the Lublin Voivodeship (Group II), the third one was correlated with the
content of catechin, ferulic acid, and naringin (Kuyavian-Pomeranian Voivodeship, Łódź
Voivodeship, and Greater Poland Voivodeship, but the sites were located in central Poland)
(Group III). Tables 6 and 7 list the statistical parameters for the detrended correspondence
analysis. The list of Voivodeships of the analyzed samples is presented in Table 8.

Table 6. Variance explained by the first four DCA axes (Figure 3).

Axes 1 2 3 4 Total Eigenvalues

Eigenvalue 0.3279 0.2567 0.0821 0.0458

2.115
Length of gradient 2.896 2.156 1.391 1.097

Polyphenols and flavonoids–
samples correlations 0.919 0.907 0.544 0.655

Polyphenols and flavonoids–
samples relation 35.7 37.1 0.0 0.0
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Figure 3. DCA (n = 38) A diagram showing the distribution of the elderberry extract samples in
terms of the content of polyphenols and flavonoids.

Figure 4. DCA (n = 38) A diagram showing the distribution of the elderberry extract samples in
terms of the antioxidative activity and the content of organic acids, pigments, and sugars. Four
homogeneous groups were identified.
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Table 7. Variance explained by the first four DCA axes (Figure 4).

Axes 1 2 3 4 Total Eigenvalues

Eigenvalue 0.3721 0.1697 0.6512 0.0329

2.059Length of gradient 3.088 1.873 1.255 1.066

Polyphenols and flavonoids–correlations in samples 0.951 0.742 0.421 0.235

Polyphenols and flavonoids–correlations in samples 41.2 25.8 0.0 0.0

Table 8. The mass of the extract obtained from individual Sambucus nigra L. samples.

No. Location Voivodeship Mass of Extract [g]

1 51◦24′99′ ′N 21◦58′16′ ′E Lublin Voivodeship 0.25

2 52◦01′93′ ′N 17◦78′44′ ′E Greater Poland Voivodeship 0.19

3 52◦65′67′ ′N 16◦95′29′ ′E Greater Poland Voivodeship 0.65

4 53◦31′56′ ′N 20◦67′35′ ′E Greater Poland Voivodeship 0.39

5 52◦99′64′ ′N 18◦70′72′ ′E Kuyavian-Pomeranian Voivodeship 0.20

6 49◦39′96′ ′N 22◦44′98′ ′E Podkarpackie Voivodeship 0.79

7 49◦27′54′ ′N 19◦86′88′ ′E Lesser Poland Voivodeship 0.48

8 51◦25′05′ ′N 22◦57′01′ ′E Lublin Voivodeship 0.10

9 51◦62′26′ ′N 17◦94′28′ ′E Greater Poland Voivodeship 0.69

10 50◦29′68′ ′N 16◦65′20′ ′E Lower Silesian Voivodeship 0.44

11 53◦92′82′ ′N 14◦44′89′ ′E West Pomeranian Voivodeship 0.80

12 53◦91′31′ ′N 14◦52′00′ ′E West Pomeranian Voivodeship 1.05

13 53◦47′30′ ′N 17◦89′64′ ′E Kuyavian-Pomeranian Voivodeship 1.83

14 53◦48′46′ ′N 18◦07′17′ ′E Kuyavian-Pomeranian Voivodeship 0.74

15 53◦77′66′ ′N 20◦47′65′ ′E Warmian-Masurian Voivodeship 0.61

16 53◦39′84′ ′N 20◦94′62′ ′E Warmian-Masurian Voivodeship 0.16

17 53◦58′34′ ′N 20◦28′16′ ′E Warmian-Masurian Voivodeship 1.04

18 54◦21′38′ ′N 21◦74′16′ ′E Warmian-Masurian Voivodeship 0.28

19 53◦81′29′ ′N 20◦35′80′ ′E Warmian-Masurian Voivodeship 0.40

20 53◦59′70′ ′N 19◦85′43′ ′E Warmian-Masurian Voivodeship 1.08

21 54◦47′25′ ′N 16◦63′07′ ′E West Pomeranian Voivodeship 0.12

22 51◦30′05′ ′N 16◦83′01′ ′E Lower Silesian Voivodeship 0.37

23 54◦16′88′ ′N 17◦49′22′ ′E Pomeranian Voivodeship 0.50

24 53◦26′97′ ′N 16◦46′70′ ′E West Pomeranian Voivodeship 0.16

25 52◦39′91′ ′N 16◦71′89′ ′E Greater Poland Voivodeship 1.38

26 52◦97′29′ ′N 16◦54′44′ ′E Greater Poland Voivodeship 0.18

27 53◦27′61′ ′N 15◦46′33′ ′E West Pomeranian Voivodeship 0.71

28 52◦77′12′ ′N 16◦87′97′ ′E Greater Poland Voivodeship 0.94

29 52◦80′71′ ′N 17◦19′73′ ′E Greater Poland Voivodeship 0.11

30 51◦76′81′ ′N 15◦87′48′ ′E Lubusz Voivodeship 1.05

31 52◦10′76′ ′N 19◦94′47′ ′E Łódź Voivodeship 0.56

32 53◦24′68′ ′N 17◦01′70′ ′E Greater Poland Voivodeship 0.22

33 52◦04′58′ ′N 18◦36′86′ ′E Greater Poland Voivodeship 0.57

34 52◦53′95′ ′N 16◦26′42′ ′E Greater Poland Voivodeship 0.16

35 51◦76′87′ ′N 19◦45′69′ ′E Łódź Voivodeship 0.52

36 52◦47′75′ ′N 16◦87′72′ ′E Greater Poland Voivodeship 2.12
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The DCA revealed four homogeneous groups in terms of the antioxidative activity
and the content of organic acids, pigments, and sugars in the elderberry extracts. As was
the case with the previous model, groups I, II, and III were created. The fourth group
was not related to the location, but it was similar in terms of the content of carotenoids,
fructose, and fumaric and shikimic acids. In this case the location did not determine the
distribution of compounds in the elderberries. Further research is necessary to identify
factors influencing the degradation of bioactive compounds in elderberries.

In order to use elderberry extracts for health purposes, we should take into account
the bioavailability of the active ingredients present in these extracts. Bioavailability can be
defined as the amount or fraction of a compound that is released into the gastrointestinal
tract and becomes available for absorption [77]. The research showed that the content
of phenolic acids and flavonoids in the extracts determined their antibacterial activity.
Scientific literature showed that phenolic acid can be absorbed in the stomach, small
intestine, or both. [78]. The metabolization of flavonoids begins with hydrolysis of the
glycosidic linkage, action that takes place in the intestine lumen or in enterocytes and then
absorbed. These compounds, depending on their chemical structure, are hydrolyzed by
endogenous human cytosolic β-glucosidase or by rhamnosidase, an enzyme produced by
the intestinal microflora [79].

3. Materials and Methods
3.1. Research Material

The research was conducted on 500 g of wild elderberry fruits (Sambucus nigra L.)
harvested in Poland in August and September 2019. The fruits were harvested in 36 places
of their natural occurrence, which were marked with numbers in further part of this article.
The fruits were harvested when they were fully ripe. After the harvest they were frozen
and freeze-dried (temperature −53 ◦C, pressure 0.025 mbar). After drying the fruits were
subjected to the extraction process.

The extracts were obtained with an innovative method of double hydrolysis (acidic
and alkaline) and extraction of bioactive compounds, which were released from glycosidic
bonds with diethyl ether. After evaporation the dry extracts were dissolved in deionized
water and used in microbiological tests.

The extracts were tested for the minimum inhibitory concentration (MIC) against 7
bacterial strains and analyzed chemically to determine the content of phenolic compounds,
pigments and antioxidative properties in a test with the ABTS+ radical.

3.2. Extraction Procedure

The phenolic compounds in the samples were analyzed after alkaline and acid hy-
drolysis. 10 g of the dehydrated plant material was placed in a 750 cm3 round bottom
flask. The flask was placed under a reflux condenser. First, an alkaline hydrolysis was
performed, followed by an acid hydrolysis. Next, 50 mL of distilled water and 200 mL
of 2 M aqueous sodium hydroxide solution were added to the test tubes for the alkaline
hydrolysis. The sealed flasks were heated in a heating mantle at 95 ◦C for 30 min. After
cooling (approx. 20 min), the samples were neutralized with 100 mL of a 6 M aqueous
hydrochloric acid solution (pH = 2). The samples were then cooled in ice water. Flavonoids
were extracted from the inorganic (aqueous) phase with diethyl ether (2 × 100 mL). The
ether extracts formed were continuously transferred to 250 cm 3 round bottom distillation
flasks and evaporated on a rotary evaporator. Then acid hydrolysis was performed. For
this, the aqueous phase was supplemented with 150 mL of 6 M aqueous hydrochloric
acid solution and heated again at 95 ◦C for 30 min. After cooling with ice water, the
samples were extracted with diethyl ether (2 × 100 mL). The produced ether extracts were
continuously transferred to 250 cm3 round bottom distillation flasks and evaporated on a
rotary evaporator. The extract was quantitatively transferred from the distillation flasks
to 8 cm3 vials, washing the flasks 2 × 4 cm3 with diethyl ether. Then the extracts were
dried under a stream of nitrogen at room temperature. The dry extracts were weighed
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and stored at −80 ◦C until further analysis (Table 8). Prior to subsequent analysis steps,
the extracts were thawed under refrigeration for 12 h and then digested with a selected
amount of MiliQ-grade distilled water to obtain the selected concentration. Elderberry
extracts were digested to a volume of 25 cm3 in a volumetric flask.

Chromatographic Analysis

The analysis was performed using an Acquity H class UPLC system equipped
with a Waters Acquity PDA detector (Milford, MA, USA). The chromatographic sepa-
ration was performed on an Acquity UPLC® BEH C18 column (Watersy, Dublin, Ireland)
(100 mm × 2.1 mm, particle size 1.7 µm) (Watersy, Dublin, Ireland). The elution was car-
ried out in a gradient using the following mobile phase composition: A: acetonitrile with
0.1% formic acid, B: 1% aqueous formic acid mixture (pH = 2). The concentrations of
phenolic compounds were determined with the use of an internal standard at wavelengths
λ = 320 nm and 280 nm and finally given in mg/1 g of extract. Compounds were identified
by comparing the retention time of the analyzed peak with the standard retention time
and by adding a specific amount of standard to the analyzed samples and repeating the
analysis. The detection level was 1 µg/g.

3.3. Total Phenolic Content (TPC)

The total phenolic content was measured with the Folin-Ciocalteu reagent [80,81], 2 mL
of the Folin-Ciocalteau reagent was added to 1 mL of the aqueous extract. After 3 min the
reaction environment was alkalised by adding 10 mL of a 10% sodium carbonate solution.
After 30 min the solutions were filled up to 25 mL and their absorbance was measured at a
wavelength of λ = 765 nm, using a Hitachi U-2900 spectrophotometer (Schaumburg, IL,
USA). The results were calculated as the mean of triplicates, in mg phenolic compounds
per gram of raw material expressed as gallic acid equivalent (GAE).

3.4. Total Chlorophyll Content

The plant material was thoroughly ground in a mortar containing 3 mL of ethanol, a
pinch of sand and a pinch of CaCO3. The solution was quantified into labelled centrifuge
tubes. The mortar and pestle were rinsed with another 2 mL of alcohol, which was poured
into the same centrifuge tubes. The tubes with the chlorophyll alcohol solution were capped
and kept in a dark place until centrifugation. The samples were centrifuged at 9000 rpm for
10 min at room temperature. Next, the supernatant was quantitatively transferred into new
labelled centrifuge tubes. Then, 1.9 mL of ethyl alcohol and 0.5 mL of the sample under
analysis were poured into spectrophotometer cuvettes. The contents were mixed, and the
chlorophyll content was determined with a UV/VIS Excellence 6850 spectrophotometer
at wavelengths of: 645 nm, 649 nm, 654 nm, and 665 nm. The apparatus was zeroed at
the specified wavelength on 2 mL of ethanol. All the measurements were triplicated. The
formula below was used to calculate the content of chlorophyll a and b:

Chlorophyll (a + b) = [(25.1 × A654) × (V: (1000 ×W))] × 4 [mg g−1 fresh weight]

where:
A 645-665—absorbance measured at a wavelength of 649–665 nm,
V—total volume of the extract (mL),
W—weight of the sample (g) [82].

3.5. Total Anthocyanin Content (TAC)

The total anthocyanin content was measured with the spectrophotometric method
described by Giusti and Wrolstad [80]. The results of the measurements were expressed as
cyanidin-3-glucoside (C3G). 2 g of the product was collected and homogenized for 3 min
(20,000 rpm) with 100 cm3 of a mixture of methanol and 1.5-molar hydrochloric acid (85:15).
The homogenate was centrifuged for 20 min at 4000 rpm. A clear liquid was collected for
analysis. The other products were diluted with buffers so as to make a spectrophotometric
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measurement within an absorbance range of 0.3–0.8. Depending on the sample, the dilution
factor (DF) ranged from 12.5 to 20. All the measurements were triplicated with the UV VIS
Excellence 6850 spectrophotometer [83–85].

3.6. Total Carotenoid Content

Determination of the total carotenoids and β-carotene content was carried out in
accordance with the Polish standard [86].

3.7. Sugar Content

The content of glucose and fructose was measured in diluted and purified samples
by means of HPLC with refractometric detection, using prepared standard curves. The
chromatographic analysis was conducted under the following conditions: Shimadzu
(Milton Keynes, England) apparatus, LC-20AD pump, RID—10A detector, Rezex RCM-
Monosaccharide Ca2+ 300 × 7.8 mm column, column temperature 80 ◦C, mobile phase:
deionized water, flow 0.8 cm3/min.

3.8. MIC Measurement

The minimum concentrations of the elderberry fruit extracts inhibiting (MIC) the
growth of Escherichia coli (PCM 2793), Salmonella enteritidis (PCM 2548), Proteus mirabilis
(PCM 1361), Pseudomonas fluorescens (PCM 2123), Pseudomonas fragii (PCM 1856), Listeria
innocua (DSM 20649), and Micrococcus luteus (PCM 525) were measured with a Bioscreen
C automated growth reader (Oy Growth Curves Ab Ltd.,TURKU, Finland). Bacterial
inoculants and a series of diluted hydrated extracts were placed on a plate and incubated for
72 h under adequate conditions for individual groups of bacteria. The apparatus measured
the optical density (OD) in each cuvette. The first concentration without turbidity was
considered the MIC value, i.e., the minimum concentration at which the microorganisms
used in the study were inactivated during 72-h incubation.

3.9. Statistical Analysis

Statistical analyses and models were based on discriminant analysis. The analyses
showed which of the variables – pigments, sugars, organic acids, or polyphenols, may
affect the activity of pathogenic and food-spoilage microorganisms. The model was con-
structed using canonical variate analysis (CVA)—the canonical variation of Fisher’s linear
discriminant analysis (LDA) [87]. Detrended correspondence analysis (DCA) was used
as an indirect method to prepare a diagram, ordering the samples under analysis. The
borderline significance level was determined with the Monte Carlo permutation test (num-
ber of permutations: 9.999). The Canoco for Windows package and the Microsoft Excel
spreadsheet was the software (Canoco 5) (accessed 3 October 2019) used for all compar-
isons, calculations, and graphic elements. The following tools from Canoco for Windows
were used: Canoco for Windows 4.5, CanoDraw for Windows, and WcanoIMP.

4. Conclusions

The research showed that the content of phenolic acids and flavonoids in the ex-
tracts determined their antibacterial activity. Of the compounds under analysis, apigenin,
kaempferol and ferulic, protocatechuic, and p-coumarin acids had the greatest influence
on the high antibacterial activity of elderberry extracts. The statistical analyses did not
show any significant influence of the location on the profile of bioactive compounds in
the extracts. The extraction method presented in the study made it possible to obtain
preparations containing free compounds with antioxidative and antibacterial properties.
This method can facilitate the standardization of wild elderberry preparations.
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84. Gozdecka, G.; Kaniewska, J.; Domaradzki, M.; Jędryczka, K. Ocena zawartości wybranych składników bioaktywnych w
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