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ABSTRACT The aim of this paper was to assess the influence of Fasciola
hepatica infection on oxidative modifications of rat liver cell components such
as proteins and lipids. Wistar rats were infected per os with 30 metacercariae of F.
hepatica. Activities and concentrations of liver damage markers were determined
in the 4th, 7th, and 10th week postinfection (wpi). A decrease in antioxidant
capacity of the host liver, manifested by a decrease in total antioxidant
status (TAS), was observed. Diminution of antioxidant abilities resulted in
enhanced oxidative modifications of lipids and proteins. F. hepatica infection
enhanced lipid peroxidation, which was visible in the statistically significant
increase in the level of different lipid peroxidation products such as conjugated
dienes (CDs), lipid hydroperoxides (LOOHs), malondialdehyde (MDA) and
4-hydroxynonenal (4-HNE). The level of protein modification markers in the
rat liver was also significantly changed and the most intensified changes were
observed at seventh week postinfection. Concentration of carbonyl groups
and dityrosine was significantly increased, whereas the level of tryptophan and
sulfhydryl and amino groups was decreased. Changes in the antioxidant abilities
of the liver and in the lipid and protein structure of the cell components resulted
in destruction of the function of the liver. F. hepatica infection was accompanied
by raising serum activities of alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) as markers of liver damage. A significant decrease in
lysosomal as well as in the total activity of cathepsin B during fasciolosis was
also observed.
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INTRODUCTION
Fasciola hepatica is the cosmopolitan fluke parasitizing in the liver parenchyma and bile

ducts, mostly in herbivorous wild and domestic animals (sheep, goats, cattle) as well as in
humans. Due to an increase in the number of cases of this fluke infection in humans all
over the world, fasciolosis has been classified by the World Health Organization (WHO)
as a serious threat to public health (Mas-Coma et al. 1999, 2005). Currently, according to
various assessments, 2.4 million (WHO 1995) to as many as 17 million (Hopkins 1992) of
the world population may be infected by F. hepatica, and the risk of F. hepatica infection
concerns over 180 million of the population (WHO 1995). The greatest number of clinical
cases of human fasciolosis was recognized in Bolivia, Ecuador, Egypt, France, Iran, Peru,
and Portugal (WHO 1995).

Hepatic lesions produced by F. hepatica are invariably associated with chemical alterations
in the cell, such as enhancement of membrane lipid peroxidation and marked suppression
of the microsomal drug-metabolizing mono-oxygenase system (Maffei Facino et al. 1989,
1993; Abdel Rehim et al. 2003). Uncoupling of oxidative phosphorylation, inhibition
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of respiratory reactions, and loss of oligomycin sensitivity by
the F1F0-ATPase were demonstrated in mitochondria of rat
hepatocytes (Rule et al. 1989; Hanisch et al. 1992; Lenton et al.
1994). In rat fasciolosis, hepatocyte mitochondria accumulate
free fatty acids and are also depleted of phospholipids resulting
in loss of membrane integrity (Lenton et al. 1995) and other
structural and functional changes.

It is generally believed that the host is capable of significant
tolerance to infection by the liver fluke thanks to defense
mechanisms associated with the generation of reactive oxygen
species (ROS) (Smith et al. 1992; Maffei Facino et al. 1993;
Abu-Shousha et al. 1999).

In the course of fasciolosis, enhanced generation of reactive
oxygen species (ROS) and reactive nitrogen species (RNS) is
observed. ROS generation by peritoneal leucocytes in response
to the Fasciola antigen was found particularly in the course of
secondary invasion in rats (Smith et al. 1992). An increase in
superoxide radical anion (O2

−.) as well as in the NO level,
generated through monocytes, was revealed during chronic
fasciolosis in humans (Abo-Shousha et al. 1999) and also
through peritoneal cells in rats (Piedrafita et al. 2001; Sibille
et al. 2004).

Independently of increased free radical generation F. hep-
atica infection is accompanied by disturbances in antioxidant
mechanisms, which lead to ineffectiveness in ROS scavenging
(Kolodziejczyk et al. 2005). In such a situation ROS are helpful
in host tolerance to infection but also the high chemical
reactivity of ROS may lead to reactions with almost all
constituents of the cell, including proteins, lipids, and DNA.
Attack by ROS causes the alterations in molecular structure
and biological properties (Berlett and Stadtman 1997; Peskin
1997; Fujita 2002), which may be detrimental to the cell of
host liver. Therefore, we have decided to examine the effects
of F. hepatica infection on rat liver antioxidant abilities and in
consequence on lipids’ and proteins’ oxidative modifications.

MATERIAL AND METHODS
Animal Treatment

The experiment was done on male Wistar rats aged 5 weeks.
The rats were housed in groups with free access to granulated
standard food and water and a normal light-dark cycle was
maintained. The study protocol was approved by the Local
Bioethics Committee in Szczecin (Poland) in accordance with
the Polish Animals Protection Act of 1997. Rats were infected
per os with 30 metacercariae of F. hepatica administered through
a stomach tube. Metacercariae were obtained from Lymnaea
truncatula snail culture according to Taylor and Mozley (1948)
and were classified as viable only if excretory granules were
seen under an optical microscope (Boray 1969). Livers were
removed in 10 control and 10 F. hepatica infected rats that had
been anesthetized with ketamine at the 4th, 7th, and 10th week
postinfection (wpi).

Preparation of Tissue
Livers were placed in ice-cold 0.15 M NaCl solution,

perfused with the same solution to remove blood cells, blotted
on filter paper, weighed, and homogenized in 9 mL ice-cold
0.25 M sucrose and 0.15 M NaCl with the addition of
6 µL 250 mM BHT (butylated hydroxytoluene) in ethanol to

prevent the formation of new peroxides during the assay. The
homogenization procedure was performed under standardized
conditions; 10% homogenates were centrifuged at 10,000 × g
for 15 min at 4◦C and the supernatant was kept on ice until
assayed.

To assay protein oxidation, liver samples were homogenized
in 5 mM phosphate buffer (pH 7.5) with protease inhibitors
(leupeptin 0.5 mg/mL, aprotinin 0.5 mg/mL, pepstatin 0.7
mg/mL) and 0.1% Triton X-100. The homogenate was cen-
trifuged at 7800 × g for 20 min and the biochemical analysis
were performed on the supernatant.

To assay cathepsin B activity liver samples were homoge-
nized in a glass Teflon Potter homogenizer in 0.25 M sucrose
without and with 0.2% Triton X-100. The homogenates were
centrifuged at 100,000 × g (4◦C) for 60 min to settle the
organelles or their membranes. Supernatant received from
homogenate prepared in sucrose was called cytosol. Supernatant
received from homogenate prepared in sucrose with Triton
X-100 was called the homogenate.

Biochemical Assays
Lipid peroxidation was assayed by HPLC measurement

of lipid hydroperoxides (LOOH) (Tokumaru et al. 1995),
malondialdehyde (MDA) as a malondialdehyde-thiobarbituric
acid adduct (Londero and Greco 1996), and 4-hydroxynonenal
(4-HNE) as a fluorimetric derivative (Yoshino et al. 1986), and
by spectrophotometrical measurement of conjugated dienes
(CD) at 234 nm (Recknogel and Glende 1984).

Protein oxidative modifications were examined by de-
termination of carbonyl group, dityrosine, tryptophan,
sulfhydryl group, and amino group levels. Carbonyl
groups were determined spectrophotometrically using 2,4-
dinitrophenylhydrazine (Levine et al. 1990). Dityrosine content
was estimated by fluorescence spectrophotometry at 325 nm
excitation and 420 nm emission (Rice-Evans at al. 1991).
Fluorescence emission at 338 nm and excitation at 288 nm
was used as a reflection of tryptophan content (Rice-Evans at
al. 1991). The free amino groups were assayed by reaction with
ninhydrin (Devenyi and Gregely 1968), while sulphydryl groups
were determined by the Ellman reaction (Ellman 1959).

In the liver cytosol and homogenate the activity of cathepsin
B was determined with Bz-DL-Arg-pNA (Sigma Chemical Co,
St. Louis, USA) as a substrate, at pH 6.0, by measuring released
p-nitroaniline at 405 nm during 2 h incubation at 37◦C
(Tawatari et al. 1979). The activity of cathepsin B in lysosomes
was calculated as a difference in activity in homogenate and in
cytosol. The protein concentration was determined according
to Lowry et al. (1951).

Diagnostic Biomerieux tests were used for assessment of
blood serum alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) activities.

Statistical Analysis
The data obtained in this study are expressed as mean ± SD.

The data were analyzed by use of standard statistical analyses,
one-way ANOVA, with Scheffe’s F-test for multiple compar-
isons to determine significance between different groups. The
values for p < 0.05 were considered significant.
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TABLE 1 TAS in the liver of control and F. hepatica-infected rats at 4, 7, and 10 wpi

Weeks postinfection

4 7 10

Control rats Infected rats Control rats Infected rats Control rats Infected rats

TAS mol/g
tissue

110.6 ± 6.5 93.5 ± 7.3a 108.2 ± 6.9 91.4 ± 7.5a 112.5 ± 6.1 98.8 ± 7.7a

a Significantly different from control group (p <0.05).

RESULTS
F. hepatica infection caused a significant decrease in antiox-

idant capacity of the host liver, which was manifested by a
significant decrease in total antioxidant status (TAS) by about
15%, 16%, and 12% in comparison with control group in the
4th, 7th, and 10th wpi, respectively (Table 1).

Diminution of antioxidant abilities resulted in enhanced
oxidative modifications of liver cell components such as
lipids and proteins. Infection with F. hepatica enhanced lipid
peroxidation, which was visible in the significant increase in the
level of different lipid peroxidation products. The level of the
first lipid peroxidation product—conjugated dienes (CDs)—has
a tendency to increase (by about 5% and 15% in comparison
with control groups in the 4th and 10th wpi, respectively).
However, the lipid hydroperoxide (LOOH) level was increased
(by about 51%, 48%, and 31% in comparison with control
groups in the 4th, 7th, and 10th wpi, respectively). The content
of malondialdehyde (MDA) and 4-hyroxynonenal (4-HNE) was
significantly increased by about 97%, 75%, and 69% for MDA
and by about 108%, 99%, and 73% for 4-HNE in comparison
with control groups in the 4th, 7th, and 10th wpi, respectively
(Table 2).

Table 3 shows the level of protein modification markers in
the rat liver. The levels of carbonyl groups and dityrosine were
significantly increased during fasciolosis by about 21%, 34%,
and 38% for carbonyl groups and by about 28%, 68%, and 30%
for dityrosine in comparison with control groups in the 4th, 7th,
and 10th wpi, respectively. However, the level of tryptophan was
statistically decreased by about 10% in comparison with control
group only in the 7th wpi. The levels of sulfhydryl and amino
groups were significantly decreased during fasciolosis by about
13%, 20%, and 15% for sulfhydryl groups and by about 11%,
21%, and 15% for amino groups in comparison with control
group in the 4th, 7th, and 10th wpi, respectively.

A significant decrease in lysosomal as well as in the total
activity of cathepsin B during fasciolosis was also observed (by
about 18%, 23%, and 15% for lysosomal and by about 40%,
42%, and 25% for total in comparison with control group in
the 4th, 7th, and 10th wpi, respectively). In consequence, the
statistical increase by about 45%, 113%, and 68% in cytosol
activity of cathepsin B was observed in comparison with control
group in the 4th, 7th, and 10th wpi, respectively (Table 4).

Damage of liver cells as a result of oxidative modification
of liver cell components was also visible in the serum activities
of the liver damage markers (ALT and AST). Table 5 shows
that serum activities of alanine aminotransferase and aspartate
aminotransferase were significantly increased during infection
with F. hepatica. Almost a threefold increase in ALT and
AST activities was observed in the infected group of rats in
comparison with control group (by about 187%, 178%, and
194% for ALT and by about 120%, 116%, and 118% for AST
in the 4th, 7th, and 10th wpi, respectively).

DISCUSSION
It has been reported that ROS generation is enhanced during

F. hepatica infection (Piedrafita et al. 2001). This fact is very
important regarding the significant decrease in antioxidant
capacity of the host liver after invasion, which was manifested
by the decrease in activity/level of basic cellular enzymatic and
nonenzymatic antioxidants shown in previous studies (Callahan
et al. 1988; Kolodziejczyk et al. 2006) as well as a decrease in
total antioxidant status observed in this study. Disturbances in
oxidant–antioxidant balance existing in the organism may result
in the higher exposure of cell components to the ROS action.
It is known that proteins are major targets for ROS, which are
formed in vivo both intra- and extracellularly. On the basis of
rate constants and the knowledge of the relative abundance of

TABLE 2 The levels of lipid peroxidation products: conjugated dienes (CDs) lipid hydroperoxides (LOOHs), malondialdehyde (MDA),
and 4-hydroxynonenal (4-HNE) in the liver of control and F. hepatica-infected rats at 4, 7, and 10 wpi

Weeks postinfection

4 7 10

Control rats Infected rats Control rats Infected rats Control rats Infected rats

CD (µmol/g tissue) 1.27 ± 0.05 1.34 ± 0.12 1.30 ± 0.06 1.39 ± 0.14 1.29 ± 0.06 1.48 ± 0.14
LOOH (µmol/g tissue) 124 ± 8 187 ± 14 122 ± 8 181 ± 15 127 ± 9 167 ± 14
MDA (nmol/g tissue) 2.58 ± 0.15 5.09 ± 0.52a 2.74 ± 0.15 4.79 ± 0.52a 2.71 ± 0.15 4.58 ± 0.52a

4-HNE (nmol/g tissue) 1.36 ± 0.08 2.84 ± 0.29a 1.27 ± 0.08 2.53 ± 0.23a 1.32 ± 0.23a 2.28 ± 0.23a

aSignificantly different from control group (p < 0.05).
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TABLE 3 The levels of protein modification markers: carbonyl groups, dityrosine, tryptophan, sulfhydryl groups, and amino groups
in the liver of control and F. hepatica-infected rats at 4, 7, and 10 wpi

Weeks postinfection

4 7 10

Control rats Infected rats Control rats Infected rats Control rats Infected rats

Carbonyl groups
(nmol/mg protein)

0.97 ± 0.05 1.17 ± 0.08a 0.99 ± 0.06 1.32 ± 0.09a 0.97 ± 0.06 1.35 ± 0.11a

Dityrosine (U/mg
protein)

0.36 ± 0.02 0.46 ± 0.04a 0.34 ± 0.02 0.57 ± 0.05a 0.40 ± 0.03 0.52 ± 0.04a

Tryptophan (U/mg
protein)

7.91 ± 0.45 7.43 ± 0.58 7.95 ± 0.51 7.19 ± 0.63a 8.01 ± 0.55 7.42 ± 0.67

Sulfhydryl groups
(nmol/mg protein)

4.11 ± 0.25 3.59 ± 0.31a 4.07 ± 0.27 3.24 ± 0.30a 4.09 ± 0.27 3.47 ± 0.30a

Amino groups (nmol
Tyr/mg protein)

47.2 ± 3.0 42.1 ± 3.1a 47.6 ± 2.9 37.5 ± 3.1a 46.1 ± 3.1 39.1 ± 3.3a

aSignificantly different from control group (p < 0.05).

macromolecules within cells, it has been estimated that proteins
can scavenge 50% to 75% of ROS such as hydroxyl radical
generated within a cell by γ -radiolysis (Gebicki and Gebicki
1993). All proteins are susceptible to attack by ROS, but some
of them are more vulnerable than others (Stadtman and Levine
2003). Moreover, from amino acids composing protein moiety
the most sensitive to oxidation are side chains of aromatic
amino acids: tryptophan, tyrosine, and phenylalanine. Our
study has proved that during F. hepatica infection the amount
of tryptophan residues was significantly decreased, whereas the
level of dityrosine, the product of ROS reaction with tyrosine,
was increased in comparison to control. Dityrosine production
appears to be a useful “marker” for protein modification
especially by hydroxyl radical (Davies et al. 1999; Gebicki 2006).
Another amino acid that is extremely sensitive to ROS action
is cysteine. Most reports show that cysteine-the-cystine ratio in
the proteins subjected to oxidation is decreased (Thannhauser
et al. 1998). Several other amino acid residues in proteins
such as prolyl, lysyl, and methionyl are modified by ROS,
which result in changes in protein structure (Croft et al. 2003).
ROS attack on lysine residue is manifested by a decrease in
free amino groups. Our investigations showed the diminution
in the level of protein sulphydryl and amino groups after F.
hepatica infection. Moreover, disruption of polypeptide chain
may also occur under certain conditions during oxidative stress
when generated ROS act on the α-carbon atom of the peptide

bond (Davies et al. 1999). ROS attack causes the fragmentation
of polypeptide chain and formation of new carbonyl groups
(Davies et al. 1999). In the present study the increase in the
amount of protein carbonyl groups during F. hepatica infection
has also been noticed. Modifications of individual amino
acid residues may result in changes in secondary and tertiary
structure of proteins and in consequence in their functions.

Independently of protein modifications caused directly by
ROS, protein structure can also be changed by reactions
with lipid oxidative modification products generated during F.
hepatica infection, because the decrease in antioxidant abilities
led also to intensification of lipid peroxidation observed in this
paper. ROS reacting with unsaturated fatty acids, which mainly
form membrane phospholipids, produce as first conjugated
dienes and lipid hydroperoxides. It has been also shown in
this paper that levels of conjugated dienes and lipid peroxides
were enhanced during F. hepatica infection. It was reported that
the transition metal ions break down lipid hydroperoxides to
secondary lipid peroxidation products. A variety of compounds,
which could be produced from such decomposition, may exert
secondary toxic effects on cells, but the most reactive are mal-
ondialdehyde and 4-hydroxynonenal, as well as other carbonyls
(Aust et al. 1985; Esterbauer et al. 1991). Observed in our
research, the increase in the amount of final lipid peroxidation
products (MDA and 4-HNE) indicates that the reactions of ROS
with polyunsaturated fatty acids of phospholipid membranes

TABLE 4 Activity of cathepsin B (pNA, µmol/g tissue) in the liver homogenate, cytosol, and lysosomes of control and F.
hepatica-infected rats at 4, 7, and 10 wpi

Weeks postinfection

4 7 10

Localization Control rats Infected rats Control rats Infected rats Control rats Infected rats

Homogenate 1.87 ± 0.12 1.54 ± 0.13a 1.84 ± 0.11 1.42 ± 0.12a 1.89 ± 0.12 1.61 ± 0.14a

Cytosol 0.22 ± 0.02 0.32 ± 0.03a 0.22 ± 0.02 0.47 ± 0.04a 0.22 ± 0.02 0.37 ± 0.03a

Lysosomes 1.65 ± 0.09 0.99 ± 0.08a 1.65 ± 0.09 0.95 ± 0.08a 1.65 ± 0.09 1.24 ± 0.10a

a Significantly different from control group (p < 0.05).

E. Siemieniuk et al. 522



TABLE 5 Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in the serum of control and F.
hepatica-infected rats at 4, 7, and 10 wpi

Weeks postinfection

4 7 10

Control rats Infected rats Control rats Infected rats Control rats Infected rats

ALT (U/L) 32.6 ± 1.4 93.7 ± 6.9a 34.5 ± 1.4 96.1 ± 6.9a 33.4 ± 1.6 98.3 ± 4.7a

AST (U/L) 162.1 ± 6.5 357.1 ± 26.7a 167.3 ± 6.5 361.8 ± 26.7a 164.2 ± 6.9 359.3 ± 24.6a

aSignificantly different from control group (p < 0.05).

occur intensively during F. hepatica infection. These carbonyl
compounds are highly reactive and may act as “secondary toxic
messengers” of the primary ROS event. The high reactivity of
4-HNE can be attributed to its α,β-unsaturated configuration,
which gives to this biogenic aldehyde strong electrophilic prop-
erties and reflects the ability to form adducts with nucleophilic
sulfhydryl, primary amino, and histydyl groups of proteins,
which cause changes in protein structure and function (e.g.,
4-hydroxynonenal inhibits glutathione peroxidase) (Mitchell
and Petersen 1987). Changes in protein structures and function
are additionally enhanced by specific reactions between mal-
ondialdehyde or 4-hydroxynonenal and selenocysteine residue
of the active center of glutathione peroxidase (Kinter and
Roberts 1996), which leads to reduction of its activity (Bosch-
Morell 1999). It is believed that glutathione peroxidase is
mainly responsible for degradation of the lipid peroxidation
products. Independently of reaction with protein moiety,
aldehydes generated during lipid peroxidation form couplings
with glutathione—main cellular nonenzymatic antioxidant and
cosubstrate of glutathione peroxidase. In such a way a decrease
in GSH-dependent antioxidant mechanisms of lipid protection
leads to enhanced lipid peroxidation. However, a reaction
of 4-hydroksynonenal with the sulphydryl group located in
the active center of cathepsin B may result in a decrease in
cellular activity of this lysosomal protease (O’Neil et al. 1997),
observed in this study. The decrease in cathepsin B activity
and the increased level of modified structural proteins lead to
lower protein degradation in lysosomes and accumulation of
oxidatively modified proteins.

Oxidative modifications of phospholipids as well as pro-
teins lead also to disturbances in structure and function of
biological membranes, including changes in membrane fluidity
and permeability. The decrease in ATP synthesis additionally
contributes to membrane destabilization during F. hepatica
infection (Lenton et al. 1995). It is suggested that lysosomes and
cellular membranes are partially disrupted, causing release of
lysosomal hydrolases into the cytosol and next into extracellular
space (Kalra et al. 1988). Observed in this study the increase
in the blood activity of AST and ALT, the markers of liver
destruction, confirms belief that F. hepatica infection induces
oxidative stress, which leads to membrane disturbances and
leak of cathepsin B into cytosol and into extracellular space.
Cathepsin B released into extracellular space may play a
promoting role in carcinogenesis, which is connected with
its proteolytic effects on basement membrane and interstitial
stroma (Skrzydlewska et al. 2005) and with activation of
the urokinase-type proplasminogen, which can subsequently
activate the plasmin-metalloproteinase proteolytic pathway
(Ikeda et al. 2000). However, unlike other liver flukes, such

as Opisthorchis viverini or Clonorchis sinensis, fasciolosis does not
cause carcinogenic action.

It should be emphasized that the ROS influence on the
host organism, which is manifested by modification of the
host cells components, is probably much different from the
ROS influence on parasite cells. F. hepatica has been revealed to
demonstrate high resistance to ROS and RNS activity (Piedrafita
et al. 2000; Sibille et al. 2004), which is mostly associated with
a high level of antioxidant, protein ones in particular.

In conclusion, oxidative stress generated in host organism
during F. hepatica infection leads to oxidative modifications of
liver proteins and lipids, which results in disturbances in their
functions and cellular metabolism.
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