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Abstract: This paper proposes a time difference of arrival (TDOA) passive positioning sensor selection
method based on tabu search to balance the relationship between the positioning accuracy of the
sensor network and system consumption. First, the passive time difference positioning model,
taking into account the sensor position errors, is considered. Then, an approximate closed-form
constrained total least-squares (CTLS) solution and a covariance matrix of the positioning error are
provided. By introducing a Boolean selection vector, the sensor selection problem is transformed
into an optimization problem that minimizes the trace of the positioning error covariance matrix.
Thereafter, the tabu search method is employed to solve the transformed sensor selection problem.
The simulation results show that the performance of the proposed sensor optimization method
considerably approximates that of the exhaustive search method. Moreover, it can significantly
reduce the running time and improve the timeliness of the algorithm.

Keywords: passive localization; time difference of arrival (TDOA); sensor selection optimization;
constrained total least-squares (CTLS); tabu search

1. Introduction

An essential feature in sonar, radar, environment monitoring rescue work, and next generation
cellular phones is the capability of passively locating a source. The passive localization method does
not emit a signal by itself, and only locates and tracks the source based on the signal radiated by
the source, which has stronger concealment and survivability than the active positioning method.
Several fundamental approaches for implementing a wireless location system, including those based
on received signal strength (RSS) [1,2], angle of arrival (AOA) [3,4], time of arrival (TOA) [5,6],
time difference of arrival (TDOA) [7–10], and frequency difference of arrival (FDOA), have been
established. The common technique employed for stationary sources are the measurement of TDOAs
using a number of spatially separated sensors.

In sensor networks, dense sensor deployment may introduce redundancy in the coverage area.
Given a large sensor network, if all the sensors in the sensor network are activated, this is undoubtedly
very inefficient. Since sensors far away from the sources do not contribute appreciably to the positioning
performance, they consume energy and communication bandwidth of the sensor [11]. When the source
moves, the combination of the most suitable positioning sensors before the source changed its location
may no longer be optimal [12,13]. To attain the global optimization of positioning performance, it is
necessary to exclude certain sensors from the original combination and introduce new sensors that are
effective for positioning. Therefore, the optimal sensor network layout in the current situation must be
selected according to the various positions of the source.
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The problem of sensor selection is proposed in order to balance the positioning performance of
the source and target and the loss of the system. Sensor selection is an integer programming problem
with combinatorial complexity, making it problematic for large-scale sensor networks. To reduce this
computational complexity, two concepts for sensor selection were introduced in recent years.

In the first concept, sparsity-promoting techniques have been proposed for sensor selection with
the aim of minimizing the number of selected sensors and source state estimation error [14–16]. In the
second concept, the number of sensors to be selected is predetermined, and the optimum subset of
sensors is selected to maximize the estimated system performance. In the TDOA passive positioning
scenario, the position of the source in two-dimensional space can be solved using four sensors.
Accordingly, the influence of the second concept on the sensor selection scheme is mainly considered.
Using the second concept, a convex relaxation procedure was developed in [17], and the sensor
selection problem, formulated using linear measurement models, was solved via convex optimization.
Considering the correlated measurement error [18], the constraints of the original problem were relaxed,
the convex optimization was transformed into a standard semi-definite program (SDP), and the sensor
selection problem was solved using a greedy algorithm. Based on the nonlinear estimation system,
a Boolean selection vector was introduced [19], and an optimization problem was presented to minimize
the number of selected sensors within the constraint of the preferred estimation accuracy. However,
because the number of measurements is less than the number of sensors, the TDOA measurements
differ from those of the universal nonlinear models. Similarly, in [20], the linearization of nonlinear
function using the Taylor approximation technique was implemented, and a greedy algorithm based
on two cost functions was proposed. However, the resulting performance was worse than that of
the convex optimization method. In [21], a sensor selection method based on the TDOA positioning
scheme using the weighted least squares algorithm for transforming the nonlinear equations into a
pseudo-linear equation system was proposed. By introducing a Boolean selection vector, a non-convex
sensor selection problem is formulated. When the non-convex constraint is relaxed, the non-convex
problem can be effectively solved.

The main contributions of this paper are reflected in the two following points. First, when the
number of available positioning sensors is given, a TDOA passive positioning sensor selection method
based on the tabu algorithm is implemented, and the trace of the covariance matrix of the positioning
error is used to evaluate the performance of the TDOA positioning system. In practical applications,
the position of each sensor is expected to have a specific deviation. Accordingly, the approximate
solution is obtained using the method of constrained total least squares (CTLS) considering the sensor
position error. Then, based on this method, the positioning error covariance matrix is derived. Second,
a Boolean selection vector is introduced, a sensor selection problem is formulated, the trace of the
positioning error covariance matrix as the objective function is determined, and the tabu search
algorithm is employed to solve the above problem. On the premise of ensuring the positioning
accuracy, the calculation time of the algorithm is significantly reduced, and the timeliness of the
algorithm is improved.

The remainder of this article is arranged as follows. In Section 2, the CTLS location method
considering the sensor position error is introduced, and the derivation of the covariance matrix of the
source location error is presented. In Section 3, a TDOA passive location sensor selection method based
on the tabu search is proposed. To evaluate the performance of the proposed algorithm, the simulation
results are discussed in Section 4. The conclusions are summarized in Section 5.

Notations: The superscript T denotes the transpose. (·)−1 and (·)+ represent the inverse and
Moore-Penrose pseudoinverse, respectively. diag(a) denotes a diagonal matrix by taking the given
vector a as the main diagonal. ‖x‖2 denotes the l2-norm of a vector x. IN is the identity matrix with size
N. 0N is the zero matrix with size N. tr(·) is the matrix trace operator. E(·) denotes the expectation
operation. bmc represents the largest positive integer not exceeding m. The symbol ⊗ is used to denote
the Kronecker product.
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2. TDOA-Based Location Problem Model

2.1. TDOA-Based Localization Problem

For convenience, a two-dimensional (2-D) scenario is considered where a network of M passive
sensors collaborates to localize a stationary point source with an unknown position v0 = [xt, yt]

T.
The coordinates of the passive sensors are si = [xi, yi]

T, i = 1, 2, . . . , M. The first sensor is assumed as
the reference sensor and the distance from the source to the sensor i is ri. Through the measurement of
the TDOA, the basic measurement equation is derived as follows

ri1 = ri − r1 =

√
(xt − xi)

2 + (yt − yi)
2
−

√
(xt − x1)

2 + (yt − y1)
2 = c · ∆ti1, i = 2, 3, . . . , M. (1)

where ri1 indicates the difference between the distance from the source to the i-th sensor and the
distance from the source to the first sensor. ∆ti1 is the true value of the TDOA measurement between
the first sensor and sensor i. c is the speed of light. Squaring both sides of (1) yields the following

(xi − x1)(xt − x1) + (yi − y1)(yt − y1) + ri1 · r1 =
1
2
((xi − x1)

2 + (yi − y1)
2
− ri1

2). (2)

Formulating (2) in matrix form yields

Aθ = b, (3)

where

A =


x2 − x1 y2 − y1 r21

x3 − x1 y3 − y1 r31

. . . . . . . . .
xM − x1 yM − y1 rM1

, θ =


xt − x1

yt − y1

r1

, b =
1
2


(x2 − x1)

2 + (y2 − y1)
2
− r2

21
(x3 − x1)

2 + (y3 − y1)
2
− r2

31
. . .

(xM − x1)
2 + (yM − y1)

2
− r2

M1


According to the principle of least squares, the solution of the source position can be obtained as

θLS = arg min
θ̂

(Aθ̂−b)T
(Aθ̂−b) = (ATA)

−1
ATb. (4)

2.2. Constrained Total Least Squares Algorithm under Error Conditions

It is worth noting that, in practice, both A and b in (3) have errors, which do not conform to the
assumption of the least squares method. The authors in [22] used the CTLS algorithm to solve the
problem to reduce the impact of errors. Below we derive the CTLS solution of (3) when considering
TDOA measurement error and sensor position error.

In (3), the matrix A and vector b usually contain error components. Thus, Equation (3) can be
rewritten as

(A0+∆A)θ = (b0+∆b), (5)

where A0, b0 represent true values, and ∆A, ∆b represent the error components.
Assuming that each sensor is independent and identically distributed, the position error in the

i-th sensor nxi , nyi obey the Gaussian distribution whose mean and the standard deviation are set as 0
and σs, respectively. The TDOA measurement error nri1 obeys the Gaussian distribution whose mean
and standard deviation are set as 0, σt, respectively. Then

x̂i = xi + nxi , ŷi = yi + nyi , i = 2, 3, . . . , M. (6)

where x̂i, ŷi represents the coordinate value with error, and xi, yi represents the true coordinate value
without any error.
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It is assumed that, in A =
[

A2 A3
]
, A2 consists of the first two columns of A, and A3 consists

of the last column of A [22]. The following is obtained

∆A =
[

∆A2 ∆A3
]
, (7)

where

∆A2 =


∆(x2 − x1) ∆(y2 − y1)

∆(x3 − x1) ∆(y3 − y1)

. . . . . .
∆(xM − x1) ∆(yM − y1)

, ∆A3 = [∆r21, ∆r31, . . . , ∆rM1]
T.

The elements of (i − 1)-th (i = 2, 3, . . . , M) row in matrix ∆A2 can be represented according to
the following

∆(x̂i − x1) = (x̂i − x1) − (xi − x1) = xi + nxi − xi = nxi , (8)

∆(ŷi − y1) = (ŷi − y1) − (yi − y1) = yi + nyi − yi = nyi . (9)

The elements in ∆A3 can be expressed as

∆ri1 = (r̂i1 − ri1) = nri1 , (10)

Similarly, we can obtain
∆b = [∆b2, ∆b3, . . . , ∆bM]T (11)

The elements in ∆b can be expressed as follows

∆bi = b̂i − bi =
1
2

[
(xi + nxi − x1)

2 + (yi + nyi − y1)
2
− (ri1 + nri1 )

2
]
−

1
2

[
(xi − x1)

2 + (yi − y1)
2
− ri1

2
]

= (xi − x1)nxi +
1
2 n2

xi
+ (yi − y1)nyi +

1
2 n2

yi
− ri1nri1 −

1
2 n2

ri1
.

(12)

Ignoring the influence of the quadratic term of (12) yields

∆bi = (xi − x1)nxi + (yi − y1)nyi − ri1nri1 . (13)

The error vector is denoted as
η = [ nx ny nt ]

T
, (14)

where

nx = [ nx2 nx3 . . . nxM ], ny = [ ny2 ny3 . . . nyM ], nt = [ nr21 nr31 . . . nrM1 ].

Substituting (11) into (8) yields{
∆A = [ G1η G2η G3η ]

∆b = G4η
, (15)

where
G1 =

[
IM−1 0M−1 0M−1

]
,

G2 =
[

0M−1 IM−1 0M−1
]
,

G3 =
[

0M−1 0M−1 IM−1
]
,

G4 = [diag(x2 − x1, x3 − x1, . . . , xM − x1),
diag(y2 − y1, y3 − y1, . . . , yM − y1),
diag(−r21,−r31, . . . ,−rM1)].



Sensors 2020, 20, 6547 5 of 17

The position error of the observation station and time difference measurement error are
independent of each other, the autocorrelation matrix of the error vector is Rη. The covariance
matrix of each element in η is different, hence, η can be whitened, the white error vector that obeys
the Gaussian distribution after η whitening is e. To obtain Rη = PPT, the Cholesky decomposition
is implemented. Then, the process of error vector whitening is e = P−1η. The relationship between
the error vector η and the normal distribution white error vector e is η = Pe. Substituting this
into (15), yields {

∆A = [ G1Pe G2Pe G3Pe ]

∆b = G4Pe
(16)

From (3) and (16), we obtain the following

Aθ−b =(A0+∆A)θ−(b0+∆b)
=∆Aθ−∆b
= (xt − x1)G1Pe + (yt − y1)G2Pe + r1G3Pe−G4Pe
= GPe,

(17)

where G = (xt − x1)G1 + (yt − y1)G2 + r1G3 −G4. The error vector e is given by

e = (GP)+(Aθ−b), (18)

where (GP)+ = (GP)T(GRηGT)
−1

. Next, the l2-norm of error vector e is minimized to obtain the
objective function  min

θ,e
‖e‖22

s.t. Aθ− b = GPe
. (19)

According to (18) and (19), the objective function of the CTLS solution can be obtained as

F(θ) = ((GP)+(Aθ− b))
T
((GP)+(Aθ− b)) = (Aθ− b)T(GRηGT)

−1
(Aθ− b). (20)

The objective function is a real nonlinear function with respect to θ, hence, it cannot be solved
directly. Consequently, all relevant literature on the CTLS method reports the use of the Newton
algorithm as the iterative solution. Moreover, because the iterative method necessitates the calculation
of the Hess matrix and gradient vector of the objective function, multiple matrix inversions and
multiplication operations are necessary, resulting in high computational complexity and longer
solution time. The approximate closed-form solution without iteration is given below.

A necessary condition [23] to minimize F(θ) is ∂F(θ)/∂θ = 0. Thus, the unconstrained objective
function derivative of (20) is

∂F(θ)
∂θ

= 2AT(GRηGT)
−1
(Aθ− b) + (Aθ− b)T ∂(GRηGT)

−1

∂θ
(Aθ− b) = 0. (21)

The second term can be written as

(Aθ− b)T ∂(GRηGT)
−1

∂θ
(Aθ− b) = eTPTGT ∂(GRηGT)

−1

∂θ
GPe. (22)

Equation (22) is the second-order term of e containing Gaussian error. Ignoring the second-order
term, Equation (21) can be approximately derived as

AT(GRηGT)
−1
(Aθ− b) = 0. (23)
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By solving the foregoing equation, the approximate closed-form solution of CTLS is

θCTLS ≈ [AT(GRηGT)
−1

A]
−1

AT(GRηGT)
−1

b. (24)

2.3. Location Error Covariance Matrix

The intermediate variable r1 is introduced in this section it can be expressed as

r1 =

√
(xt − x1)

2 + (yt − y1)
2 = (vTv)

1
2 , (25)

where v = [xt − x1, yt − y1]
T. Substituting (25) into (20) yields

F(v) = (A2v + A3(vTv)
1/2
− b)

T
(GRηGT)

−1
· (A2v + A3(vTv)

1/2
− b). (26)

For the convenience of the following description, it may be assumed

Ω = A2v + A3(vTv)
1/2
− b, (27)

Θ = AT
2 + (vTv)

−1/2
vAT

3 . (28)

Similar to the process used in (21), substituting (27) and (28) into (26) yields the following

∂F(v)
∂v

= 2Θ(GRηGT)
−1

Ω + ΩT ∂(GRηGT)
−1

∂v
Ω, (29)

The second term in (29) contains the quadratic term of error. Ignoring the quadratic term can
be obtained

∂F(v)
∂v

= 2Θµ. (30)

where µ = (GRηGT)
−1

Ω. Let the value of the above Equation (30) be 0, consequently,

2Θµ = 2Θ · (GRηGT)
−1

Ω = 0. (31)

When an error exists between the TDOA and the sensor position, the perturbation method is
employed to calculate the covariance matrix of the positioning error.

Ω = (A20 + ∆A2)(v + ∆v) + (A30 + ∆A3)((v + ∆v)T(v + ∆v))
1/2
− (b0 + ∆b)

= A20∆v + ∆A2(v + ∆v) + A30
vT∆v

(vTv)1/2 + (A30 + ∆A3)∆vT∆v + ∆A3(vTv)1/2
+ ∆A3

vT∆v
(vTv)1/2 − ∆b

≈ A20∆v + A30
vT∆v

(vTv)1/2 + ∆A2v + ∆A3(vTv)1/2
− ∆b

= A20∆v + A30
vT∆v

(vTv)1/2 + GPe,

(32)

where the second equal sign in (32) is because

A0θ− b0 =
[

A20 A30
]
·

 v

(vTv)1/2

− b0

= A20v + A30(vTv)1/2
− b0

= 0

(33)



Sensors 2020, 20, 6547 7 of 17

Ignoring the perturbation terms higher than order 1 yields the following from (28)

Θ = (A20 + ∆A2)
T + ((v + ∆v)T(v + ∆v))

−
1
2 (v + ∆v)(A30 + ∆A3)

T

≈ A20
T + (vTv)−

1
2 vA30

T.
(34)

Substituting (32) and (34) into (31) yields the following

DT(GRηGT)
−1
(D∆v+GPe) = 0, (35)

where

D = A20 + A30
vT

(vTv)1/2
.

It follows from (35) that

∆v = −(DT(GRηGT)
−1

D)
−1

DT(GRηGT)
−1

GPe. (36)

The covariance matrix of the location error is given by

E(∆v∆vT) = (DT(GRηGT)
−1

D)
−1

DT(GRηGT)
−1
·GPE(eeT)PTGT(GRηGT)

−1

·D(DT(GRηGT)
−1

D)
−1

= (DT(GRηGT)
−1

D)
−1

.

(37)

3. Proposed Sensor Selection Optimization Method

The previous section discussed the CTLS method of the TDOA passive positioning with sensor
error. In response to the actual requirements for optimal sensor selection, this paper proposes a sensor
selection method based on tabu search.

Depending on the actual requirement in practice, the sensor selection objective equations for
different optimization goals differ. Consider a network in which M available sensors and used K
(K < M) positioning sensors are known. A technique for selecting K to minimize positioning errors
is presented in this paper. The TDOA measurement error and the sensor position error obey the
Gaussian distribution with zero means and variances σ2

t , σ2
s , respectively. When they are in a small

range, the performance of the CTLS method can reach Cramér–Rao lower bound (CRLB). Accordingly,
this paper uses the covariance matrix of the positioning error of the positioning source (37) as the
objective function to identify the optimal sensor.

A Boolean vector, w = [w1, w2, . . . , wM]T, where wi ∈ {0, 1}, is introduced for determining whether
a particular sensor is selected. If the i-th element in w is 1, then, the i-th sensor is selected to be a part
of the optimal subset [19]. In the TDOA positioning scenario, the sensor receiving the highest signal
strength is regarded as the reference sensor. After all the sensors have received the signal, since the
reference sensor has been given, the Boolean vector is transformed as

w = [w2, w3, . . . , wM]T, wi ∈ {0, 1} (38)

This means that K-1 sensors are selected from the remaining M-1 sensors. The definition matrix
Φw, which is the sub-matrix of diag(w) after removing the rows of unselected sensors, and the
relationship between Φw and w is given by

ΦwΦw
T = I‖w‖1 , Φw

TΦw = diag(w) (39)
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After sensor selection, the inverse matrix of the covariance matrix of the positioning source
position error is expressed as

Jw = E(∆vw∆vT
w)
−1

= DT
w(GwRηwGT

w)
−1

Dw

= DTΦT
w(ΦwGΨΨTRηΨΨTGTΦT

w)
−1

ΦwD
(40)

where Ψ = I3 ⊗ΦT
w.

From this, the sub-matrix of the row where the unselected sensor is removed from the Dw

expression matrix D. Gw represents the matrix filtered from the system matrix G using the Boolean
vector w.

In this paper, the A-optimality model in [19] is selected as the constraint problem. The trace of the
covariance matrix of the positioning error is used as the objective function. Thus, the sensor selection
problem can be expressed as 

min tr(J−1
w

)
s.t. 1Tw = K − 1

wi ∈ {0, 1} i = 2, 3, . . . , M
(41)

To solve the foregoing, this paper employs the tabu search method to obtain the optimal subset.
The tabu search algorithm [24] is an iterative search algorithm. It was first proposed by Professor Fred
Glover, a member of the American Academy of Engineering, and further defined and developed [25,26].
Its core idea is to introduce a tabu table to record the local optimum points that have been searched.
In the succeeding search, the information in the tabu table is either selectively searched or not searched
to jump out of the local optimum and achieve global optimization. Thus far, tabu search algorithms
have achieved remarkable success in combinatorial optimization, production scheduling, machine
learning, and neural networks [27,28].

The optimization process of modern heuristic algorithms is a “neighborhood search” structure.
The algorithm starts from an initial solution and generates several neighborhood solutions through
neighborhood functions under the control of the key parameters of the algorithm, and updates the
current state according to the acceptance criteria. Repeat the above search steps until the convergence
criterion of the algorithm is satisfied, and finally get the optimization result of the problem. As a
heuristic algorithm, the tabu search method is distinguished from other modern heuristic algorithms
in that it uses memory to guide the search process of the algorithm. It is a simulation of human
intelligence process and a manifestation of artificial intelligence. It can be seen that, when using
a heuristic algorithm to solve a problem, it is generally necessary to determine the representation
method of the solution, its evaluation criteria, neighborhood operation rules, and termination rules.
These factors directly affect the speed of the algorithm and the quality of the solution. When using the
tabu search algorithm, it is also necessary to design the tabu object, length, and candidate set:

(a) Representation method of solution: use vector w to indicate whether each sensor is selected.
(b) Solution evaluation criterion: use the trace of the covariance matrix of the source positioning error.
(c) Operation rule of neighborhood: Interchange the state of any selected sensor and any unselected

sensor in the current solution to form a set of neighborhoods. Thus, the number of neighborhood
solutions is

Ca = C1
K−1 ·C

1
M−K = (K − 1) · (M−K) (42)

(d) Termination criterion: when the number of iterations reaches the maximum Itermax = M (where M
is the size of the sensor network), the algorithm terminates.

(e) Selection of tabu objects: Select tabu objects as simple solution changes. A simple solution change
can reduce the forbidden range and expand the search range.

(f) Tabu length: the length of the tabu table is selected as TabuL =
⌊
sqrt(Ca)

⌋
.
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(g) Determination of candidate set: randomly select several neighborhood solutions as candidate
sets in the neighborhood of the current solution.

After determining the foregoing parameters, the steps of the TDOA passive positioning sensor
selection algorithm based on tabu search are as follows:

Step 1. Initialize the parameters and initial sensor selection solution and set the tabu table as an
empty set.
Step 2. Assess whether the algorithm termination condition (d) is satisfied; if so, then, end the algorithm
and output the result; otherwise, proceed to the following steps.
Step 3. Use the current solution to generate Ca neighborhood solutions and candidate solutions.
Step 4. Evaluate the tabu attribute of each object corresponding to the candidate solution. Select the
minimum value of the objective function corresponding to the non-tabu object in the candidate solution
set as the new current solution. Replace the earliest tabu object element that has been listed in the tabu
table with the corresponding tabu object concurrently (update the tabu table).
Step 5. Return to Step 2.

4. Simulation Results

In this section, the simulation results of the sensor selection method based on the tabu search
for the TDOA passive positioning are presented. Moreover, the result of the proposed algorithm is
compared with those of the algorithm used in [18], the algorithm used in [21], the nearest distance
method, and the exhaustive search method as the reference. The exhaustive search method requires an
exhaustive combination of sub-sensors, the technique has a high computational complexity and poor
timeliness. However, an optimal combination of positioning sensors can be determined as the optimal
standard for comparing various sensor optimization methods. The number of Monte Carlo runs
L = 500. The root mean square error and the average calculation time of 100 Monte Carlo experiments
as indicators to measure the positioning performance are used

RMSE =

√√√ L∑
i=1

‖v(i) − v0‖
2/L (43)

t =
100
L
·

L∑
i=1

t(i) (44)

In the simulation, the average computing time was calculated using MATLAB2017a software on a
Win7 64-bit desktop computer with i7-4790 clocked at 3.60 GHz and a 16 GB memory capacity.

4.1. Influence of TDOA Measurement Errors

Let us assume that the source position is (1000, 1200) m. The positioning network contains
M = 10 sensors, which are randomly distributed in an area with a radius of 3000 m. The coordinate
of the origin is (0, 0) m, and a combination of K = 4 positioning sensors is selected. The positions of
the 10 sensors are (655, 1020), (1050, 2791), (−1550, −1281), (−657, 2636), (−478, 1666), (1806, 1302),
(1461, 580), (−172, −2732), (986, −1075), and (−1024, −291) m. The measurement error of the site obeys
the Gaussian distribution with a mean value of 0 and a standard deviation of 5 m. Figure 1 shows the
schematic of the positioning network distribution.
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The algorithm in [18], the algorithm in [21], the exhaustive search method, and proposed method
are employed to solve the sensor selection problem (38). A schematic of the sensor selection results of
each method when the standard deviations of the TDOA measurement error and sensor position error
are 15 m and 5 m, respectively, is shown in Figure 2. It is worth noting that the algorithm in [18] and
proposed algorithm give the same sensor selection results.
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It can be observed in Figure 3 that the positioning accuracy of several different sensor selection
methods can be compared as the TDOA measurement error increases. The algorithm proposed in
this paper has the same performance as the method presented in [18]. This is because the sensor
selection vector w given by the two methods is the same when solving the optimization problem of
(41); consequently, their RMSE are also the same. The performance of the proposed algorithm better
approximates that of the exhaustive search method, followed by that of the nearest distance method,
and then that of the algorithm in presented in [21].
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Figure 4 shows the variation curves of the RMSE of several algorithms with TDOA measurement
error, and the error bars are shown in the figure. As can be seen from Figure 4, as the TDOA
measurement error increases, the variation range of the error bar also increases. Since a positioning
method is used, the difference between the error bars between the methods is not very significant.
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Table 1 shows that the number of times of performing 100 Monte Carlo experiments, the average
running time required for each method and the root mean square (RMS) deviation of running time
when the standard deviation of TDOA measurement error is 15 m and the standard deviation of sensor
position error is 5 m.

Table 1. Running time (M = 10).

Algorithm Average Running Time RMS Deviation of Running Time

Algorithm in [18] 26.12 s 0.12 s
Algorithm in [21] 25.22 s 0.08 s
Exhaustive search 4.84 s 0.27 s

Proposed 3.02 s 0.02 s

The CVX convex optimization toolbox is employed to solve the optimizing sensor problem
in [18,21]; consequently, its running time is significantly increased. The calculation time of the method
proposed in this paper is considerably less than those of the other methods. Compared with the
algorithm in [18], the average running time of the algorithm is greatly reduced under the same
positioning accuracy. According to the foregoing simulations, the sensor selection method for the
TDOA passive positioning proposed in this paper significantly reduces the calculation time, improves
the real-time calculation performance, and maintains a high positioning accuracy.

4.2. Influence of the Positions of the Source

In this section, in order to consider the impact on the performance of each method when the
source is at different locations, we assumed that the remaining conditions are the same as those in
Section 4.1, the locations of the sources are randomly distributed in a circle with a center of (0, 0) m
and a radius of 2000 m. The number of Monte Carlo runs L = . . .. The performance analysis of each
method when the source is located at different locations is given below. Then two special cases are
given; namely the Geometric Dilution of Precision (GDOP) distribution when the source are located at
(1000, 1200) m, (0, −1200) m, respectively. The calculation formula of GDOP is as follows

GDOP =

√
tr(J−1

w ) (45)

When the sensors are evenly distributed in a circular area, the variation curve of RMSE and TDOA
measurement error of positioning error is shown in Figure 5. As the measurement error of TDOA
increases, the RMSE of each method also increases. Among them, the algorithm proposed in this paper
and the algorithm in [18] have better positioning performance. It is worth noting that this is because
the location of the source in Section 4.1 is a special case of the situation in Section 4.2. Therefore,
the conclusions reached by the two are consistent.

It can be observed from Figure 6 that, when the source is located at different positions, the selection
results of the sensors are also different. It is worth noting that, when the sensor adopts the distribution
scheme in Figure 6a, the positioning effect at point (0, −1200) m is not very good; that is, when the source
is located at (0, −1200) m, the sensor that adopts the distribution method is not reasonable, and the
sensor distribution scheme in Figure 6b should be adopted. Therefore, for sources at different locations,
different sensor distribution methods should be adopted to achieve the best positioning performance.
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(0, −1200) m (b).

4.3. Influence of the Sensor Position Errors

The distribution of the sensors is the same as Section 4.1, the standard deviation of TDOA
measurement error is 5 m. The simulation is performed with the sensor position errors ranging
from 1 m to 10 m. The change curve of RMSE and the sensor position errors of each algorithm are
given in Figure 7.
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It can be seen from Figure 7 that the algorithm proposed in this paper still demonstrates a better
performance compared with the other methods. As the sensor position errors increase, the RMSE
of several algorithms also increases; the algorithm proposed and the algorithm in [18] produce the
minimum RMSE, followed by the nearest distance method using the algorithm in [21]. Since the same
sensor selection vector w is solved, the RMSE of the proposed algorithm and algorithm in [18] are
the same.

4.4. Influence of the Number of Sensors

The source position is (1000, 1200) m. The positioning network contains M = 20 sensors, which are
randomly distributed in an area with a radius of 3000 m. The coordinate of the origin is (0, 0) m, and a
combination of K = 4 positioning sensors is selected. The positions of the 20 sensors are (290, −756),
(443, 2342), (−534, −1438), (−285, 1358), (−333, −2711), (−2592, 1507), (1321, −59), (−31, −2959),
(−2717, −619), (−893, 1594), (−2536, 860), (2010, 1752), (−2976, −64), (580, 6), (2446, −1418), (−366, 141),
(922, −1950], (−528, −1017), (2465, 670), (−1039, 2382) m. The standard deviation of the sensor position
error is 5 m.

When the number of the sensor is M = 20, the variation curve of RMSE with TDOA measurement
errors is shown in Figure 8. The method proposed in this paper can still have better positioning
performance. Figure 9 shows the variation curves of the RMSE of several algorithms with TDOA
measurement error, and the error bars are shown in the figure. As can be seen from Figure 9, we get
the same conclusion as in Section 4.1.

Table 2 shows that the number of times of performing 100 Monte Carlo experiments, the average
running time required for each method and the RMS deviation of running time when the standard
deviation of TDOA measurement error is 10 m. After comparing Tables 1 and 2, it can be seen that as
the number of sensors to be selected increases, and the average running time of the exhaustive search
method greatly increases. The calculation efficiency of the method proposed in this paper is much
better than the other methods, which is consistent with the previous conclusions.
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Table 2. Running time (M = 20).

Algorithm Average Running Time RMS Deviation of Running Time

Algorithm in [18] 32.87 s 0.16 s
Algorithm in [21] 30.57 s 0.09 s
exhaustive search 110.70 s 1.09 s

Proposed 7.44 s 0.05 s
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5. Conclusions

The sensor selection in passive location is a process full of uncertainty, and the result of its
selection depends on the location algorithm, the measure data, the objective function and other
factors, which brings difficulties to sensor selection and layout. Based on the introduction of the
CTLS algorithm for TDOA passive positioning under the condition of site error, this paper gives the
positioning error covariance matrix under this algorithm, and transforms the sensor selection problem
that minimizes the objective function under the condition of a fixed number of sensors. To solve
the problem, a TDOA passive location sensor selection method based on tabu search algorithm is
proposed. We have calculated the optimal solution to the above problem by establishing a tabu table
and operating rules in the neighborhood. In the simulation experiment, the positioning performance
and the average running time of the algorithm under different parameter conditions are compared,
including the influence of TDOA measurement error, sensor position error, and the size of the sensor
network. The GDOP distribution map when the source is located in different positions is given. Then,
we compare the positioning performance in different scenarios and the average running time of the
algorithm. The simulation results show that the method proposed in this paper can be close to the
exhaustive search method in positioning accuracy, greatly reducing the running time of the algorithm,
and overcoming the shortcomings of traditional algorithms of high computational complexity and
poor timeliness. Meanwhile, the proposed method is also helpful in improving the selection result by
adjusting sensors, which is more reasonable and convincing. In summary, the algorithm proposed in
this article has the following advantages: (1) This algorithm takes into account the influence of the
position error of the sensor on the final result. (2) This algorithm can greatly shorten the calculation time
while ensuring high positioning accuracy. (3) This algorithm is simple and easily operated. Therefore,
the method can be applied to the selection and evaluation of sensors to perform TDOA-based source
positioning, improve the overall performance of the positioning method, and facilitate the layout
of sensors.
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