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Topological indices correlate certain physicochemical properties like boiling point, stability, and strain energy of chemical
compounds. In this report, we compute M-polynomials for PAMAM dendrimers and polyomino chains. Moreover, by applying
calculus, we compute nine important topological indices of under-study dendrimers and chains.

1. Introduction

The polyomino chains constitute a finite 2-connected floor
plan, where each inner face (or a unit) is surrounded by
a square of length one. We can say that it is a union
of cells connected by edges in a planar square lattice.
For the origin of dominoes, we quote [1]. The polyomino
chains have a long history dating back to the beginning
of the 20th century, but they were originally promoted by
Golomb [2, 3]. Dendrimers [4] are repetitively branched
molecules. The name comes from the Greek word, which
translates to “trees.” Synonymous terms for dendrimers
include arborols and cascade molecules. The first den-
drimer was made by Fritz Vögtle in [5]. For detailed study
about dendrimer structures we refer the reader to [6–
9].

Many studies have shown that there is a strong intrinsic
link between the chemical properties of chemical compounds
and drugs (such as melting point and boiling point) and
their molecular structure [10, 11]. The topological index

defined on the structure of these chemical molecules can help
researchers better understand the physical characteristics,
chemical reactivity, and biological activity [12]. Therefore,
the study of topological indices of chemical substances and
chemical structures of drugs can make up for the lack of
chemical experiments and provide theoretical basis for the
preparation of drugs and chemical substances. In the previous
two decades, a number of topological indices have been
characterized and utilized for correlation analysis in pharma-
cology, environmental chemistry, toxicology, and theoretical
chemistry [13]. Hosoya polynomial (Wiener polynomial) [14]
plays a pivotal role in finding topological indices that depend
on distances. From this polynomial, a long list of distance-
based topological indices can be easily evaluated. A similar
breakthrough was obtained recently by Klavžar et al. [15], in
the context of degree-based indices. In the year 2015, authors
in [15] introduced the M-polynomial, which plays similar
role “to what Hosoya polynomial does” to determine many
topological indices depending on the degree of end vertices
[16–20].
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In the present paper, we compute M-polynomials for
different dendrimer structures and polyomino chains. By
applying fundamental calculus, we recover nine degree-based
topological indices for these dendrimers and chains.

2. Basic Definitions and Literature Review

In this paper, we fixed G as a connected graph, V (G) is the
set of vertices, E (G) is the set of edges, and 𝑑V is the degree of
any vertex v. Most of the definitions presented in this section
can be found in [17].

Definition 1 (see [15]). The M-polynomial of G is defined as

𝑀(𝐺; 𝑥, 𝑦) = ∑
𝛿≤𝑖≤𝑗≤Δ

𝑚𝑖𝑗 (𝐺) 𝑥𝑖𝑦𝑗 (1)

where 𝛿 = min{𝑑V | V ∈ V(G)}, Δ = max{𝑑V | V ∈ V(G)}, and𝑚𝑖𝑗(𝐺) is the edge V𝑢 ∈ 𝐸(𝐺) that is 𝑖 ≤ 𝑗.
The very first topological index was the Wiener index,

defined by Wiener in 1945, when he was studying boiling
point of alkane [21]. For comprehensive details about the
applications of Wiener index, see [22, 23]. After that, in
1975, Milan Randić [24] introduced the first degree-based
topological index, which is now known as Randić index and
is defined as

𝑅−1/2 (𝐺) = ∑
𝑢V∈𝐸(𝐺)

1
√𝑑𝑢𝑑V . (2)

The generalized Randić index is defined as

𝑅𝛼 (𝐺) = ∑
𝑢V∈𝐸(𝐺)

1
(𝑑𝑢𝑑V)𝛼 ; (3)

please see [25–29].
The inverse generalized Randić index is defined as

𝑅𝑅𝛼 (𝐺) = ∑
𝑢V∈𝐸(𝐺)

(𝑑𝑢𝑑V)𝛼 . (4)

It can be seen easily that the Randić index is particular case
of the generalized Randić index and the inverse generalized
Randić index. Other oldest degree-based topological indices
are Zagreb indices. The first Zagreb index is defined as

𝑀1 (𝐺) = ∑
𝑢V∈𝐸(𝐺)

(𝑑𝑢 + 𝑑V) (5)

and the second Zagreb index is defined as

𝑀2 (𝐺) = ∑
𝑢V∈𝐸(𝐺)

(𝑑𝑢 × 𝑑V) . (6)

The second modified Zagreb index is defined as

𝑚𝑀2 (𝐺) = ∑
𝑢V∈𝐸(𝐺)

1
𝑑 (𝑢) 𝑑 (V) . (7)

For detailed study about Zagreb indices, we refer the reader
to [30–32]. There are many other degree-based topological
indices, for example, symmetric division index:

SDD (G) = ∑
𝑢V∈𝐸(𝐺)

{min (𝑑𝑢, 𝑑V)
max (𝑑𝑢, 𝑑V) +

max (𝑑𝑢, 𝑑V)
min (𝑑𝑢, 𝑑V) } (8)

harmonic index:

𝐻(𝐺) = ∑
V𝑢∈𝐸(𝐺)

2
𝑑𝑢 + 𝑑V (9)

inverse sum index:

𝐼 (𝐺) = ∑
V𝑢∈𝐸(𝐺)

𝑑𝑢𝑑V𝑑𝑢 + 𝑑V (10)

augmented Zagreb index:

𝐴 (𝐺) = ∑
V𝑢∈𝐸(𝐺)

{ 𝑑𝑢𝑑V𝑑𝑢 + 𝑑V − 2}
3 . (11)

We refer to [33–45] for detailed survey about the above
defined indices and applications. Tables exhibited in [15–19]
relate some notable degree-based topological indices withM-
polynomial with the following notations [17]:

𝐷𝑥 = 𝑥𝜕(𝑓 (𝑥, 𝑦)𝜕𝑥 ,

𝐷𝑦 = 𝑦𝜕(𝑓 (𝑥, 𝑦)𝜕𝑦 ,

𝑆𝑥 = ∫
𝑥

0

𝑓 (𝑡, 𝑦)
𝑡 𝑑𝑡,

𝑆𝑦 = ∫
𝑦

0

𝑓 (𝑥, 𝑡)
𝑡 𝑑𝑡,

𝐽 (𝑓 (𝑥, 𝑦)) = 𝑓 (𝑥, 𝑥) ,
𝑄𝛼 (𝑓 (𝑥, 𝑦)) = 𝑥𝛼𝑓 (𝑥, 𝑦) .

(12)

3. Computational Results

In this section we give our computational results.

3.1. M-Polynomials and Degree-Based Indices for PAMAM
Dendrimers. Polyamidoamine (PAMAM) dendrimers are
hyperbranched polymers with unparalleled molecular uni-
formity, narrow molecular weight distribution, defined size
and shape characteristics, and a multifunctional terminal
surface. These nanoscale polymers consist of an ethylene-
diamine core, a repetitive branching amidoamine internal
structure, and a primary amine terminal surface. Dendrimers
are “grown” off a central core in an iterative manufactur-
ing process, with each subsequent step representing a new
“generation” of dendrimer. Increasing generations (molec-
ular weight) produce larger molecular diameters, twice the
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number of reactive surface sites and approximately double
the molecular weight of the preceding generation. PAMAM
dendrimers also assume a spheroidal, globular shape at
generation 4 and above (see molecular simulation below).
Their functionality is readily tailored, and their uniformity,
size, and highly reactive “molecular Velcro” surfaces are
the functional keys to their use. Here we consider 𝑃𝐷1,
which denote PAMAM dendrimers with trifunctional core
unit generated by dendrimer generations 𝐺𝑛 with n growth
stages, and 𝑃𝐷2, the PAMAM dendrimers with different core
generated by dendrimer generators 𝐺𝑛 with n growth stages.𝐷𝑆1 is kinds of PAMAM dendrimers with n growth stages

Theorem 2. For the PAMAM dendrimers 𝑃𝐷1, we have
𝑀(𝑃𝐷1, 𝑥, 𝑦) = 3 ⋅ 2𝑛𝑥𝑦2 + 3 (2𝑛+1 − 1) 𝑥𝑦3

+ 9 (2𝑛+1 − 1) 𝑥2𝑦2
+ 3 (7 ⋅ 2𝑛 − 4) 𝑥2𝑦3.

(13)

Proof. Let 𝑃𝐷1 denote PAMAM dendrimers with trifunc-
tional core unit generated by dendrimer generations 𝐺𝑛 with
n growth stages.

The edge set of 𝑃𝐷1 has following four partitions:
𝐸{1,2} = {𝑒 = 𝑢V ∈ 𝐸 (𝑃𝐷1) | 𝑑𝑢 = 1, 𝑑V = 2} ,
𝐸{1,3} = {𝑒 = 𝑢V ∈ 𝐸 (𝑃𝐷1) | 𝑑𝑢 = 1, 𝑑V = 3} ,
𝐸{2,2} = {𝑒 = 𝑢V ∈ 𝐸 (𝑃𝐷1) | 𝑑𝑢 = 2, 𝑑V = 2} ,
𝐸{2,3} = {𝑒 = 𝑢V ∈ 𝐸 (𝑃𝐷1) | 𝑑𝑢 = 2, 𝑑V = 3} .

(14)

Now 󵄨󵄨󵄨󵄨𝐸{1,2}󵄨󵄨󵄨󵄨 = 3 ⋅ 2𝑛,󵄨󵄨󵄨󵄨𝐸{1,3}󵄨󵄨󵄨󵄨 = 6 ⋅ 2𝑛 − 3,󵄨󵄨󵄨󵄨𝐸{2,2}󵄨󵄨󵄨󵄨 = 18 ⋅ 2𝑛 − 9,
(15)

and 󵄨󵄨󵄨󵄨𝐸{2,3}󵄨󵄨󵄨󵄨 = 21 ⋅ 2𝑛 − 12.
𝑀 (𝑃𝐷1; 𝑥, 𝑦) = ∑

𝑖≤𝑗

𝑚𝑖𝑗 (𝑃𝐷1) 𝑥𝑖𝑦𝑗

= ∑
1≤2

𝑚12 (𝑃𝐷1) 𝑥𝑦2

+ ∑
1≤3

𝑚13 (𝑃𝐷1) 𝑥1𝑦3

+ ∑
2≤2

𝑚22 (𝑃𝐷1) 𝑥2𝑦2

+ ∑
2≤3

𝑚23 (𝑃𝐷1) 𝑥2𝑦3

= ∑
𝑢V∈𝐸{1,2}

𝑚12 (𝑃𝐷1) 𝑥𝑦2

+ ∑
𝑢V∈𝐸{1,3}

𝑚13 (𝑃𝐷1) 𝑥𝑦3

+ ∑
𝑢V∈𝐸{2,2}

𝑚22 (𝑃𝐷1) 𝑥2𝑦2

+ ∑
𝑢V∈𝐸{2,3}

𝑚23 (𝑃𝐷1) 𝑥2𝑦3

= 󵄨󵄨󵄨󵄨𝐸{1,2}󵄨󵄨󵄨󵄨 𝑥𝑦2 + 󵄨󵄨󵄨󵄨𝐸{1,3}󵄨󵄨󵄨󵄨 𝑥1𝑦3
+ 󵄨󵄨󵄨󵄨𝐸{2,2}󵄨󵄨󵄨󵄨 𝑥2𝑦2 + 󵄨󵄨󵄨󵄨𝐸{2,3}󵄨󵄨󵄨󵄨 𝑥2𝑦3

= 3 × 2𝑛𝑥𝑦2 + (6 × 2𝑛 − 3) 𝑥𝑦3
+ (18 × 2𝑛 − 9) 𝑥2𝑦2
+ (21 × 2𝑛 − 12) 𝑥2𝑦3

= 3 × 2𝑛𝑥𝑦2 + 3 (2𝑛+1 − 1) 𝑥𝑦3
+ 9 (2𝑛+1 − 1) 𝑥2𝑦2
+ 3 (7 × 2𝑛 − 4) 𝑥2𝑦3.

(16)

Theorem 3. For the PAMAM dendrimers 𝑃𝐷1, we have
1. 𝑀1(𝐺) = 105 × 2𝑛+1 − 108.
2. 𝑀2(𝐺) = 111 × 2𝑛+1 − 117.
3. 𝑚𝑀2(𝐺) = 2𝑛+1 + 19 × 2𝑛−1 − 21/4.
4. 𝑅𝛼(𝐺) = 3 × 2𝑛+𝛼 + (3𝛼+1 + 22𝛼 × 9)(2𝑛+1 − 1) + 2𝛼 ×3𝛼+1(7 ⋅ 2𝑛 − 4).
5. 𝑅𝛼(𝐺) = 3×2𝑛−𝛼+(1/3𝛼−1+9/22𝛼)(2𝑛+1−1)+(1/(3𝛼−1×2𝛼))(7 ⋅ 2𝑛 − 4).
6. 𝑆𝑆𝐷(𝐺) = 7 × 2𝑛+3 + 3 × 2𝑛+1 + 47 × 2𝑛 − 54.
7. 𝐻(𝐺) = (7/5) × 2𝑛+4 − 54/5
8. 𝐼(𝐺) = (497/20) × 2𝑛+1 − 513/20.
9. 𝐴(𝐺) = 3 × 2𝑛+3 + 21 × 2𝑛+2 + 369 × 2𝑛−2 − 753/8.

Proof. Let 𝑃𝐷1 denote PAMAM dendrimers with trifunc-
tional core unit generated by dendrimer generations 𝐺𝑛 with
n growth stages. Let

𝑀(𝐺; 𝑥, 𝑦) = 𝑓 (𝑥, 𝑦)
= 3 × 2𝑛𝑥𝑦2 + 3 (2𝑛+1 − 1) 𝑥𝑦3
+ 9 (2𝑛+1 − 1) 𝑥2𝑦2
+ 3 (7 × 2𝑛 − 4) 𝑥2𝑦3.

(17)
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Then

𝐷𝑥𝑓 (𝑥, 𝑦)
= 3 × 2𝑛𝑥𝑦2 + 3 (2𝑛+1 − 1) 𝑥𝑦3
+ 18 (2𝑛+1 − 1) 𝑥2𝑦2 + 6 (7 × 2𝑛 − 4) 𝑥2𝑦3.

𝐷𝑦𝑓 (𝑥, 𝑦)
= 3 × 2𝑛+1𝑥𝑦2 + 9 (2𝑛+1 − 1) 𝑥𝑦3
+ 18 (2𝑛+1 − 1) 𝑥2𝑦2 + 9 (7 × 2𝑛 − 4) 𝑥2𝑦3.,

𝐷𝑦𝐷𝑥𝑓 (𝑥, 𝑦)
= 3 × 2𝑛+1𝑥𝑦2 + 9 (2𝑛+1 − 1) 𝑥𝑦3
+ 36 (2𝑛+1 − 1) 𝑥2𝑦2 + 18 (7 × 2𝑛 − 4) 𝑥2𝑦3,

𝑆𝑥𝑆𝑦 (𝑓 (𝑥, 𝑦))
= 3 × 2𝑛−1𝑥𝑦2 + (2𝑛+1 − 1) 𝑥𝑦3

+ 94 (2𝑛+1 − 1) 𝑥2𝑦2 +
1
2 (7 × 2𝑛 − 4) 𝑥2𝑦3,

𝐷𝑥𝛼𝐷𝑦𝛼 (𝑓 (𝑥, 𝑦))
= 3 × 2𝑛+𝛼𝑥𝑦2 + 3𝛼+1 (2𝑛+1 − 1) 𝑥𝑦3 + 22𝛼
× 9 (2𝑛+1 − 1) 𝑥2𝑦2 + 2𝛼 × 3𝛼 (7 × 2𝑛 − 4) 𝑥2𝑦3,

𝑆𝑥𝛼𝑆𝑦𝛼(𝑓 (𝑥, 𝑦)
= 3 × 2𝑛−𝛼𝑥𝑦2 + 1

3𝛼−1 (2𝑛+1 − 1) 𝑥𝑦3

+ 9
22𝛼 (2𝑛+1 − 1) 𝑥2𝑦2

+ 1
3𝛼−1 × 2𝛼 (7 × 2𝑛 − 4) 𝑥2𝑦3,

𝑆𝑦𝐷𝑥 (𝑓 (𝑥, 𝑦))
= 3 × 2𝑛−1𝑥𝑦2 + (2𝑛+1 − 1) 𝑥𝑦3
+ 9 (2𝑛+1 − 1) 𝑥2𝑦2 + 2 (7 × 2𝑛 − 4) 𝑥2𝑦3,

𝑆𝑥𝐷𝑦 (𝑓 (𝑥, 𝑦))
= 3 × 2𝑛−1𝑥𝑦2 + 9 (2𝑛+1 − 1) 𝑥𝑦3
+ 9 (2𝑛+1 − 1) 𝑥2𝑦2 + 92 (7 × 2𝑛 − 4) 𝑥2𝑦3,

𝑆𝑥𝐽𝑓 (𝑥, 𝑦)
= 2𝑛𝑥3 + 3 (2𝑛+1 − 1) 𝑥4 + 35 (7 × 2𝑛 − 4) 𝑥5,

𝑆𝑥𝐽𝐷𝑥𝐷𝑦𝑓 (𝑥, 𝑦)
= 2𝑛+1𝑥3 + 454 (2𝑛+1 − 1) 𝑥4 +

18
5 (7 × 2𝑛 − 4) 𝑥5,

𝑆𝑥3𝑄−2𝐽𝐷𝑥3𝐷𝑦3𝑓 (𝑥, 𝑦)
= 3 × 2𝑛+3𝑥 + 3698 (2𝑛+1 − 1) 𝑥2

+ 12 (7 × 2𝑛 − 4) 𝑥3.
(18)

(1) First Zagreb Index

𝑀1 (𝐺) = (𝐷𝑥 + 𝐷𝑦) 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨𝑥=𝑦=1
= 105 × 2𝑛+1 − 108.

(19)

(2) Second Zagreb Index

𝑀2 (𝐺) = 𝐷𝑦𝐷𝑥 (𝑓 (𝑥, 𝑦))󵄨󵄨󵄨󵄨󵄨𝑥=𝑦=1 = 111 × 2𝑛+1 − 117. (20)

(3) Modified Second Zagreb Index

𝑚𝑀2 (𝐺) = 𝑆𝑥𝑆𝑦 (𝑓 (𝑥, 𝑦))󵄨󵄨󵄨󵄨󵄨𝑥=𝑦=1
= 2𝑛+1 + 19 × 2𝑛−1 − 214 .

(21)

(4) Generalized Randić Index

𝑅𝛼 (𝐺) = 𝐷𝛼𝑥𝐷𝛼𝑦 (𝑓 (𝑥, 𝑦))󵄨󵄨󵄨󵄨󵄨𝑥=𝑦=1
= 3 × 2𝑛+𝛼 + (3𝛼+1 + 22𝛼 × 9) (2𝑛+1 − 1) + 2𝛼

× 3𝛼+1 (7 ⋅ 2𝑛 − 4) .
(22)

(5) Inverse Randić Index

𝑅𝑅𝛼 (𝐺) = 𝑆𝛼𝑥𝑆𝛼𝑦 (𝑓 (𝑥, 𝑦))󵄨󵄨󵄨󵄨󵄨𝑥=𝑦=1
= 3 × 2𝑛−𝛼 + ( 1

3𝛼−1 +
9
22𝛼 ) (2𝑛+1 − 1)

+ 1
3𝛼−1 × 2𝛼 (7 ⋅ 2𝑛 − 4) .

(23)
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(6) Symmetric Division Index

𝑆𝑆𝐷 (𝐺) = (𝑆𝑦𝐷𝑥 + 𝑆𝑥𝐷𝑦) (𝑓 (𝑥, 𝑦))󵄨󵄨󵄨󵄨󵄨𝑥=𝑦=1
= 7 × 2𝑛+3 + 3 × 2𝑛+1 + 47 × 2𝑛 − 54.

(24)

(7) Harmonic Index

𝐻(𝐺) = 2𝑆𝑥𝐽 (𝑓 (𝑥, 𝑦))󵄨󵄨󵄨󵄨𝑥=1 = 𝐻 (𝐺)
= 75 × 2𝑛+4 −

54
5 .

(25)

(8) Inverse Sum Index

𝐼 (𝐺) = 𝑆𝑥𝐽𝐷𝑥𝐷𝑦 (𝑓 (𝑥, 𝑦))𝑥=1 = 49720 × 2𝑛+1 − 51320 . (26)

(9) Augmented Zagreb Index

Theorem 4. For the PAMAM dendrimers 𝑃𝐷2, we have
𝑀(𝑃𝐷2, 𝑥, 𝑦) = 2𝑛+2𝑥𝑦2 + 4 (2𝑛+1 − 1) 𝑥𝑦3

+ (24 ⋅ 2𝑛 − 11) 𝑥2𝑦2

+ 14 (2𝑛+1 − 1) 𝑥2𝑦3.
(27)

Proof. Let 𝑃𝐷2 be the PAMAM dendrimers with different
core generated by dendrimer generators 𝐺𝑛 with n growth
stages. Then the edge set of 𝑃𝐷2 has following four parti-
tions:

𝐸{1,2} = {𝑒 = 𝑢V ∈ 𝐸 (𝑃𝐷2) | 𝑑𝑢 = 1, 𝑑V = 2} ,
𝐸{1,3} = {𝑒 = 𝑢V ∈ 𝐸 (𝑃𝐷2) | 𝑑𝑢 = 1, 𝑑V = 3} ,
𝐸{2,2} = {𝑒 = 𝑢V ∈ 𝐸 (𝑃𝐷2) | 𝑑𝑢 = 2, 𝑑V = 2} ,
𝐸{2,3} = {𝑒 = 𝑢V ∈ 𝐸 (𝑃𝐷2) | 𝑑𝑢 = 2, 𝑑V = 3} .

(28)

Now

󵄨󵄨󵄨󵄨𝐸{1,2}󵄨󵄨󵄨󵄨 = 4 ⋅ 2𝑛,
󵄨󵄨󵄨󵄨𝐸{1,3}󵄨󵄨󵄨󵄨 = 8 ⋅ 2𝑛 − 4,
󵄨󵄨󵄨󵄨𝐸{2,2}󵄨󵄨󵄨󵄨 = 24 ⋅ 2𝑛 − 11,

(29)

and
󵄨󵄨󵄨󵄨𝐸{2,3}󵄨󵄨󵄨󵄨 = 28 ⋅ 2𝑛 − 14.

𝑀 (𝑃𝐷2; 𝑥, 𝑦) = ∑
𝑖≤𝑗

𝑚𝑖𝑗 (𝑃𝐷2) 𝑥𝑖𝑦𝑗

= ∑
1≤2

𝑚12 (𝑃𝐷2) 𝑥𝑦2

+ ∑
1≤3

𝑚13 (𝑃𝐷2) 𝑥1𝑦3

+ ∑
2≤2

𝑚22 (𝑃𝐷2) 𝑥2𝑦2

+ ∑
2≤3

𝑚23 (𝑃𝐷2) 𝑥2𝑦3

= ∑
𝑢V∈𝐸{1,2}

𝑚12 (𝑃𝐷2) 𝑥𝑦2

+ ∑
𝑢V∈𝐸{1,3}

𝑚13 (𝑃𝐷2) 𝑥𝑦3

+ ∑
𝑢V∈𝐸{2,2}

𝑚22 (𝑃𝐷2) 𝑥2𝑦2

+ ∑
𝑢V∈𝐸{2,3}

𝑚23 (𝑃𝐷2) 𝑥2𝑦3

= 󵄨󵄨󵄨󵄨𝐸{1,2}󵄨󵄨󵄨󵄨 𝑥𝑦2 + 󵄨󵄨󵄨󵄨𝐸{1,3}󵄨󵄨󵄨󵄨 𝑥1𝑦3
+ 󵄨󵄨󵄨󵄨𝐸{2,2}󵄨󵄨󵄨󵄨 𝑥2𝑦2 + 󵄨󵄨󵄨󵄨𝐸{2,3}󵄨󵄨󵄨󵄨 𝑥2𝑦3

= 4 ⋅ 2𝑛𝑥𝑦2 + (8 ⋅ 2𝑛 − 4) 𝑥𝑦3
+ (24 ⋅ 2𝑛 − 11) 𝑥2𝑦2
+ (28 ⋅ 2𝑛 − 14) 𝑥2𝑦3

= 2𝑛+2𝑥𝑦2 + 4 (2𝑛+1 − 1) 𝑥𝑦3
+ (24 ⋅ 2𝑛 − 11) 𝑥2𝑦2
+ 14 (2𝑛+1 − 1) 𝑥2𝑦3.

(30)

Theorem 5. For the PAMAM dendrimers 𝑃𝐷2, we have
1. 𝑀1(𝐺) = 5(7 × 2𝑛+3 − 26).
2. 𝑀2(𝐺) = 37 × 2𝑛+3 − 140.
3. 𝑚𝑀2(𝐺) = (23/3) × 2𝑛+1 − 77/12.
4. 𝑅𝛼(𝐺) = 2𝑛+𝛼+2 + (4 × 3𝛼 + 2𝛼+1 × 3𝛼 × 7)(2𝑛+1 − 1) +22𝛼(24 ⋅ 2𝑛 − 11).
5. 𝑅𝛼(𝐺) = 2𝑛 + (4/3𝛼 + 14/6𝛼)(2𝑛+1 − 1) + (1/22𝛼)(24 ⋅2𝑛 − 11).
6. 𝑆𝑆𝐷(𝐺) = (109/3) × 2𝑛+2 − 197/3.
7. 𝐻(𝐺) = (7/5) × 2𝑛+6 − 131/10.
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8. 𝐼(𝐺) = (497/15) × 2𝑛+1 − 154/5.
9. 𝐴(𝐺) = 475 × 2𝑛 − 427/2.

Theorem 6. For the PAMAM dendrimers 𝐷𝑆1, we have
𝑀(𝐷𝑆1; 𝑥, 𝑦) = 4 ⋅ 3𝑛𝑥𝑦4 + 10 (3𝑛 − 1) 𝑥2𝑦2

+ 4 (3𝑛 − 1) 𝑥2𝑦4. (31)

Proof. Let 𝐷𝑆1 be kinds of PAMAM dendrimers with n
growth stages.

The edge set of 𝐷𝑆1 has the following three partitions:
𝐸{1,4} = {𝑒 = 𝑢V ∈ 𝐸 (𝐷𝑆1) | 𝑑𝑢 = 1, 𝑑V = 4} ,
𝐸{2,2} = {𝑒 = 𝑢V ∈ 𝐸 (𝐷𝑆1) | 𝑑𝑢 = 2, 𝑑V = 2} ,
𝐸{2,4} = {𝑒 = 𝑢V ∈ 𝐸 (𝐷𝑆1) | 𝑑𝑢 = 2, 𝑑V = 4} .

(32)

Now
󵄨󵄨󵄨󵄨𝐸{1,4}󵄨󵄨󵄨󵄨 = 4 ⋅ 3𝑛,󵄨󵄨󵄨󵄨𝐸{2,2}󵄨󵄨󵄨󵄨 = 10 ⋅ 3𝑛 − 10,

(33)

and
󵄨󵄨󵄨󵄨𝐸{2,4}󵄨󵄨󵄨󵄨 = 4 ⋅ 3𝑛 − 4.

𝑀 (𝐷𝑆1; 𝑥, 𝑦) = ∑
𝑖≤𝑗

𝑚𝑖𝑗 (𝐷𝑆1) 𝑥𝑖𝑦𝑗

= ∑
1≤4

𝑚14 (𝐷𝑆1) 𝑥𝑦4

+ ∑
2≤2

𝑚22 (𝐷𝑆1) 𝑥2𝑦2

+ ∑
2≤4

𝑚24 (𝐷𝑆1) 𝑥2𝑦4

= ∑
𝑢V∈𝐸{1,4}

𝑚14 (𝐷𝑆1) 𝑥𝑦4

+ ∑
𝑢V∈𝐸{2,2}

𝑚22 (𝐷𝑆1) 𝑥2𝑦2

+ ∑
𝑢V∈𝐸{2,4}

𝑚24 (𝐷𝑆1) 𝑥2𝑦4

= 󵄨󵄨󵄨󵄨𝐸{1,4}󵄨󵄨󵄨󵄨 𝑥𝑦4 + 󵄨󵄨󵄨󵄨𝐸{2,2}󵄨󵄨󵄨󵄨 𝑥2𝑦2
+ 󵄨󵄨󵄨󵄨𝐸{2,4}󵄨󵄨󵄨󵄨 𝑥2𝑦4

= 4 ⋅ 3𝑛𝑥𝑦4 + (10 ⋅ 3𝑛 − 10) 𝑥2𝑦2
+ (4 ⋅ 3𝑛 − 4) 𝑥2𝑦4

= 4 ⋅ 3𝑛𝑥𝑦4 + 10 (3𝑛 − 1) 𝑥2𝑦2
+ 4 (3𝑛 − 1) 𝑥2𝑦4.

(34)

Theorem 7. For the PAMAM dendrimers 𝐷𝑆1, we have
1. 𝑀1(𝐺) = 4(7 × 3𝑛+1 − 16).
2. 𝑀2(𝐺) = 8(11 × 3𝑛 − 9).
3. 𝑚𝑀2(𝐺) = 4 × 3𝑛 − 3.
4. 𝑅𝛼(𝐺) = 3𝑛 × 4𝛼+1 + (2𝛼+1 × 5 + 23𝛼+2)(3𝑛 − 1).
5. 𝑅𝛼(𝐺) = 3𝑛/4𝛼−1 + (5/22𝛼−1 + 1/23𝛼−2)(3𝑛 − 1).
6. 𝑆𝑆𝐷(𝐺) = 47 × 3𝑛 − 30
7. 𝐻(𝐺) = (119/15) × 3𝑛 − 19/5
8. 𝐼(𝐺) = (278/15) × 3𝑛 − 46/3.
9. 𝐴(𝐺) = (3280/27) × 3𝑛 − 112.

3.2. M-Polynomials and Degree-Based Indices for Polyomino
Chains. From the geometric point of view, a polyomino
system is a finite 2-connected plane graph in which each
interior cell is encircled by a regular square. In other words,
it is an edge-connected union of cells in the planar square
lattice. Polyomino chain is a particular polyomino system
such that the joining of the centers (set ci as the center
of the ith square) of its adjacent regular composes a path𝑐1, 𝑐2, 𝑐3, . . . 𝑐𝑛.

Let 𝐵𝑛 be the set of polyomino chains with n squares.
There are 2n+1 edges in every 𝐵𝑛 ∈ B𝑛, where B𝑛 is named as a
linear chain and denoted by 𝐿𝑛 if the subgraph of 𝐵𝑛 induced
by the vertices with d(v)=3 is a molecular graph with exactly
n-2 squares. Also, 𝐵𝑛 can be called a zigzag chain and labelled
as 𝑍𝑛 if the subgraph of 𝐵𝑛 is induced by the vertices with
d(v)>2 is 𝑃𝑛.

The angularly connected, or branched, squares consti-
tute a link of a polyomino chain. A maximal linear chain
(containing the terminal squares and kinks at its end) in the
polyomino chains is called a segment of polyomino chain. Let
l(S) be the length of S which is calculated by the number of
squares in S. For any segment S of a polyomino chain, we get𝑙(𝑆) ∈ {2, 3, 4, . . . , 𝑛}. Furthermore, we deduce 𝑙1 = 𝑛 andm=1
for a linear chain 𝐿𝑛 with n squares and 𝑙𝑖 = 2 and m=n-1 for
a zigzag chain 𝑍𝑛 with n squares.

Inwhat follows, we always assume that a polyomino chain
consists of a sequence of segments 𝑆1, 𝑆2, 𝑆3, . . . 𝑆𝑛 and 𝐿(𝑆𝑖) =𝑙𝑖, where 𝑚 ≥ 1 and 𝑖 ∈ {2, 3, 4, . . . , 𝑚}. We derive that∑𝑚𝑖=1 𝑙𝑖 = 𝑛 + 𝑚 − 1.
Theorem 8. For a linear polyomino chain 𝐿𝑛, we have𝑀(𝐿𝑛; 𝑥, 𝑦) = 2𝑥2𝑦2 + 4𝑥2𝑦3 + (3𝑛 − 5)𝑥3𝑦3.
Proof. Let 𝐿𝑛 be the polyomino chain with n squares where𝑙1 = 𝑛 and m=1. 𝐿𝑛 is called the linear chain.

The edge set of 𝐿𝑛 has the following three partitions:
𝐸{2,2} = {𝑒 = 𝑢V ∈ 𝐸 (𝐿𝑛) | 𝑑𝑢 = 2, 𝑑V = 2} ,
𝐸{2,3} = {𝑒 = 𝑢V ∈ 𝐸 (𝐿𝑛) | 𝑑𝑢 = 2, 𝑑V = 3} ,
𝐸{3,3} = {𝑒 = 𝑢V ∈ 𝐸 (𝐿𝑛) | 𝑑𝑢 = 3, 𝑑V = 3} .

(35)

Now
󵄨󵄨󵄨󵄨𝐸{2,2}󵄨󵄨󵄨󵄨 = 2, (36)
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and
󵄨󵄨󵄨󵄨𝐸{2,3}󵄨󵄨󵄨󵄨 = 4,󵄨󵄨󵄨󵄨𝐸{3,3}󵄨󵄨󵄨󵄨 = 3𝑛 − 5.

(37)

𝑀(𝐿𝑛; 𝑥, 𝑦) = ∑
𝑖≤𝑗

𝑚𝑖𝑗 (𝐿𝑛) 𝑥𝑖𝑦𝑗

= ∑
2≤2

𝑚22 (𝐿𝑛) 𝑥2𝑦2 + ∑
2≤3

𝑚23 (𝐿𝑛) 𝑥2𝑦3

+ ∑
3≤3

𝑚33 (𝐿𝑛) 𝑥3𝑦3

= ∑
𝑢V∈𝐸{2,2}

𝑚22 (𝐿𝑛) 𝑥2𝑦2

+ ∑
𝑢V∈𝐸{2,3}

𝑚23 (𝐿𝑛) 𝑥2𝑦3

+ ∑
𝑢V∈𝐸{3,3}

𝑚33 (𝐿𝑛) 𝑥3𝑦3

= 󵄨󵄨󵄨󵄨𝐸{2,2}󵄨󵄨󵄨󵄨 𝑥2𝑦2 + 󵄨󵄨󵄨󵄨𝐸{2,3}󵄨󵄨󵄨󵄨 𝑥2𝑦3
+ 󵄨󵄨󵄨󵄨𝐸{3,3}󵄨󵄨󵄨󵄨 𝑥3𝑦3

= 2𝑥2𝑦2 + 4𝑥2𝑦3 + (3𝑛 − 5) 𝑥3𝑦3.

(38)

Theorem 9. For a linear polyomino chain 𝐿𝑛, we have the
following:

1. 𝑀1(𝐺) = 18𝑛 − 2.
2. 𝑀2(𝐺) = 27𝑛 − 13.
3. 𝑚𝑀2(𝐺) = (1/3)𝑛 − 11/18.
4. 𝑅𝛼(𝐺) = 22𝛼+1 + 2𝛼+2 ⋅ 3𝛼 + 32𝛼(3𝑛 − 5).
5. 𝑅𝛼(𝐺) = 1/2𝛼−1 + 22−𝛼/3𝛼 + (1/32𝛼)(3𝑛 − 5).
6. 𝑆𝑆𝐷(𝐺) = 6𝑛 + 8/3.
7. 𝐻(𝐺) = 𝑛 + 14/15.
8. 𝐼(𝐺) = (9/2)𝑛 − 7/10.
9. 𝐴(𝐺) = (2187/64)𝑛 − 573/64.

Theorem 10. Let 𝑍𝑛 be zigzag polyomino chain with n squares
such that 𝑙𝑖 = 2 and𝑚 = 𝑛 − 1. Then

𝑀(𝑍𝑛, 𝑥, 𝑦) = 2𝑥2𝑦2 + 4𝑥2𝑦3 + 2 (𝑚 − 1) 𝑥2𝑦4
+ 2𝑥3𝑦4 + (3𝑛 − 2𝑚 − 5) 𝑥4𝑦4. (39)

Proof. Let𝑍𝑛 be zigzag polyomino chain with n squares such
that 𝑙𝑖 = 2 and 𝑚 = 𝑛 − 1. Polyomino chain consists of a
sequence of segments 𝑆1, 𝑆2, . . . 𝑆𝑚 and 𝑙(𝑆𝑖) = 𝑙𝑖 where𝑚 ≥ 1
and 𝑖 ∈ {1, 2, . . . , 𝑚}.

The edge set of 𝑍𝑛 has the following five partitions:
𝐸{2,2} = {𝑒 = 𝑢V ∈ 𝐸 (𝑍𝑛) | 𝑑𝑢 = 2, 𝑑V = 2} ,
𝐸{2,3} = {𝑒 = 𝑢V ∈ 𝐸 (𝑍𝑛) | 𝑑𝑢 = 2, 𝑑V = 3} ,
𝐸{2,4} = {𝑒 = 𝑢V ∈ 𝐸 (𝑍𝑛) | 𝑑𝑢 = 2, 𝑑V = 4} ,
𝐸{3,4} = {𝑒 = 𝑢V ∈ 𝐸 (𝑍𝑛) | 𝑑𝑢 = 3, 𝑑V = 4} ,
𝐸{4,4} = {𝑒 = 𝑢V ∈ 𝐸 (𝑍𝑛) | 𝑑𝑢 = 4, 𝑑V = 4} .

(40)

Now 󵄨󵄨󵄨󵄨𝐸{2,2}󵄨󵄨󵄨󵄨 = 2,󵄨󵄨󵄨󵄨𝐸{2,3}󵄨󵄨󵄨󵄨 = 4,󵄨󵄨󵄨󵄨𝐸{2,4}󵄨󵄨󵄨󵄨 = 2 (𝑚 − 1) ,
󵄨󵄨󵄨󵄨𝐸{3,4}󵄨󵄨󵄨󵄨 = 2,

(41)

and 󵄨󵄨󵄨󵄨𝐸{4,4}󵄨󵄨󵄨󵄨 = 3𝑛 − 2𝑚 − 5.
𝑀 (𝑍𝑛;𝑥, 𝑦) = ∑

𝑖≤𝑗

𝑚𝑖𝑗 (𝑍𝑛) 𝑥𝑖𝑦𝑗

= ∑
2≤2

𝑚22 (𝑍𝑛) 𝑥2𝑦2 + ∑
2≤3

𝑚23 (𝑍𝑛) 𝑥2𝑦3

+ ∑
2≤4

𝑚24 (𝑍𝑛) 𝑥2𝑦4

+ ∑
3≤4

𝑚34 (𝑍𝑛) 𝑥3𝑦4

+ ∑
4≤4

𝑚44 (𝑍𝑛) 𝑥4𝑦4

= ∑
𝑢V∈𝐸{2,2}

𝑚22 (𝑍𝑛) 𝑥2𝑦2

+ ∑
𝑢V∈𝐸{2,3}

𝑚23 (𝑍𝑛) 𝑥2𝑦3

+ ∑
𝑢V∈𝐸{2,4}

𝑚24 (𝑍𝑛) 𝑥2𝑦4

+ ∑
𝑢V∈𝐸{3,4}

𝑚34 (𝑍𝑛) 𝑥3𝑦4

+ ∑
𝑢V∈𝐸{4,4}

𝑚44 (𝑍𝑛) 𝑥4𝑦4

= 󵄨󵄨󵄨󵄨𝐸{2,2}󵄨󵄨󵄨󵄨 𝑥2𝑦2 + 󵄨󵄨󵄨󵄨𝐸{2,3}󵄨󵄨󵄨󵄨 𝑥2𝑦3
+ 󵄨󵄨󵄨󵄨𝐸{2,4}󵄨󵄨󵄨󵄨 𝑥2𝑦4 + 󵄨󵄨󵄨󵄨𝐸{3,4}󵄨󵄨󵄨󵄨 𝑥3𝑦4
+ 󵄨󵄨󵄨󵄨𝐸{4,4}󵄨󵄨󵄨󵄨 𝑥4𝑦4

= 2𝑥2𝑦2 + 4𝑥2𝑦3 + 2 (𝑚 − 1) 𝑥2𝑦4
+ 2𝑥3𝑦4 + (3𝑛 − 2𝑚 − 5) 𝑥4𝑦4.

(42)
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Theorem 11. For the Zigzag polyomino chain 𝑍𝑛 for 𝑛 ≥ 2, we
have the following:

1. 𝑀1(𝐺) = 24𝑛 − 4𝑚 − 10.
2. 𝑀2(𝐺) = 48𝑛 − 16𝑚 − 40.
3. 𝑚𝑀2(𝐺) = (1/2)𝑛 + (1/3)𝑚 + 37/18
4. 𝑅𝛼(𝐺) = 22𝛼+1 +2𝛼+2×3𝛼 +23𝛼+1(𝑚−1)+3𝛼×22𝛼+1 +24𝛼(3𝑛 − 2𝑚 − 5).
5. 𝑅𝛼(𝐺) = 1/22𝛼−1 + 1/(3𝛼 ⋅ 2𝛼−2) + (1/23𝛼−1)(𝑚 − 1) +1/(22𝛼−1 × 3𝛼) + (1/24𝛼)(3𝑛 − 2𝑚 − 5).
6. 𝑆𝑆𝐷(𝐺) = 6𝑛 + 𝑚 + 11/6
7. 𝐻(𝐺) = (3/4)𝑛 + (1/6)𝑚 + 61/60.
8. 𝐼(𝐺) = (3/5)𝑛 − (4/3)𝑚 − 92/35.
9. 𝐴(𝐺) = (512/9)𝑛 − (592/27)𝑚 − 118688/3375.

Theorem 12. For the polyomino chain with n squares and of m
segments 𝑆1 and 𝑆2 satisfying 𝑙1 = 2 and 𝑙2 = 𝑛 − 1, 𝐵1𝑛 (𝑛 ≥ 3),
we have

𝑀(𝐵1𝑛, 𝑥, 𝑦) = 2𝑥2𝑦2 + 5𝑥2𝑦3 + 𝑥2𝑦4
+ (3𝑛 − 10) 𝑥3𝑦3 + 3𝑥3𝑦4. (43)

Proof. Let 𝐵1𝑛 (𝑛 ≥ 3) be the polyomino chain with n squares
and of m segments 𝑆1 and 𝑆2 satisfying 𝑙1 = 2 and 𝑙2 = 𝑛 − 1.
The edge set of 𝐵1𝑛 (𝑛 ≥ 3) has the following five partitions:

𝐸{2,2} = {𝑒 = 𝑢V ∈ 𝐸 (𝐵1𝑛) | 𝑑𝑢 = 2, 𝑑V = 2} ,
𝐸{2,3} = {𝑒 = 𝑢V ∈ 𝐸 (𝐵1𝑛) | 𝑑𝑢 = 2, 𝑑V = 3} ,
𝐸{2,4} = {𝑒 = 𝑢V ∈ 𝐸 (𝐵1𝑛) | 𝑑𝑢 = 2, 𝑑V = 4} ,
𝐸{3,3} = {𝑒 = 𝑢V ∈ 𝐸 (𝐵1𝑛) | 𝑑𝑢 = 3, 𝑑V = 3} ,
𝐸{3,4} = {𝑒 = 𝑢V ∈ 𝐸 (𝐵1𝑛) | 𝑑𝑢 = 3, 𝑑V = 4} .

(44)

Now

󵄨󵄨󵄨󵄨𝐸{2,2}󵄨󵄨󵄨󵄨 = 2,󵄨󵄨󵄨󵄨𝐸{2,3}󵄨󵄨󵄨󵄨 = 5,󵄨󵄨󵄨󵄨𝐸{2,4}󵄨󵄨󵄨󵄨 = 1,󵄨󵄨󵄨󵄨𝐸{3,3}󵄨󵄨󵄨󵄨 = 3𝑛 − 10,
(45)

and
󵄨󵄨󵄨󵄨𝐸{3,4}󵄨󵄨󵄨󵄨 = 3. (46)

𝑀(𝐵1𝑛; 𝑥, 𝑦) = ∑
𝑖≤𝑗

𝑚𝑖𝑗 (𝐵1𝑛) 𝑥𝑖𝑦𝑗

= ∑
2≤2

𝑚22 (𝐵1𝑛) 𝑥2𝑦2 + ∑
2≤3

𝑚23 (𝐵1𝑛) 𝑥2𝑦3

+ ∑
2≤4

𝑚24 (𝐵1𝑛) 𝑥2𝑦4

+ ∑
3≤3

𝑚33 (𝐵1𝑛) 𝑥3𝑦3

+ ∑
3≤4

𝑚34 (𝐵1𝑛) 𝑥3𝑦4

= ∑
𝑢V∈𝐸{2,2}

𝑚22 (𝐵1𝑛) 𝑥2𝑦2

+ ∑
𝑢V∈𝐸{2,3}

𝑚23 (𝐵1𝑛) 𝑥2𝑦3

+ ∑
𝑢V∈𝐸{2,4}

𝑚24 (𝐵1𝑛) 𝑥2𝑦4

+ ∑
𝑢V∈𝐸{3,3}

𝑚33 (𝐵1𝑛) 𝑥3𝑦3

+ ∑
𝑢V∈𝐸{3,4}

𝑚34 (𝐵1𝑛) 𝑥3𝑦4

= 󵄨󵄨󵄨󵄨𝐸{2,2}󵄨󵄨󵄨󵄨 𝑥2𝑦2 + 󵄨󵄨󵄨󵄨𝐸{2,3}󵄨󵄨󵄨󵄨 𝑥2𝑦3
+ 󵄨󵄨󵄨󵄨𝐸{2,4}󵄨󵄨󵄨󵄨 𝑥2𝑦4 + 󵄨󵄨󵄨󵄨𝐸{3,3}󵄨󵄨󵄨󵄨 𝑥3𝑦3
+ 󵄨󵄨󵄨󵄨𝐸{3,4}󵄨󵄨󵄨󵄨 𝑥3𝑦4

= 2𝑥2𝑦2 + 5𝑥2𝑦3 + 𝑥2𝑦4
+ (3𝑛 − 10) 𝑥3𝑦3 + 3𝑥3𝑦4.

(47)

Theorem 13. For the polyomino chain with n squares and of m
segments 𝑆1 and 𝑆2 satisfying 𝑙1 = 2 and 𝑙2 = 𝑛 − 1, 𝐵1𝑛 (𝑛 ≥ 3),
we have the following:

1. 𝑀1(𝐺) = 18𝑛.
2. 𝑀2(𝐺) = 27𝑛 − 8.
3. 𝑚𝑀2(𝐺) = 𝑛/3 + 43/72.
4. 𝑅𝛼(𝐺) = 22𝛼+1 +6𝛼×5+23𝛼 +32𝛼(3𝑛−10)+3𝛼+1 ×4𝛼.
5. 𝑅𝛼(𝐺) = 1/22𝛼−1 + 5/6𝛼 + 1/23𝛼 + (1/32𝛼)(3𝑛 − 10) +1/(22𝛼 × 3𝛼−1).
6. 𝑆𝑆𝐷(𝐺) = 6𝑛 + 43/12.
7. 𝐻(𝐺) = 𝑛 + 6/7.
8. 𝐼(𝐺) = 27𝑛 − 709/10.
9. 𝐴(𝐺) = (2187/64)𝑛 − 33737/4000.
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Theorem 14. For polyomino chain with 𝑛 squares and 𝑚
segments 𝑆1, 𝑆2, . . . , 𝑆𝑚 (𝑚 ≥ 3) satisfying 𝑙1 = 𝑙𝑚 = 2 and𝑙2, . . . , 𝑙𝑚−1 ≥ 3, 𝐵2𝑛 (𝑛 ≥ 4), we have

𝑀(𝐵2𝑛, 𝑥, 𝑦) = 2𝑥2𝑦2 + 2𝑚𝑥2𝑦3 + 2𝑥2𝑦4
+ 3 (𝑛 − 2𝑚 + 1) 𝑥3𝑦3
+ 2 (2𝑚 − 3) 𝑥3𝑦4.

(48)

Proof. Let 𝐵2𝑛 (𝑛 ≥ 4) be a polyomino chain with n squares
and m segments 𝑆1, 𝑆2, . . . , 𝑆𝑚 (𝑚 ≥ 3) satisfying 𝑙1 = 𝑙𝑚 = 2
and 𝑙2, . . . , 𝑙𝑚−1 ≥ 3. Then the edge set of 𝐵2𝑛 (𝑛 ≥ 4) has the
following five partitions:

𝐸{2,2} = {𝑒 = 𝑢V ∈ 𝐸 (𝐵2𝑛) | 𝑑𝑢 = 2, 𝑑V = 2} ,
𝐸{2,3} = 𝑛 {𝑒 = 𝑢V ∈ 𝐸 (𝐵2𝑛) | 𝑑𝑢 = 2, 𝑑V = 3} ,
𝐸{2,4} = {𝑒 = 𝑢V ∈ 𝐸 (𝐵2𝑛) | 𝑑𝑢 = 2, 𝑑V = 4} ,
𝐸{3,3} = {𝑒 = 𝑢V ∈ 𝐸 (𝐵2𝑛) | 𝑑𝑢 = 3, 𝑑V = 3} ,
𝐸{3,4} = {𝑒 = 𝑢V ∈ 𝐸 (𝐵2𝑛) | 𝑑𝑢 = 3, 𝑑V = 4} .

(49)

Now

󵄨󵄨󵄨󵄨𝐸{2,2}󵄨󵄨󵄨󵄨 = 2,󵄨󵄨󵄨󵄨𝐸{2,3}󵄨󵄨󵄨󵄨 = 2𝑚,󵄨󵄨󵄨󵄨𝐸{2,4}󵄨󵄨󵄨󵄨 = 2,󵄨󵄨󵄨󵄨𝐸{3,3}󵄨󵄨󵄨󵄨 = 3𝑛 − 6𝑚 + 3,
(50)

and

󵄨󵄨󵄨󵄨𝐸{4,4}󵄨󵄨󵄨󵄨 = 4𝑚 − 6. (51)

𝑀(𝐵2𝑛; 𝑥, 𝑦) = ∑
𝑖≤𝑗

𝑚𝑖𝑗 (𝐵2𝑛) 𝑥𝑖𝑦𝑗

= ∑
2≤2

𝑚22 (𝐵2𝑛) 𝑥2𝑦2 + ∑
2≤3

𝑚23 (𝐵2𝑛) 𝑥2𝑦3

+ ∑
2≤4

𝑚24 (𝐵2𝑛) 𝑥2𝑦4 + ∑
3≤3

𝑚33 (𝐵2𝑛) 𝑥3𝑦3

+ ∑
3≤4

𝑚34 (𝐵2𝑛) 𝑥3𝑦4

= ∑
𝑢V∈𝐸{2,2}

𝑚22 (𝐵2𝑛) 𝑥2𝑦2 + ∑
𝑢V∈𝐸{2,3}

𝑚23 (𝐵2𝑛) 𝑥2𝑦3

+ ∑
𝑢V∈𝐸{2,4}

𝑚24 (𝐵2𝑛) 𝑥2𝑦4 ∑
𝑢V∈𝐸{3,3}

𝑚33 (𝐵2𝑛) 𝑥3𝑦3

+ ∑
𝑢V∈𝐸{3,4}

𝑚34 (𝐵2𝑛) 𝑥3𝑦4

= 󵄨󵄨󵄨󵄨𝐸{2,2}󵄨󵄨󵄨󵄨 𝑥2𝑦2 + 󵄨󵄨󵄨󵄨𝐸{2,3}󵄨󵄨󵄨󵄨 𝑥2𝑦3 + 󵄨󵄨󵄨󵄨𝐸{2,4}󵄨󵄨󵄨󵄨 𝑥2𝑦4
+ 󵄨󵄨󵄨󵄨𝐸{3,3}󵄨󵄨󵄨󵄨 𝑥3𝑦3 + 󵄨󵄨󵄨󵄨𝐸{3,4}󵄨󵄨󵄨󵄨 𝑥3𝑦4

= 2𝑥2𝑦2 + 2𝑚𝑥2𝑦3 + 2𝑥2𝑦4 + (3𝑛 − 6𝑚 + 3) 𝑥3𝑦3
+ (4𝑚 − 6) 𝑥3𝑦4

= 2𝑥2𝑦2 + 2𝑚𝑥2𝑦3 + 2𝑥2𝑦4 + 3 (𝑛 − 2𝑚 + 1) 𝑥3𝑦3
+ 2 (2𝑚 − 3) 𝑥3𝑦4

(52)

Theorem 15. For polyomino chain with n squares and m
segments 𝑆1, 𝑆2, . . . , 𝑆𝑚 (𝑚 ≥ 3) satisfying 𝑙1 = 𝑙𝑚 = 2 and𝑙2, . . . , 𝑙𝑚−1 ≥ 3, 𝐵2𝑛 (𝑛 ≥ 4), we have the following:

1. 𝑀1(𝐺) = 2(9𝑛 + 𝑚 − 2).
2. 𝑀2(𝐺) = 3(9𝑛 + 2𝑚 − 7).
3. 𝑚𝑀2(𝐺) = (1/3)𝑛 + 7/12
4. 𝑅𝛼(𝐺) = 32𝛼+1𝑛+(3𝛼×2𝛼+1−2×32𝛼+1+3𝛼×22𝛼+2)𝑚+(1 + 3𝛼+1)22𝛼+1 + 23𝛼+1 + 32𝛼+1.
5. 𝑅𝛼(𝐺) = (1/32𝛼−1)𝑛 + (1/(3𝛼 ⋅ 2𝛼−1) + 2/32𝛼−1 +1/(22𝛼−2 × 3𝛼))𝑚 + (1 − 1/3𝛼−1)(1/22𝛼−1) + 1/23𝛼−1 +1/32𝛼−1.
6. 𝑆𝑆𝐷(𝐺) = 6𝑛 + (2/3)𝑚 + 5/2
7. 𝐻(𝐺) = 𝑛 − (2/35)𝑚 + 20/21.
8. 𝐼(𝐺) = (9/2)𝑛 + (9/35)𝑚 − 47/42.
9. 𝐴(𝐺) = (2187/64)𝑛+ (11809/4000)𝑚−134177/8000.

4. Conclusions

Topological indices calculated in this paper help us to guess
biological activities, chemical reactivity, and physical features
of under-study dendrimers and polyomino chains. For exam-
ple, Randić index is useful for determining physiochemical
properties of alkanes as noticed by chemist Milan Randić in
1975. He noticed the correlation between the Randić index
and several physicochemical properties of alkanes like boiling
point, vapor pressure, enthalpies of formation, surface area,
and chromatographic retention times. Hence our results are
helpful in determination of the significance of PAMAM
dendrimers and polyomino chains in pharmacy and industry.
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