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Abstract: Celiac disease (CeD) is an immune-mediated enteropathy, and unique in that the specific
trigger is known: gluten. The current mainstay of therapy is a gluten-free diet (GFD). As novel
therapies are being developed, complementary strategies are also being studied, such as modulation
of the gut microbiome. The gut microbiota is involved in the initiation and perpetuation of intestinal
inflammation in several chronic diseases. Intestinal dysbiosis has been reported in CeD patients,
untreated or treated with GFD, compared to healthy subjects. Several studies have identified
differential bacterial populations associated with CeD patients and healthy subjects. However, it is
still not clear if intestinal dysbiosis is the cause or effect of CeD. Probiotics have also been considered
as a strategy to modulate the gut microbiome to an anti-inflammatory state. However, there is a
paucity of data to support their use in treating CeD. Further studies are needed with therapeutic
microbial formulations combined with human trials on the use of probiotics to treat CeD by restoring
the gut microbiome to an anti-inflammatory state.

Keywords: Celiac disease; probiotics; gut microbiota

1. Introduction

Celiac disease (CeD) is an immune mediated enteropathy triggered by ingestion of gluten in
genetically predisposed individuals carrying human leucocyte antigen (HLA) DQ2 or DQ8. The current
mainstay of treatment is adherence to a strict gluten-free diet (GFD) [1–4]. The global prevalence of
CeD has been increasing worldwide, and in the North America the prevalence increased five-fold
mirroring the increase in Inflammatory Bowel Disease (IBD) [5–9].

The key genetic elements (HLA-DQ2 and HLA-DQ8), the auto-antigen (tissue transglutaminase
2), and the external trigger (gluten) causing CeD are fairly well established. HLA-DQ2/8 is a
common genotype and is noted in approximately 35% of the population, and approximately 3% of
individuals develop CeD upon gluten exposure, suggesting a role for other factors in the development of
CeD [10–13]. Growing evidence suggests that gut microbiota is closely related to digestive tract diseases,
including CeD [14,15]. The gut microbiota plays a crucial role in mucosal differentiation, function,
energy generation, and modulation of innate and adaptive system [16–18]. Alterations, probably due
to improved hygiene and reduced exposure to various microorganisms, have been implicated in the
pathogenesis of IBD [19]. Similarly, changes in the gut microbiome in HLA-DQ2/8 individuals can
alter processing of gluten in the intestinal lumen, affect intestinal barrier, innate or adaptive immune
responses, and may cause or contribute to gluten sensitive enteropathy [20]. As innovative therapies
are developed, there is a paucity in understanding the role of the gut microbiota in CeD, specifically
pathogenesis and clinical course. It is also unclear if modulation of the gut microbiome alters the
natural history of CeD. In this review, we will discuss the association of gut microbiota in CeD.
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2. Pathogenesis of Celiac Disease:

In genetically susceptible patients, the pathogenesis of CeD starts with the ingestion of
gluten-containing foods, which are incompletely digested in the intestinal lumen into potentially
immunogenic gluten derived peptides (10- > 30 amino acids in size). Immunogenicity of these
peptides varies, with 13-, 19- and 33-mers being more immunogenic and triggering immune response
associated with CeD. These peptides contain six copies of different epitopes to which most individuals
react [20–22]. Gliadin peptides containing nine or less amino acids have reduced immunogenicity [23].
Some of the commensal duodenal microbiota also have peptidase activity and break gliadins into
smaller peptides [24,25].

To initiate the immune response, peptides translocate to the lamina propria by the paracellular
route that involves the protein ‘zonulin’. Gliadin peptides bind to chemokine receptor, C-X-C motif
chemokine receptor 3 (CXCR3) on epithelial cells, upregulate zonulin, and disassemble tight junctions
leading to increased permeability [26–28]. Another pathway is transcellular, mediated by secretory
immunoglobulin A (IgA) with the help of transferrin receptor (CD71) expressed on luminal surface
of epithelial cells [29]. In the lamina propria, intestinal tissue transglutaminase (tTG) reacts with
gliadin peptides to deaminate them to negatively charged glutamic acid residues that are highly
immunogenic. These residues are recognized and processed by the HLADQ2 and HLA DQ8 bearing
antigen presenting cells. The deaminated peptides and tTG complex activate CD+ T cells to generate
antibodies against gliadin and tTG [30]. HLA-DQ2 and DQ8 variants enhance immune cell activation
and autoimmunity by binding more tightly to gliadin peptides, thus accounting for 50% of genetic
susceptibility [31]. Though non-HLA variants also regulate the structure and function of immune cells,
it modestly increases the risk of CeD [32].

Innate immunity has an initial role in the development of CeD. Ingestion of gluten containing
foods increase Interleukin-15 (IL-15) production causing polarization of dendritic cells, altering T-cell
receptor-alpha beta intraepithelial lymphocytes (IELs) in the epithelium and damage to intestinal
tissue [33,34]. Dysregulated interferon (IFN)-γ expression stimulates natural killer (NK) cells, CD+ T
cell, and dendritic cell activation. The typical immune systems response is neutrophil infiltration and
IL-8 release from the epithelium and immune cells [34]. Gliadin stimulates macrophage production
of TNF-α, IL-8, RANTES, IL-1β, and nitric oxide. Alpha-amylase trypsin inhibitors also stimulate
innate immunity through Toll-like receptors (TLR), myeloid differentiation factor-2 (MyD88), and CD14
complex [34]. Genome-wide association studies identified additional 39 non-HLA loci involved in
immune function and confer CeD risk. Some of these non-HLA loci also regulate bacterial colonization
and sensing [32]. Pathogenic bacteria associated immunogenicity is dependent on TLR transmembrane
proteins. After recognition of pathogen, they activate innate immune system. Normal intestinal
commensal bacteria do not activate immune system due to downregulation of TLR. Thus, there are
similarities in activation of the. innate immune pathway in both, during invasion by pathogenic
microorganism or autoimmunity by gliadin peptide due to loss of self-tolerance, as in both states there
is an increased expression of TLR, release of pro-inflammatory cytokines and induction of NF-κβ.
Increased TLR4 and TLR2 expression is also associated with both Inflammatory Bowel Disease (IBD)
and CeD, implicating dysbiosis in disease pathogenesis [35–38]. Dysbiosis may affect autoimmunity
by modulating the balance between commensal and pathogenic microorganisms and the host immune
response, as discussed later.

In CeD the adaptive immune response is triggered by antigen-presenting cells (APC) that transport
gluten peptides to CD4+ T cells, resulting in increased production and release of pro-inflammatory
cytokines. In addition, increased production of metalloproteases and keratinocyte growth factor by
stromal cells generate anti-gliadin and anti-tTG antibodies [39]. The response to gliadin is a Th1 driven
process, while Th17 cytokines increase suggest that it also has a role in the development of CeD.
Th17-mediated immune response is associated with alerted T-regulatory cell populations, which are
also increased in active CeD. Th17 cells are regulated by the gut microbiota and also protect the host
from infection, as well as other toxic molecules such as deaminated gliadin peptides [39].
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3. Dysbiosis in Celiac Disease:

Approximately trillions of microorganisms inhabit our gut and contribute to normal bowel
functions, including metabolic regulation and immune homeostasis [16–18,40]. The gut microbiota
composition is established early in life and remains fairly constant throughout life in symbiotic tolerance
with the host. Three bacterial phyla: Firmicutes, Bacteroides and Actinobacteria are the major components
of the gut microbiota [41]. Dysbiosis is the imbalance of protective and pathogenic microbes in the host.
It is typically caused by atypical microbial exposures, diet changes, antibiotic/medication use, and host
genetics [40]. Initially, increased association of rod-shaped bacteria was reported in small bowel
biopsies of active and inactive CeD patients [42]. Subsequently, in both stool cultures and duodenal
biopsies reported an increased abundance of gram negative organisms, Bacteroides, Clostridium, E.Coli
in CeD patients compared to healthy adults [43–45]. The concept of dysbiosis as risk factor for CeD was
further strengthened by Swedish CeD epidemic study which also found higher numbers of rod-shaped
bacteria (Clostridium spp., Prevotella spp., and Actinomyces spp.) in small bowel mucosa of CeD
patients [46]. Since then there are several studies on fecal samples and duodenal mucosa using various
techniques including 16SrRNA gene sequencing reporting similar results [47–50]. However, most of
these studies are descriptive, some with patients on GFD or with gluten diet (GD) or symptomatic even
on GFD. From these studies it is difficult to determine whether an altered gut microbiota is a cause or
consequence of CeD, as GD and GFD can also modulate gut microbiota. Overall most of the duodenal
biopsies from CeD patients compared to healthy subjects showed dysbiosis and revealed an increased
number of Gram-negative bacteria, Bacteroides, Firmicutes, E. Coli, Enterobacteriaceae, Staphylococcus,
and a decrease in Bifidobacterium, Streptococcus, Provetella and Lactobacillus spp. The studies of fecal
samples and duodenal biopsies in CeD patients on GFD versus GD and normal healthy population also
showed an alteration of gut microbiota. CeD patients on GD showed an increase in Bacteroides-prevotella,
Clostridium leptum, Histolitycum, Eubacterium, Atopobium and decrease in Bifidobacterium spp., B.longum,
Lactobacillus spp., Leuconostoc, E. Coli and Staphylococcus compared to the normal population [50–54].
When CeD patients were treated with GFD, the increased microbial concentration was reduced to that
in the normal population, thus suggesting that diet influenced gut microbiota. However, most studies
showed only partial restoration of the microbiota when CeD patients were put on a GFD [47–49].
In addition, some of these patients were symptomatic for CeD even on GFD and showed relative
abundance of Proteobacteria and decreased number of Firmicutes and Bacteroides suggesting dysbiosis
as a cause of persistent GI symptoms even on GFD [55]. The precise reason for the inability of GFD
to restore the microbiota similar to healthy subjects is not well understood, but it can be speculated
that this may be due to individual genetics or prebiotic effect of GFD [55–57]. Although no cause or
effect relationship can be deduced from these studies, the consensus is that dysbiosis may contribute to
CeD. They further showed that patients with Dermatitis Herpeteformis (DH) also had a characteristic
gut microbiota, with increased Firmicutes, Bacteriodes (Sterptococcus and Prevotella) suggesting that gut
microbiota may play a role in disease manifestation [58].

To understand the biochemical mechanism of the effect of gut microbiota in CeD, germ-free
mice were colonized with bacteria from CeD and healthy subjects, respectively. In the germ-free
mice, Lactobacillus, had a protective effect, while Pseudomonas aeruginosa was associated with CeD
development [59]. P. aeruginosa was found to secrete LasB eleastase that altered intestinal barrier
and facilitated translocation of gliadin peptides to the lamina propria where they activated the
mucosal immune system. In contrast, Lactobacillus strains produced proteases that cleaved gluten
into smaller peptides, which were less likely to be translocated to lamina propria, thus reduced their
immunogenicity [59].
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4. Factors Modulating Gut Colonization in Celiac Disease:

4.1. Association with HLA-Haplotypes, Breast Feeding, Birth, Antibiotic Exposure

There is a strong association between HLA-DQ2/8 haplotypes and CeD. Several investigators
have examined this association with the gut microbiota. Infants with HLA-DQ2 and HLA-DQ8 and
first-degree relatives with CeD have increased Firmicutes and Proteobacteria and less Actinobacteria and
Bifidobacterium, suggesting that HLA genotype is associated with gut colonization by specific bacteria
more prevalent in CeD patients and their relatives [20,60]. However, the HLA-DQ2/8 haplotype is also
common in the general population, suggesting that genetics alone cannot explain the high prevalence
of CeD.

In HLA-DQ2/8 haplotype infants, the gut microbiota was further affected by feeding type, with
breastfeeding having a protective effect against CeD [61–63]. Breastfed babies had higher Clostridium
leptum, Bifidobacterium longum, and Bifidobacterium breve compared to formula fed babies, whose colon
had higher counts of Bacteroides fragilis, Clostridium coccoides-Eubacterium rectale and E.coli. Breastfeeding
has is thought to have a protective effect on the development of CeD but could not be confirmed in
some studies [64]. The bacteria acquired during birth and first few months of life have a significant
effect on commensal organisms in gut. The adult gut microbiome is typically established by two years
of age [65].

Observational studies have also shown an increased prevalence of CeD in children born by elective
cesarean section (CS), with a negative association with vaginal delivery, and also with premature rupture
of membranes, most likely related to possible gut dysbiosis. Babies born vaginally predominantly
acquire bacteria from maternal vaginal and perianal flora. The gut microbiota of vaginally delivered
infants is similar to their mother vaginal microbiota compared to elective CS infants who have reduced
microbial diversity and fewer Bifidobacterium species [66,67].

Antibiotic use in the first year of life was also associated with intestinal dysbiosis, reduced fecal
microbial diversity, and early onset of CeD [68,69]. Antibiotic-associated dysbiosis showed decreased
numbers of Bifidobacterium longum and increased numbers of Bacteroides fragilis [70]. Moreover,
Canova et al. demonstrated a dose-response relationship of antibiotic use with onset and risk of CeD,
specifically with increased Cephalosporin intake [71]. As already discussed, CeD was associated with
decreased Bifidobacteria counts, lending support to the hypothesis that dysbiosis is risk factor for celiac
disease [43,44].

Environmental triggers, especially food processing and additives are becoming increasingly
recognized as contributing factors to the rising incidence of CeD. Nanoparticles used in food processing,
including metallic nanoparticles have antimicrobial activities. In vitro mouse model studies suggest
an alteration in microbiota on exposure to these substances [72,73]. In mice, a dose dependent effect on
the gut microbiome was noted with silver nanoparticles [74].

4.2. Effect of Gut Microbiota/Dysbiosis on Processing of Gluten

The effect on duodenal microbiota of the amount and timing of gluten introduction into the diet
of an infant is controversial [75]. In small bowel partial digestion of gluten into peptides larger than
ten amino acids are immunogenic, specifically 33-mer. Commensal microbiota, especially, Lactobacilli
release peptidases that breakdown peptides and modify their immunogenic potential. P. aeruginosa is a
pathogenic bacterium in patients with CeD. Caminero et al. demonstrated that P. aeruginosa is capable
of enhancing immunogenicity of 33-mer peptide, while Lactobacillus species isolated from the non-CeD
controls decreased the immunogenicity of the peptides produced by P. aeruginosa [59]. Gluten can be
metabolized by 144 strains of 35 bacterial species [25]. Most of these strains were from phyla Firmicutes
and Actinobacteria, bacteria that protect CeD. Herran et al. isolated 31 strains of gluten-degrading
bacteria from the human small intestine, of which 27 strains demonstrated peptidolytic activity towards
the 33-mer peptide [76]. Lactobacilli were the most representative genera, suggesting a protective role
for Lactobacillus in gluten digestion with decreasing the immunogenicity of 33-mer peptide. To grow
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effectively, Lactobacilli require high amounts of amino acids for their nitrogen source and energy
metabolism. Lactobacilli and Bifidocbacterium spp. are believed to have a complex proteolytic and
peptidolytic system, which may be involved in breakdown of gluten and its peptides and have the
potential to be used as a probiotic supplement in CeD patients [77].

4.3. Effect of Microbiota/Dysbiosis on the Intestinal Barrier in Celiac Disease

Intestinal defense against pathogens includes physical barrier created by a mucous and tight
junction complexes between neighboring epithelial cells. These tight junctions impede entry of
pathogens and toxic molecules across the gut wall. Sustained inflammation or infection can lead to
deregulation in the expression of adhesion molecules at tight junctions leading to entry of microbes
and toxic/immunogenic substances in lamina propria. Of several proteins involved in tight junctions,
disassembly of zonulin has been implicated in CeD patients [26,27]. In vitro studies showed that
zonulin can be induced by both gluten peptides and enteric bacteria [78]. Zonulin release in vivo
has also been reported to be affected by changes in gut microbiota composition [79]. Some studies
suggested that the gliadin peptides bound to pro-inflammatory cytokine CXCR3 receptor on the
intestinal epithelium released zonulin, thereby disrupting tight junctions and increasing epithelial
permeability [26]. CXCL10, a ligand for CXCR 3 was also overexpressed in the small intestine of
CeD patients. CXCL10/CXCR3 axis can be activated by pathogens and has been suggested to play a
role in initiating gluten-induced inflammatory processes in the small bowel [26]. Germ-free rats with
triggering factors such as Escherichia coli CBL2 or Shigella CBD8 had significantly reduced numbers of
goblet cells in the small bowel and altered intestinal barrier and tight junctions. However, when given
gliadin and IFN-γ incubated with Bifidobacterium bifidum IATA-ES2, there was an increase in number of
goblet cells, increased production of inhibitors of metalloproteinases and chemotactic agents, which
provided a protective effect for the intestinal barrier [80]. Though these changes were established,
it remains unclear if dysbiosis from CeD associated bacteria produced an inflammatory response to
gluten or stimulated the mucosal inflammation response. Dysbiosis, through activation of the innate
immune pathway may disrupt tight junctions/intestinal barrier and facilitate entry of incompletely
digested gliadin peptides into the lamina propria. As discussed above, dysbiosis may also increase the
amount and size of gliadin peptides due to differential peptidolytic activity of the gut microbiota.

4.4. Effect of Gut Dysbiosis on Mucosal Immunity in Celiac Disease

Microbiota colonization is necessary for the development and homeostasis of an optimal
immune system. The gut microbial composition plays a role in regulation of the immune system.
Alterations (dysbiosis or pathogenic organisms) may shift the immune response by favoring the
development of certain subpopulation of lymphocytes that trigger a different cytokine response in the
host. Physiologically the mucosal immune response to foreign antigens in the small intestine led to the
development of tolerance to these antigens by apoptosis and active suppression by regulatory (Treg) T
cells of antigen specific T cells [18,81–84]. As already discussed, there are similarities in activation of
innate and adaptive immune system by immunogenic gliadin peptides and altered microbes in the gut.
In patients with CeD, loss of tolerance to gluten is associated with activation of gluten specific CD4+ T
cells in the lamina propria and upregulation of IL-15, a pro inflammatory cytokine [18,33,35,78–80].
The gut microbiota also plays a role in maturation of dendritic cells, macrophages in the small bowel
and causes variation in interactions of gliadin peptides with CD4+T cells. Pathogenic bacteria activate
the innate immune system through activation of TLR. TLR-4 and CD14 complexes recognize bacterial
endotoxins and lipopolysaccharide and active the innate immune system to release proinflammatory
cytokines. Soluble CD14 is a serum marker for activation of the innate immune system that increased
in patients with untreated CeD, suggesting a role for dysbiosis in the pathogenesis of CeD. Altered gut
microbiota can also activate Th1, Th2 and Th17 mediated immune responses similar to upregulation by
gliadin peptides [33,85]. CeD associated bacteria can increase IL-17A which may be directed against
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it [82]. Further work is needed to better characterize gut microbiota changes in CeD, and their role in
cytokine expression and clinical disease course.

These studies suggest that the gut microbiota affects gluten digestion, intestinal permeability,
and the host immune system, all the mechanisms involved in pathogenesis of CeD. Although GFD can
reduce the symptoms of CeD in most of the patients, however it does not completely restore the gut
microbiota to that of healthy individuals [47–49]. Furthermore, dysbiosis was also observed in patients
symptomatic on GFD. These studies suggest that gut dysbiosis contributes to the pathogenesis of CeD
and utilization of probiotics may benefit CeD patients.

5. Probiotics in Celiac Disease:

Probiotics are live organisms, when ingested in adequate quantities provide a health benefit to the
host [86]. They produce inhibitory substances that target pathogens, block their adhesion sites, compete
for nutrients, prebiotics, degrade toxin receptors, and regulate immunity [87]. Dysbiosis, directly or
indirectly contributes to CeD, therefore probiotics modulate the microbial profile of the duodenum
and increase the beneficial colonizing microbes influencing the CeD prognosis. Several in vitro and
clinical trials have been conducted to assess the use of probiotics.

In vitro studies have demonstrated that select Lactobacilli strains when added to sourdough
fermentation, lyse the proline/glutamine-rich gluten peptides, reduce the gluten concentration to <10
ppm (gluten-free), and decrease their immunotoxicity. Lactobacilli strains from pooled probiotic culture,
during simulated gastrointestinal digestion, hydrolyzed proline-rich synthetic peptides involved in
CeD. Duodenal biopsies obtained from CeD patients following consumption of wheat bread produced
with Lactobacilli showed no increase in IL2, IL-10, or IFN- levels compared to baseline [88]. Four strains
of Lactobacilli (L. ruminis, L. Johndoni, L. amylovorus, L. salivaris) with highest gliadin peptide degrading
activities reduced the immunotoxicity of gliadin peptides to induce CeD, were identified from the
upper gastrointestinal tract of pigs [89]. In a study that challenged 20 CeD subjects to hydrolysed
wheat gluten bread (containing Lactobacillus alimentaris, L. brevis, L. sanfranciscenis, L. Hilgardi) for six
days, found no significant increase in IFN-γ compared to healthy controls [90]. Encouraging results
were also obtained with in vivo studies when CeD patients in remission were challenged for 60 days
with Lactobacilli predigested gluten. There was no worsening of symptoms, intestinal permeability
or serological markers suggesting that Lactobacilli derived endopeptidase was capable of completely
degrading gluten and reducing its toxicity for CeD patients [91]. These studies support the addition
of probiotics rich in Lactobacilli spp. either to mitigate the effect of accidental or contaminant gluten
exposure or for added benefits imparted by GFD.

Dysbiosis in CeD is associated with abnormal tight junction and increased intestinal permeability
that lead to increased translocation of gliadin peptides to lamina propria. The De Simone
Formulation, a probiotic mixture of mostly Lactobacilli and Bifidobacteria, not only completely hydrolysed
-gliadin-derived epitopes 62–75 and 33-mer peptide, but also improved epithelial barrier function
by stabilizing tight junctions [92]. Lindfors et al. studied the effects of probiotics including
strains Lactobacillus fermentum and B lactis on human colon Caco2 cells and showed that B. lactis
decreased intestinal permeability in a dose dependent manner [93]. Furthermore, a mixture of gliadin
peptides and Bifidobacteria downregulated proinflammatory cytokines production from Caco cells [94].
Mononuclear cells treated with B longum, B bifidum ES2 and then incubated with fecal samples from
CeD patients found decreased proinflammatory cytokine production, suggesting that Bifodobacterial
strains can reverse the effects of CeD associated bacteria [95].

Mouse models of CeD when challenged with gluten develops histological changes similar to CeD
including intraepithelial lymphocytosis, villous atrophy, and crypt hyperplasia. These changes are
associated with overexpression of CD71 (mediator of increased intestinal permeability), CD15, and IgA.
When gluten digested with Saccharomyces boulardi KK1 strain, was fed to mice, there was a decrease in
CD 71 expression, and local cytokine production and reversal of histological changes, supporting the
beneficial effects of probiotics [96]. Lactobacillus rhamnosus GG strain also decreased gliadin peptide
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induced changes in intercellular junction proteins and gliadin induced enteropathy in Wistar rats
sensitized with IFN-. Similar beneficial effects of probiotic B.longum CECT 7347 were noted in small
bowel of weaning animals sensitized with IFN-γ and fed gliadin suggesting that early administration
of probiotics may have a protective effect on bowel mucosa [97]. The effects of different Lactobacilli
sp on DQ8 transgenic mice showed modulation of innate and adaptive immune response [98,99].
They found that effects were strain specific. B longum NCC2705 strain produced a serine protease
inhibitor (serpin) with immune modulating properties and prevented gliadin induced inflammation in
genetically susceptible mouse model of CeD [98]. All these in vitro and animal studies demonstrated a
beneficial effect of probiotics on digestion of gliadin peptides, intestinal barrier and immune system,
which also showed beneficial effects on intestinal mucosa of mice [96–103]; Table 1.

Studies of the gut microbiota (fecal and duodenal biopsies) have revealed that Lactobacilli and
Bifidobacteria reduce symptoms in CeD patients on a GFD, for a potential role either to mitigate the
effect of accidental or contaminant gluten exposure [44,45,104]. These studies, along with in vitro
and animal studies support the addition of probiotics to a GFD for beneficial or preventative effects.
There are a few studies on the effect of probiotics in patients with CeD with cohorts ranging from
22–109 patients [105–114]. Most of these studies used Bifidobacterium strains, while a few studies used
mixture of Lactobacilli spp. and Bifidobacterium spp. and one study used a probiotic preparation, the De
Simone Formulation, made up of lactic acid and bifidobacteria (Tables 2 and 3). Most of these studies
demonstrated modulation of gut microbiota, decreased inflammatory cytokines causing reduction
in CeD symptoms. In a double-blind, randomized, placebo-controlled study of 33 newly diagnosed
pediatric patients with CeD on a GFD, were given Bifidobacterium longum CECT 7347 (n = 18) for three
months. A reduction was observed in the intestinal inflammation and decreased sIgA in fecal samples,
compared to the placebo group. It also improved growth metrics, affected peripheral lymphocyte
subsets, and decreased TNF [106]. In a double-blind randomized placebo-controlled study in untreated
CeD patients on a GFD (n = 12), B infantis (Natren Life Start, NLS) treatment for three weeks improved
gastrointestinal symptoms but had no effects on diarrhea, intestinal permeability or serum levels (tTG
serology), cytokines or chemokines [105]. This may be due to the limited duration of study, selection of
probiotic, dose or symptomatic patients with Marsh 3b-3c histology on biopsy. However, B infantis
decreased Paneth cells in duodenal mucosa and -defensin (antimicrobial peptide) suggesting its effect
on modulation of the innate immune system [110].



Nutrients 2019, 11, 2375 8 of 18

Table 1. Animal model studies to study the efficacy of probiotics in celiac disease.

Probiotic
Study Design Major Findings Advantages of Probiotics Reference

Composition—Strain(s) Duration of
Administration

Lactobacillus casei ATCC 9595 21 days Transgenic mice expressing DQ-8 mucosally
immunized, challenged with intra-gastric gliadin

Enhanced gliadin specific response
mediated by CD4+T cells, gliadin
specific IFNγ expression,
pro-inflammatory polarisation of
cytokine milieu, no enteropathy
like mucosal response

Inherent adjuvancy of
L.casei can be used to
enhance both mucosal and
T-cell mediated responses.

D’Arienzo et al. 2008. [101]

Lactobacillus casei ATCC 9595 35 days Transgenic mice expressing DQ, -mucosally
immunized, challenged with intra-gastric
chymotrypsin digested gliadin

Complete recovery of villous
blunting, decreased weight loss,
recovered basal TNF-α levels and
no change in CD25+ cells and levels
of IL-2.

L. casei was effective in
rescuing the normal
mucosal architecture and
Gut associated lymphoid
tissue homoeostasis in a
mouse model of gliadin
–induced enteropathy.

D. A’Arienzo et al. 2011 [102]

Saccharomyces boulardi KK1
strain, hydrolysed the 28-kDa
gliadin fraction

30 days BALB/c mice –three generations fed with gluten free
diet to develop gluten sensitivity (G-), immunised
with 50 µg whole gliadin emulsified in Freund’s
adjuvant. The probiotic S. boullardi KK strain or
control were administered orally for seven days and
then fed gluten diet for 30 days. Oral administration
of microbes continued twice per week. Intestine
samples collected one day after the last dose.

The G+ mice developed villous
atrophy crypt hyperplasia,
and infiltration of T cells,
inflammation and over expression
of CD71. S. boulardi administration
improved enteropathy
development, decreased epithelial
cell expression of CD71 and
localized cytokine production.

Anew mouse model for
human CD based on
histopathological features
and common biomarkers.
S. boulardi a probiotic to
treat CeD by reversing
disease development.

Papista et al. 2012 [96]

Bifidobacterium longum
CECT 7347

Ten days from birth. Newborn rats fed gliadin alone or sensitized with
IFN-α and then fed gliadin.

In sensitized animals B. longum
administration increased NFκB
expression and IL-10 but reduced
TN- α expression, and CD4+ and
CD4+/Fox3+ cell populations and
increased CD8+ T cell populations,
contrary to the results without
probiotic treatment.

B. longum regulates
inflammatory cytokine
production and CD4+ T
cell mediated immune
response in an animal
model of gliadin induced
enteropathy.

Laparra et al. 2012 [103]

Lactobacillus rhamnosus GG
(L.GG) ATCC 53103

Ten days after birth, L.GG
was administered for
10 days.

Newborn Wistar rats divided into four groups, Ctrl
(without treatment); PTG (sensitized with 1000 U
IFN-γ intraperitoneally after birth and administered
gliadin for 10 days); L.GG treated with L.GG for 10
days); Co-administered (sensitized and L.GG
together); Pre-treated (sensitized, then pre-treated
with gliadin and then administered with L.GG for 10
days).After treatments the animals were sacrificed
and jejunal tissue samples were collected.

Probiotic strain L.GG increased
expression of genes related to tight
junctions TJ) and adherin junctions
(AJ), after gliadin induced damage
and symptoms of CeD.

Probiotic L.GG protects
rat intestinal mucosa
damage and can be
developed for the
therapeutic management
of gluten-related
disorders in humans.

Orlando et al. 2018 [100]
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Table 2. Probiotics influence Celiac Disease development and treatment in adults.

Probiotics Trial
Outcome Conclusions Reference

Composition Duration Country Participants/Design

Bifido bacterium natren life
start (NLS)

Three weeks—s2
week run-in, three
weeks treatment,
and follow up on
day 50

Argentina Placebo controlled, double
blind study;
22 participants; 12 participants
received the probiotic capsule,
10 placebo.

Effect of NLS on: (i) intestinal
permeability;
(ii) outcome of clinical
symptoms by GSRS
questionnaire;
(iii) modification of
immunologic indicators
influenced by gluten.

Administration of NLS to untreated CeD
patients does not modify protein
abnormalities but might improve symptoms
and produced some immunologic changes.

Participant pool was small, more trials
are needed.

Smecuol et al. 2013 [105]

A proprietary blend of 450
billion viable lyophilized
bacteria (9 strains) known as
the De Simone formulation,
previously VSL#3.

12 weeks study Australia 47 enrolments, final results
were for 42 participants;
equally divided in the active
group that received the
probiotics and 21 in the placebo
group.

Primary outcome: microbial
counts of and comparison
between baseline and end of
study of predominant,
pathogenic and
opportunistic bacteria.
Secondary efficacy outcomes:
urinary metabolomics and
faecal lactoferrin

No significant change in the gastrointestinal
microbial counts in CeD individuals with
persistent symptoms over 12 weeks period.
Future studies to increase the dosage of
VSL#3 and duration of treatment.

Harnett et al. 2016 [109]

Yogurt with probiotic from
PIA, Nova Petropolis-RS
(undetermined microbial
concentration)

30 days Brazil 17 healthy and 14 participants
with celiac disease

Faecal bifidobacteria
concentration after consuming
100 g of yogurt in the morning.

Faecal bifidobacteria was higher in healthy
patients compared to CeD patients.
Probiotic yogurt consumption increased the
bifidobacteria number in CeD patients, but
could not reach the concentration in
healthy participants.

Martinello et al. 2017 [113]

Bifidobacterium infantis Natren
Life Start super strain
(NLS-SS)

Six weeks Argentina 41 participants, in three groups:
(i) n = 24, CeD active, no
treatment;
(ii) n=12, CeD active with NLS;
(iii) n = 5; CeD 1 year GFD

Determine mucosal expression
of innate immune markers:
number of macrophages,
Pancth cells and α-defensin-5
expression by
immunohistochemistry in
duodenal biopsies.

Duodenal biopsies revealed that B. infantis
decreased all the three markers, macrophage
counts, Pancth cell counts and α-defensin-5
in CeD patients. However, the decrease in
macrophage counts was higher in gluten
free diets.
Future studies are needed to study methods
to obtain synergistic effect of GFD and
B.infantis supplementation.

Pinto-Sanchez et al. 2017 [110]

A product containing five
strains: Lactobacillus casei,
Lactobacillus plantarum,
Bifidobacterium animalis subsp.
Lacti, B. breve Bbr8 LMG
P-17501 and B. breve B110
LMG P-17500.

A six-week treatment
period, precede by
2-week run in period
followed by a 6 week
follow up phase for a
total of 14 weeks.

Italy Prospective, double- blind,
randomized placebo-controlled
parallel group study. 109
participants were included in
the study. 54 in the probiotic
and 55 in the placebo group.

Primary outcome to determine
if probiotics improve GI
symptoms as assessed by
Irritable Bowel syndrome
severity scoring system
(IBS-SSS).
Five secondary outcomes
including modification in gut
microbiota and metabolic
fecal profile.

Probiotics significantly decreased the
IBS-SSS and GSRS scores compared to the
placebo. Presumptivr lactic acidbacteria,
Staphylococus and Bifidobacterium counts
were also higher with probiotic treatment
compared to the placebo group. Six-week
Probiotic treatment was effective in
managing IBS-type symptoms. Probiotics in
CeD patients on strict GFD diet modified
the gut microbiota positively by increasing
the Bifidobacteria.

Francavilla et al. 2019 [112]
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Table 3. Probiotics influence Celiac Disease development and treatment in children.

Probiotics Trial
Outcome Conclusions Reference

Composition Duration Country Participants/Design

Bifidobacterium longum
CECT 7347

3 months Spain 33 participants in a double blind,
randomized,
placebo-controlled trial.

Baseline and post-intervention
outcomes included immune
phenotype of peripheral blood
cells, serum cytokine
concentration, fecal secretory
IgA content, anthropometric
parameters and intestinal
microbiota composition.

Probiotic treatment showed greater height
percentile, decreased peripheral CD3+ T
lymphocytes, and slightly reduced TNF-α
concentration. The number of Bacteroides
fragilis and content of secretory IgA in the
stool was also reduced by the probiotic
treatment. The small sample size is a
limitation of the study.

Olivares et al. 2014 [106]

Bifidobacterium breve BRO3
and B. breve B632

Three months Slovenia Double blind placebo-controlled
trial with 49 participants
randomized into two groups: First
group of 24 received the probiotic
and the second group of 25
received the placebo. 18 healthy
children were included as controls.

Outcomes: Serum production
of interleukin 10 (IL-10); tumor
necrosis factor alpha (TNF-α).

TNF-α levels decreased after 3 months of
probiotic treatment, however on follow up
after 3 months, the levels increased. The
IL-10 levels were below detection.

Klemenak et al. 2015 [107]

Bifidbacterium breve strains
B632 and BRO3

3 months Slovenia Double-blinded,
placebo-controlled study with 40
CeD patients and 16 healthy
children. The CeD patients were in
teo groups of 20 each, with one
receiving the probiotic and the
other placebo.

Determination of microbiome
after probiotic treatment.

Probiotic treatment increased the Firmicutes
and restored the physiological
Firmicute/Bacteriodetes ratio. Three-month
administration of probiotic can restore the
microbiota of CeD patients similar to
healthy children.

Quagliariello et al.
2016 [108]

Bifidbacterium breve strains
B632 and BRO3

3 months Slovenia Double-blinded,
placebo-controlled study with 40
CeD patients and 16 healthy
children. The CeD patients were in
teo groups of 20 each, with one
receiving the probiotic and the
other placebo.

To study the influence of
probiotics on the fecal
microbiome, Short chain fatty
acids (SCFA) and serum
TNF-α.

Verrucomicrobia, Paracubacteria and some yet
unknown phyla of bacteria and archaea
showed a strong correlation to CeD. These
new microbiota may have a role in CeD.

Primec et al. 2019 [111]

Lactobacillus reuteri;
Lactobacillus rhamnosus and
some unidentified

USA, Finland,
Germany and Sweden

Different time periods A prospective study using a cohort
of 6520 genetically susceptible
children. 1460 children were
reported probiotic use in the first
year of life.

To study the association
between the exposure of
probiotics via dietary
supplements or by infant
formula by the age 1 year to the
development of celiac disease
autoimmunity (CDA) or CeD.

Overall exposure of probiotics during the
first year of age was not associated with
CDA or CeD. However, intake of probiotics
via dietary supplements was associated
with increased risk of CDA.

Uusitalo et al. 2019 [114]
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Bifidobacterium breve BR03 and B63 given for three months reduced TNF production in children
on a GFD suggesting an inhibitory effect on the innate immune system. However, the effect was lost
three months after completing the study [107]. Using the same probiotic with a GFD in CeD adult
patients, Primec et al. also showed a decrease in TNF-α, increase in Fermicutes spp. and decrease in
Verrucomicrobia as well as new phyla [111]. TNF-α, an important mediator in activation of immune
system has a direct and indirect effect on mucosal damage in CeD. Decreased cytokine production by
probiotics along with GFD may have beneficial effect. These results need to be confirmed with larger
prospective studies using appropriate dose and mix of probiotics. To study the effects of multispecies
probiotics on irritable bowel syndrome (IBS-) type symptoms, Francavilla et al. enrolled 109 patients
symptomatic CeD patients on GFD. Six weeks of treatment with probiotic showed decrease in severity
of IBS-like symptoms compared to placebo treatment. This was associated with increase in anaerobes,
Bifidobacterium, Actinobacteria in fecal samples [112].

In addition to endopeptidase abilities, probiotics can also alter the host immune function.
Saccharomyces boulardii blocks toxin receptors, while Bifidobacterium and Lactobacillus strains secrete
short chain volatile fatty acids, hydrogen peroxide, and antibacterial peptides (Lactocidin, Acidophilin,
and Lactacin B). By reducing intraluminal pH, pathogenic bacteria were reduced. Furthermore,
promoting epithelial growth factor (EGF) enhanced barrier function [115]. Certain strains, such as
Lactbacilli, GG, B. lactis, and Saccharomyces boulardii regulate humoral modulation through expression
of TGF, IL-10, and IL-6, which subsequently promote B-cell maturation in favor of IgA secretion.

There is a paucity of studies in probiotics in humans, and thus difficult to determine their role in
the management of CeD [1,34,116–119]. In addition, the studies cannot conclusively demonstrate that
probiotics improved gut barrier function, likely due to short duration or inadequate dose or strain,
or their inability to modulate the gut microbiota. Further work is needed to better understand the role
of probiotics in CeD.

6. Summary

Probiotics can influence the CeD by three potential mechanisms. The first is to digest the gluten
proteins to non-immunogenic small polypeptides, eliminating and/or reducing the trigger for CeD,
thus preventing its onset. The second is to maintain the intestinal barrier by preventing the access of
immunogenic polypeptides to lamina propria. The third and most interesting is the role of probiotics
in the homeostasis of the gut microbiome and regulation of both the innate and adaptive immune
systems. Though alterations in the gut microbiota/dysbiosis are associated with the development
of CeD, its exact function in pathogenesis remains unclear. The limited number of human studies
show the positive effects of probiotics as a therapeutic modality in CeD, but more studies are needed
specifically to modulate the gut microbiome to alter the disease course. To-date probiotics are unable
to provide a durable modification of gut microbiota, and duodenal dysbiosis persisted. There are also
concerns regarding safety of probiotics, including documented bacteria, lack of regulation, and lack
of knowledge regarding interactions with the host microbiota [119]. There appears to be a role for
probiotics to modulate the gut microbiota in CeD, however, further randomized studies, especially
in humans, are needed to better understand its role in treating CeD. A basic understanding of the
biochemical/molecular mechanism by which probiotics influence CeD will help to precisely formulate
type and concentration of beneficial microbes to develop a safe therapeutic modality to alter the
CeD course.
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