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Real‑time complex light field 
generation through a multi‑core 
fiber with deep learning
Jiawei Sun1,2,6*, Jiachen Wu1,3,6*, Nektarios Koukourakis1,2, Liangcai Cao3, 
Robert Kuschmierz1,2 & Juergen Czarske1,2,4,5*

The generation of tailored complex light fields with multi-core fiber (MCF) lensless microendoscopes 
is widely used in biomedicine. However, the computer-generated holograms (CGHs) used for such 
applications are typically generated by iterative algorithms, which demand high computation effort, 
limiting advanced applications like fiber-optic cell manipulation. The random and discrete distribution 
of the fiber cores in an MCF induces strong spatial aliasing to the CGHs, hence, an approach that can 
rapidly generate tailored CGHs for MCFs is highly demanded. We demonstrate a novel deep neural 
network—CoreNet, providing accurate tailored CGHs generation for MCFs at a near video rate. The 
CoreNet is trained by unsupervised learning and speeds up the computation time by two magnitudes 
with high fidelity light field generation compared to the previously reported CGH algorithms for MCFs. 
Real-time generated tailored CGHs are on-the-fly loaded to the phase-only spatial light modulator 
(SLM) for near video-rate complex light fields generation through the MCF microendoscope. This 
paves the avenue for real-time cell rotation and several further applications that require real-time 
high-fidelity light delivery in biomedicine.

Computer-controlled phased arrays shape the output beam of waves in a flexible way, having wide applications 
in astronomy1, radar technology2, space communication3, quantum communication4, ultrasound technique5, 
and optical engineering6,7. As an attractive tool for optical phased arrays, spatial light modulators (SLMs) facili-
tate holographic displays with high resolution. Hence, computer-controlled precise optical wavefront shaping 
is realized with SLMs, enabling new applications in microscopy8, holographic optogenetic stimulation9, optical 
manipulations10, and imaging through biological tissues11–13.

In clinical diagnostics, endoscopes are widely implemented for in vivo imaging with low invasiveness and offer 
diameters of a few millimeters. Recently, MCFs are employed for lensless microendoscopic imaging for minimum 
invasiveness of a few hundred microns14–16. Each MCF contains thousands of single-mode cores, and each fiber 
core can function both as an imaging pixel for detection of light14,17 and a light-emitting unit in a phased array 
for wavefront shaping18. When imaging through the MCF-based microendoscope, the discrete distribution of 
cores and the core-to-core spacing of the MCF limits the image resolution. Image reconstruction from speckle 
correlations is proved as an efficient method to further improve the imaging resolution19,20. The limited field 
of view was a trade-off for the needle size of lensless microendoscopes until recent advances on computational 
image recovery have demonstrated high-resolution widefield imaging through the microendoscope15,16. On the 
other hand, employing the MCF lensless microendoscope as a remote phased array can generate a diffraction-
limited focus in the far-field of the distal application side of the microendoscope by displaying a Fresnel lens on 
the proximal facet18. This is implemented for two-photon endoscopic imaging, which is realized by scanning the 
focus using the phase-only SLM21. Similar approaches are also applied for multi-mode fiber (MMF) endoscopes 
with both amplitude and phase modulation, however, real-time generation of an arbitrary light field at the output 
is still challenging for MMFs 22–24.

Implementing an adaptive lens and Galvo mirror for rapid 3D-scanning can break through the low 
refreshing rate of the SLM, enabling video-rate 3D fluorescent imaging through the microendoscope25. The 
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Gerchberg-Saxton (GS) algorithm26 is commonly utilized for calculating the CGH for structured light field 
generation. However, the random and discrete distribution of fiber cores leads to a strong spatial sampling of 
the CGH when coupling into the MCF, and the number of fiber cores is much less than the pixel number of the 
phase-only SLM, inducing strong aliasing. This results in unrecognizable reconstructed light fields27, proving the 
GS algorithm cannot be directly implemented in hologram generation for randomly distributed phased arrays. 
Therefore, we previously proposed a tailored phase retrieval algorithm for holographic control of complex light 
field through the MCF named Core-GS27, enabling complex wavefront shaping through the MCF with high fidel-
ity. This is implemented in lab-on-a-chip optical manipulation of biological cells28 and can facilitate applications 
in holographic optogenetic stimulation29, micro-materials processing in hard-to-reach areas30, structured light 
generation for MCF amplifier31, and high-dimensional optical and quantum communication32. Due to the long 
computation time, the CGHs have to be generated in advance and then loaded to the SLM for dynamic light 
field generation. This limits applications such as adaptive tomographic optical manipulation10,33 and adaptive 
selective holographic photoactivation in optogenetics34, which needs rapid generation and refreshing of CGHs. 
Therefore, there is a great demand in biomedicine for real-time generation of tailored CGHs for MCF. Recently, 
deep neural networks have been used for reducing the computation time of CGHs35–39, however, all of these 
existing networks are designed for regularly distributed pixels and induce significant distortion when applied to 
discrete or randomly distributed phased-arrays23,27. Therefore, an approach that can generate tailored CGHs for 
MCFs or random phased arrays in real-time with high fidelity is not yet available.

In this paper, we propose a novel phase encoder deep neural network (CoreNet), which can generate CGHs 
tailored for MCFs in real-time. The discrete or random distribution map of the phased array can be loaded to the 
neural network as an input. Hence, CoreNet can generate tailored phase modulation holograms rapidly, enabling 
precise light-field control for a randomly distributed phased array. Specifically, for holographic display through a 
lensless microendoscope with 10,000 single-mode fiber cores, the experimentally measured fiber core distribution 
map is embedded into the neural network to generate tailored CGHs. Unlike supervised learning, which needs 
to label the holograms calculated by classical phase retrieval algorithms as the ground truth, CoreNet uses an 
autoencoder network architecture to encode the target intensity into the tailored phase modulation holograms 
with unsupervised training. The diffraction model is incorporated into the network for numerically propagat-
ing the light field between the phase modulation plane and the target intensity plane. This allows the network 
to search for the optimal phase modulation maps of the target image and learn the mapping from the target 
images to the phase modulation holograms. This end-to-end architecture of CoreNet gets rid of complicated 
iterative operations, generating the phased array rapidly. Near video-rate generation of the tailored CGHs for 
MCF-based complex wavefront shaping can thus be realized by the trained network with high fidelity, opening 
new perspectives for applications based on MCFs.

Results
When light field transmits through the MCF with an extremely large number of fiber cores, the intrinsic optical 
path differences (OPDs) between fiber cores induce strong phase distortion in the light field coupled out. To 
compensate for this, digital optical phase conjugation (DOPC)40,41 is employed. The phase differences between 
fiber cores are measured by off-axis digital holography28, and the conjugated phase differences are mapped on 
the MCF facet by the phase-only SLM to pre-compensate the OPDs. Then the MCF can act as a phased array to 
generate arbitrary light field distribution. Typically, to control the wavefront through the MCF, a tailored CGH 
generated by the Core-GS algorithm27 is loaded to the SLM additionally to the conjugated phase. Although the 
Core-GS algorithm can achieve good quality compared to the raw GS algorithm, the long iteration time still 
limits the applications.

We designed a phase encoder neural network, called CoreNet, to generate tailored holograms for high-speed 
complex wavefront shaping through MCF. The U-Net architecture has been proven to be effective in image 
processing tasks. Here, we modified the U-Net to a network with two inputs to collect more information on the 
target image (Fig. 1). Instead of feeding the raw image directly to the neural network, the target image firstly 
back propagates to the plane on the fiber facet at the distal application side to obtain the complex amplitude. The 
reason for that is learning the feature mapping at the same plane is easier than at different planes. Then the real 
and imaginary parts of the complex amplitude are extracted as the inputs of CoreNet. The downsampling blocks 
are duplicated for each input. The two downsampling paths join a bottleneck layer by a concatenation operator. 
Then the bottleneck layer is up-sampled to the resolution of the phase-only SLM by a series of upsampling blocks.

Each downsampling and upsampling block consists of two residual blocks as shown in Fig. 2. Each residual 
block is composed of two sets of batch normalization (BN), nonlinearity (ReLU), and a convolutional layer 
stacked one above the other. The strides of the first convolution and transposed convolution in the residual block 
are (2, 2) to realize the function of downsampling and upsampling.

At the end of U-Net, the values at the core position are extracted to convolve with circular masks which 
indicate the shape of fiber cores to form the tailored phase modulation map for the phased array. Then the fiber 
core map as amplitude combined with phased array pattern to form a complex field. Finally, the complex field 
propagates to the target plane to form the target intensity distribution. Here we adopted band-limited angular 
spectrum method42 to simulate the light propagation. Compared with the classical angular spectrum method, it 
has less numerical error for far-field propagation. The band-limited angular spectral transfer function is
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where �u and �v denote the sample interval in the frequency domain.
As an unsupervised learning method, the corresponding phased array of each input image does not need to 

be calculated in advance. By utilizing automatic differentiation, the loss can be propagated back to the encoder 
part, and the learnable parameters of the U-net can be updated during the training process. The training results 
are shown in Fig. 3. We use the EMNIST Balanced dataset which includes 131,600 characters for training43. 
Several custom letters and binary patterns make up the test set. Sixteen images and two images are randomly 
selected from the MNIST validation dataset and custom test dataset to show the network performance. The 
reconstructed results by the Core-GS algorithm are also presented for comparison. CoreNet can achieve better 
reconstruction quality and the computation time is only 0.2 s, which is much faster than the Core-GS algorithm 
that took 11 s on the same platform (see “Materials and methods”). The 2-D correlation coefficient is employed 
to characterize the fidelity of reconstructed images. Hence, for a normalized image X , the correlation coefficient 
between the reference image Y  is expressed as
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Figure 1.   Structure of the phase encoder deep neural network (CoreNet). The encoding part of CoreNet is a 
modified U-Net. The downsampling path of U-Net is split into two paths, and the inputs of the two paths are the 
real and imaginary parts of the field at the distal facet of the fiber bundle, which is obtained by back-propagation 
of the target field to the plane of the distal fiber facet. The core phase mapping and diffractive propagation are 
embedded in CoreNet to reconstruct the target field. Since the labeled data is the same as the input target field, 
CoreNet can achieve unsupervised learning.

Figure 2.   The principle of the downsampling and upsampling block. The numbers in parentheses indicate the 
strides of convolution layers and transposed convolution layers.
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where X  and Y  is the mean value of the reconstructed image and the reference image, n is the total number of 
pixels.

Employing CoreNet to generate holograms in real-time facilitates the rapid complex holographic display 
through the lensless microendoscope with 10,000 fiber cores. The working principle of the lensless microendo-
scope is shown in Fig. 4a. The holograms generated by CoreNet are loaded to the phase-only SLM in real-time 
and projected on the proximal fiber facet to generate tailored light fields at the distal far-field. The experimental 
setup is demonstrated in Fig. 4b, and the detailed description of the setup and calibration process can be found 
in “Materials and methods”. Previously, CGHs needed to be calculated and loaded to the SLM in advance to 
generate the dynamic light field. Due to the fast computational speed of CoreNet, it is possible to generate the 
CGHs in real-time for tailored dynamic light field generation through the MCF. As shown in Fig. 4c, a running 
man animation is reconstructed at the distal far-field of the MCF to demonstrate the rapid hologram generation 
capability of CoreNet (see Visualization 1). The corresponding modulation holograms are real-time generated by 
CoreNet and on-the-fly fed to the SLM, enabling real-time CGHs generation for the near-video-rate holographic 
display of tailored light field through the miniature lensless microendoscope.

Discussion
Comparisons of the light field generation in simulation employing CoreNet and the Core-GS are shown in Fig. 3a. 
Different from the Core-GS27, CoreNet provides optimal recovery of the target image without any blemishes. 
It can be noticed in Fig. 3b that the gradient of the phase value in the hologram generated by CoreNet is much 
smaller than the Core-GS, the smooth transition of the phase leads to homogeneous backgrounds in the recon-
structed images, increasing the signal-to-noise ratio.

We use four different splits from EMNIST to test the performance of the CoreNet, which is shown in Fig. 5. 
The EMNIST MNIST and EMNIST Digits dataset provide balanced handwritten digit datasets directly com-
patible with the original MNIST dataset. The EMNIST Letters dataset merges a balanced set of uppercase and 
lowercase letters into a single 26-class task. The EMNIST Balanced dataset contains a set of characters with an 
equal number of samples per class. CoreNet generates accurate CGHs with averaged fidelity over 0.85 for all 
types of datasets. The performance of CoreNet can be further improved by using other non-pixel-wise losses, 
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Figure 3.   Training and validation data for CoreNet. (a) The EMNIST dataset is employed to train CoreNet. The 
custom dataset containing letters and patterns is employed to test CoreNet, and the letter “MST” and a smiling 
face are shown to demonstrate the performance of the network. CC, 2-D image correlation coefficient between 
the numerically reconstructed image and the original target image. (b) The phase modulation map for the 
lensless microendoscope of "MST" generated by GS, Core-GS, and CoreNet.
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such as SSIM loss which could improve the structural similarity or perceptual loss which encourages natural 
and perceptually pleasing results.

Comparisons of the light field generation through a 10,000 core lensless microendoscope in experiments 
employing CoreNet and alternate techniques are shown in Fig. 6a. Normal GS algorithm26 generated holograms 
lead to a strong distorted light field, even though the phase distortion in the MCF is calibrated in situ. This is 
mainly due to the random distribution and the limited number of fiber cores, which induces significant spatial 
aliasing when the modulated light transmits through the MCF. The previously reported Core-GS algorithm solved 
this problem, providing high-quality complex light field generation through the MCF. However, the iterative 
process of the Core-GS requires high computational effort. Our novel CoreNet sped up the process by a factor of 
82, enabling real-time generation of holograms for rapid holographic display through the microendoscope. The 

Figure 4.   Real-time holographic display through a lensless microendoscope using CoreNet. (a) Schematic 
demonstrates the principle of controlled light field generation through a 50 cm long lensless microendoscope. 
(b) Sketch of the experimental setup. The Zoomed-in area demonstrates the controlled light field generation 
at the distal far-field. The phase hologram is generated by CoreNet and projected on the proximal facet of the 
microendoscope. HWP half-wave plate, PBS polarizing beam splitter cube, L1–L8 lenses, BS1-3 beamsplitter 
cube, QWP quarter-wave plate, SMF single-mode fiber, M mirrors, SLM spatial light modulator, ID iris 
diaphragm, PL polarizers, ND neutral density filters, CAM1-2 cameras, MO1-2 microscope objectives. (c) 
Video-rate tailored light field generation of a running man animation at 700 μm away from the distal fiber facet 
(see Supplementary Movie 1). The tailored holograms are real-time generated by CoreNet and loaded to the 
phase-only SLM on the fly. The scale bar indicates a length of 20 μm.

Figure 5.   Statistic evaluation of the fidelity by box plots for different types of CoreNet output images. The image 
correlation coefficients are calculated from the numerically reconstructed images and the original target images 
in over 1000 random tests.
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fidelity of the experimental light field generation through the MCF is characterized by employing the correlation 
coefficients between the experimental captured image and the original target images.

The image correlation coefficients, which are calculated between the generated light field in experiments and 
the target images, for the letter “MST” in Fig. 6a is 0.80 for Core-GS and 0.84 for CoreNet, and for the smiling 
face in Fig. 6b is 0.67 for Core-GS and 0.69 for CoreNet. Although strong phase distortion is induced by the 
relatively long length (50 cm) of the lensless microendoscope, the near-perfect in-situ calibration keeps the high 
fidelity of the light-field generation. Compared to the Core-GS algorithm, CoreNet offers light field generation 
with higher fidelity with significantly less computation time.

As an unsupervised learning approach, CoreNet provides high-quality phase retrieval for a randomly dis-
tributed phased array without labeling. Compared to the Core-GS which is an iterative algorithm, CoreNet 
significantly reduces the computation time to less than 0.14 s for the generation of one phase hologram, ena-
bling real-time light field generation (see Table 1). The computational speed can be further increased in a better 
hardware platform. Despite the much shorter calculation time, the generated light field from CoreNet has the 
highest fidelity in the three approaches (Fig. 6c).

One potential application of CoreNet is in optogenetics. Holographic controlled light enables selective stimu-
lation of target neurons individually with program-controlled shapes of the light field9,44, enabling precise control 
of the neuronal networks. The MCF endoscope with a micro-objective (external diameter of 2.6 mm) has been 
employed for selective photoactivation in a mouse brain with minor invasiveness34. However, the low SNR of 
the generated light field can lead to photoactivation of unwanted neurons, degrading the quality of the selective 
photoactivation. Holographic stimulation using CoreNet through the MCF can avoid this by generating tailored 
light fields with high fidelity, enabling in-vivo single-neuron activation. As shown in Fig. 7a, the invasiveness 
can be minimized to a few hundred microns using the lensless microendoscope for in-vivo selective holographic 
stimulation. Furthermore, to compensate for the vibration in a behaving mouse, the tailored light field also needs 
to be controlled adaptively, and CoreNet is the first reported approach that can adaptively control the tailored 
light field by generating the CGHs in real-time. Closed-loop control of the photoactivation using the lensless 
microendoscope is thus possible with CoreNet. Hence, the strong capability of rapidly generating high-quality 
tailored CGHs of CoreNet turns the lensless microendoscope into a powerful optogenetic probe for adaptive 
and selective photoactivation for in-vivo applications.

Fiber-based optical traps are now an important tool for investigating biological cell mechanics45–48. The small 
size and the high flexibility of optical fibers make them easy to be integrated into miniature lab-on-a-chip devices 
(Fig. 7b), facilitating high throughput measurements when combined with micro-fluid techniques. We previously 
reported the first MCF-based dual-beam trap, offering a very high degree of freedom for optical manipulation of 
biological cells28. However, the temporal resolution of optical manipulation is limited by the generation speed of 
the modulation holograms. Employing CoreNet can boost the generation speed of the CGHs for dynamic light 

Figure 6.   Comparison of GS, Core-GS, and CoreNet. (a) Experimental tailored light field generation of letters 
"MST" at 700 μm away from the distal fiber facet employing the CGHs generated by GS algorithm, Core-GS 
algorithm, and CoreNet. The scale bar indicates a length of 20 μm. (b) Experimental tailored light field 
generation of a smiling face under the same circumstance. (c) Fidelity and computational speed comparison of 
the three approaches. The fidelity is expressed by the averaged 2-D image correlation coefficients between the 
reconstructed light field and the target images. The frame rate is the averaged number of generated holograms 
per second to indicate the computational speed of the algorithm.

Table 1.   Comparison of hologram generation time.

Number of generated holograms Core-GS (s) CoreNet (s)

1 11.1 0.2

10 115.2 1.4

100 1170.1 13.8
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fields. Besides, the refractive index distribution in biological cells is inhomogeneous, leading to instability in opti-
cal traps. Adaptive tomographic optical trap10,33 solved the problem by utilizing tailored trapping beams which fit 
the refractive index distribution and the shape of cells, but it requires high-speed tailored hologram generation. 
Hence, it is now possible to implement the adaptive tomographic trap in MCF-based optical traps for real-time 
closed-loop control. This can significantly increase the stability of the optical trapping and manipulation.

Besides biomedical applications, the MCF is also one of the candidates for the next generation of fiber-optic 
communication cables. Employing MCFs broaden the bandwidth significantly with high-dimensional com-
munication channels. CoreNet offers the possibility to generate tailored light fields through the MCF in real-
time, paving the way for MCF-based high-dimensional fiber-optic communication4. Furthermore, CoreNet can 
have much wider applications beyond optical engineering. It can be employed for phase retrieval of any kinds 
of discrete or randomly distributed phased arrays, like phased array radar, ultrasonic phased arrays, opening 
new perspectives in astronomy, radar technologies, communication technologies, and ultrasonic technologies.

Materials and methods
Network training.  We use the negative Pearson correlation coefficient (NPCC) as the loss function, which 
is defined in Eq.  (5). The NPCC measures the linear correlation between two images instead of calculating 
pixel-wise error, which relaxes the constraint on the output image so that the network can converge faster to the 
optimal solution.

Network training and testing were performed on a workstation with AMD Ryzen 9 3950X CPU and 128 GB 
of RAM, using NVIDIA RTX A6000 GPU. The network is trained for 5 epochs using the Adam optimizer. The 
training images are preprocessed to sizes of 512 × 512 pixels and then padded with zeros to 1920 × 1080 pixels.

Experimental setup.  The experimental setup is illustrated in Fig. 4b. The diameter of the laser beam emit-
ted from a diode-pumped solid-state laser (Verdi 532 nm, Coherent Inc.) is expanded by a factor of 10 (L1, L2) 
to fully illuminate the phase-only SLM (PLUTO LCOS SLM, Holoeye Photonics). The CGH displayed on the 
SLM is combined with a blazed grating, a phase conjugation layer, and a phased array modulation layer. To get 
rid of the direct reflection from the surface of the SLM, the phase modulation hologram is diffracted to higher 
orders by the blazed grating and only the first diffraction order can pass through the iris diaphragm in the spatial 
filter system (L3, ID, L4). The filtered phase modulation hologram is projected on the proximal facet of a 50 cm 
long MCF (10,000 single-mode cores; FIGH-350S, Fujikura) through a microscope objective (MO1; 20X Plan 
Achromat Objective, 0.4 NA, Olympus).

Calibration of the intrinsic phase distortion in MCFs.  Before transforming the MCF-based microen-
doscope to a phased array, the phase distortion due to the OPD between the fiber cores needs to be compensated 
employing DOPC40,49. In our work, we implement the previously proposed two-stage calibration method25,50. 
The intrinsic OPDs between the fiber cores are measured and compensated in transmission geometry, and the 
bending induced and temporal phase distortion is further calibrated by the back-reflected guide star in situ. To 
be more specific, a blazed grating is displayed on the SLM to generate a plane wave illumination at the proxi-
mal facet of the MCF, the distorted light field at the distal facet is imaged on the distal camera (CAM2; uEye 

(5)LNPCC(X,Y) = −CC

Figure 7.   Application of the deep learning enhanced lensless microendoscope. (a) Sketch illustrates employing 
the lensless microendoscope for holographic photoactivation in mouse brain with minimum invasiveness. 
The tailored CGHs are generated on the fly by CoreNet. (b) Schematic demonstrates the MCF-based lab-on-a-
chip optical manipulation system. CoreNet boosted the generation process of the tailored CGHs for the MCF, 
providing more degrees of freedom for MCF-based optical manipulation.
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camera, IDS) through another microscope objective (MO2; 20X Plan Achromat Objective, 0.4 NA, Olympus). 
A reference beam (reference beam 1 in Fig. 4b) is split from the laser source and coupled into a single-mode 
fiber. The reference beam from the fiber collimator (L8; collimation package, Thorlabs) is slightly tilted for the 
digital off-axis holographic geometry51. The phase differences of fiber cores are reconstructed from the captured 
digital hologram on the distal camera28. The measured phase is then conjugated and affine transformed into the 
coordinate system of the SLM to pre-compensate the intrinsic phase distortion.

To calibrate the temporal and bending induced phase distortion in situ, a partial reflector can be mounted on 
the distal tip, and the further temporal and bending induced phase distortion is measured from the guide star 
hologram captured on the proximal camera (CAM1; uEye camera, IDS)50. The guide star is generated at the distal 
side by illuminating a single fiber core. The reflected light illuminates the distal facet and the distorted light field 
on the proximal facet is imaged on the proximal camera interfering with the second reference beam (reference 
beam 2 in Fig. 4b). Therefore, the phase distortion can be measured from the digital off-axis hologram captured 
on the proximal camera without distal access. The conjugated phase distortion is then added to the phase con-
jugation layer of the SLM to further in-situ compensate for the temporal and bending induced phase distortion.

Conclusion
We demonstrated a novel phase retrieval method based on a deep neural network (CoreNet), decreasing the 
computational time of the CGHs for MCFs by a factor of 82. This enables real-time dynamic control of the 
complex light field through the MCF lensless microendoscope. The phase distortion in the MCF is compensated 
in situ by DOPC, which transforms the MCF to a holographic controlled phased array. Employing CoreNet to 
generate the tailored holograms for complex wavefront shaping through the MCF provides high fidelity holo-
graphic reconstruction at the distal side of the MCF. Near video-rate holographic display of dynamic light field is 
realized through an MCF with on-the-fly generated CGHs. Our work paves the path for high-speed MCF-based 
applications such as microendoscopic imaging, in vivo adaptive optical manipulation, optogenetic stimulation, 
micro-materials processing, and optical communication.

Data availability
The training dataset EMNIST is publicly available43. The testing images and code are available at https://​github.​
com/​Jiawei-​sn/​CoreN​et.​git.
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