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a b s t r a c t 

In recent years a large number of encapsulin nanocompartment-encoding operons have been identified 

in bacterial and archaeal genomes. Encapsulin-encoding genes and operons from GC-rich Gram-positive 

bacteria, particularly of the phylum Actinobacteria, are often difficult to overexpress and purify in a soluble 

form using standard Escherichia coli expression systems . Here, we present a protocol to heterologously 

overexpress encapsulin nanocompartments and encapsulin-containing operons in Streptomyces coelicolor. 

Successful encapsulin production begins with the transfer of a Streptomyces expression plasmid, encoding the 

gene(s) of interest, via conjugation to the model actinobacterium S. coelicolor. After growing the conjugated S. 

coelicolor culture to the optimal optical density, protein production is induced by the addition of the inducer 

thiostrepton, followed by expression in liquid culture for 1–3 days. Cells are lysed and encapsulin proteins 

purified using ammonium sulfate precipitation and size exclusion chromatography. The method outlined in this 

protocol can be utilized to improve cargo loading and overall soluble expression of encapsulin systems when 

compared to expression in E. coli. 

• Clone an encapsulin-encoding gene or operon into a Streptomyces expression vector. 
• Transfer the Streptomyces expression vector to S. coelicolor via conjugation. 
• Heterologously express and purify empty or cargo-loaded encapsulins from S. coelicolor. 
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Specification table 

Subject area Biochemistry, Genetics and Molecular Biology 

More specific subject area Protein expression and purification 

Name of your method Heterologous Expression and Purification of Encapsulins in Streptomyces 

coelicolor 

Name and reference of original method N/A 

Resource availability Reagents and Equipment are listed in the Materials and Reagents section 

Method details 

Background 

Encapsulin nanocompartments are a diverse class of protein-based compartments found in bacteria 

and archaea [1] . To date, over 60 0 0 encapsulin-containing operons have been discovered in bacterial

and archaeal genomes via genome-mining searches [2 , 3] . Encapsulins form icosahedral protein shells

that self-assemble from HK97-fold protomers [1] . They are defined by their ability to specifically

encapsulate dedicated cargo proteins. Encapsulation is mediated by N- or C-terminal targeting 

peptides or domains present in all cargo proteins which directly interact with the encapsulin shell

during self-assembly [1 , 2 , 4] . Encapsulins can form T1 (60 subunits, 24 nm) [5–7] , T3 (180 subunits,

32 nm) [8 , 9] , and T4 (240 subunits, 42 nm) [10] shells and have been classified into four main

families based on sequence homology and genome neighborhood analysis [2] . Thousands of Family

2B and 3 encapsulins have been identified in operons with putative cargos associated with secondary

metabolism [2] . Expressing these complete operons can prove challenging in E. coli , as many of them

originate from GC-rich organisms – primarily of the phylum Actinobacteria. Additionally, homogenous 

cargo loading can be exceedingly difficult when using E. coli as the expression host [5] . To overcome

these challenges, we have developed a protocol to heterologously express and purify encapsulins and 

encapsulin-containing operons in Streptomyces coelicolor. While other Streptomyces species, such as 

Streptomyces lividans, have been used to heterologously express and purify proteins, we chose to focus

on S. coelicolor because it is one of the most well-documented species of Streptomyces – used both for

protein expression and heterologous natural product production – and has been used as a standard 

conjugation host in our laboratory. The methodology presented in this protocol can likely be easily

adapted to express and purify proteins from other commonly used Streptomyces species. In developing

this protocol, we found it particularly challenging to find coherent and integrated methodologies that 

begin with the cloning of expression plasmids and follow all the way through to Streptomyces protein

production and purification . In this protocol, we have included all steps necessary to clone, conjugate,

overexpress, and purify cargo-loaded encapsulin nanocompartments in Streptomyces coelicolor. This 

protocol will be useful for those seeking to heterologously express and purify soluble cargo-loaded 

encapsulins originating from high-GC actinobacterial genomes. 

Materials and reagents 

(1) ElectroMAX DH10B electrocompetent E. coli cells (Invitrogen, catalog number: 18290-015). 

(2) E. coli ET12567 (pUZ8002) cells (Life Science Market, catalog number: S0052). 

(3) Streptomyces violaceoruber (formerly Streptomyces coelicolor A3(2) (John Innes Center M145)) 

(ATCC, catalog number: BAA-471). 

(4) pGM1190 vector (Created by Muth [11] and available on Addgene, catalog number: 69994). 

(5) Monarch DNA gel extraction kit (New England Biolabs, catalog number: T1020S). 

(6) Phusion High Fidelity DNA Polymerase (Fisher Scientific, catalog number: F530S). 

(7) Gibson Assembly Master Mix (Fisher Scientific, catalog number: NC0260576). 

(8) Agarose (Fisher Scientific, catalog number: BP160-100). 

(9) 0.2 mL Strip tubes (Fisher Scientific, catalog number: AB-0264). 

(10) Electroporation cuvettes, 1 mm (Fisher Scientific, catalog number: FB101). 

(11) FastDigest NdeI restriction enzyme (ThermoFisher Scientific, catalog number: FD0583). 



M.P. Andreas and T.W. Giessen / MethodsX 9 (2022) 101787 3 

 

E

 

 

 

 

 

(12) FastDigest BamHI restriction enzyme (ThermoFisher Scientific, catalog number: FD0054). 

(13) 10 mM dNTP Mix (Invitrogen, catalog number 18427013). 

(14) SOC outgrowth medium (New England Biolabs, catalog number: B9020S). 

(15) LB agar, Miller powder (Fisher Scientific, catalog number: BP1425-2). 

(16) LB broth, Miller mix (Fisher Scientific, catalog number: BP97235). 

(17) ISP Medium No. 1 (Himedia, catalog number: M356-500G). 

(18) 2X-YT Mix (RPI, catalog number X-15640-10 0 0.0). 

(19) Mueller-Hinton Agar (Fluka Analytical, catalog number: 70191-500G). 

(20) d -(-)-Mannitol (Fisher Scientific, catalog number: AAA140300B). 

(21) Soya flour, 32 ounces (OlivNation Soy Flour purchased from Amazon). 

(22) Apramycin sulfate (Gold Biotechnology, catalog number: A-600-5). 

(23) Kanamycin sulfate (Fisher Scientific, catalog number: BP906-5). 

(24) Chloramphenicol (Fisher Scientific, BP-904-100). 

(25) Thiostrepton (Gold Biotechnology, catalog number: T-300-1). 

(26) Dimethyl sulfoxide (Sigma, catalog number: D8418-100mL). 

(27) Sodium hydroxide (Alfa Aesar, catalog number: 1823-500G). 

(28) d -sucrose (Fisher Scientific, catalog number: BP220-10). 

(29) Microbiology malt extract (Millipore Sigma, catalog number: 1.05391.0500). 

(30) Dextrose (Fisher Scientific, catalog number: D16-1). 

(31) Acid casein peptone (Fisher Scientific, catalog number: BP1424-500). 

(32) Sodium chloride (Fisher Scientific, catalog number: S271-500). 

(33) Tris base (EMD Millipore, catalog number: 648311-1KG). 

(34) 37% Hydrochloric acid (Acros Organic, catalog number: 42379-50 0 0). 

(35) SIGMA FAST protease inhibitor cocktail tablets, EDTA-Free (Sigma-Aldrich, catalog number:

S8830-20TAB). 

(36) Lysozyme, from hen egg white (Sigma-Aldrich, catalog number; 10837059001). 

(37) Magnesium chloride hexahydrate (Fisher Scientific, catalog number: M33-500). 

(38) Benzonase nuclease (Sigma-Aldrich, catalog number: E1014-25KU). 

(39) 14% SDS-PAGE gels (Invitrogen, catalog number: XP00145BOX). 

quipment 

(1) Floor centrifuge (Beckman Coulter Avanti JXN-26 with JA-12 rotor) or equivalent. 

(2) Tabletop centrifuge (Eppendorf 5425 with FA24 × 2 rotor) or equivalent. 

(3) Benchtop refrigerated centrifuge (Eppendorf 5810R with A-4-81 rotor) or equivalent. 

(4) Orbital shaker/incubator (Infors HT Multitron Standard orbital shaker/incubator) or equivalent. 

(5) Incubator with grate (VWR gravity convection incubator, catalog number: 89511-422) or

equivalent. 

(6) Electroporator (Bio-Rad MicroPulser Electroporator, catalog number: 1652100) or equivalent. 

(7) Pipettes (Gilson Pipetman L P2L, P20L, P200L, and P100L) or equivalent. 

(8) Pipette gun (Eppendorf Easypet 3, catalog number: 4430 0 0 0 018) or equivalent. 

(9) FPLC (Cytiva ÄKTA pure) or equivalent. 

(10) Superose 6 Increase 10/300 GL column (Cytiva, catalog number: 29-0915-96). 

(11) Laboratory rocker (Chemglass Life Sciences 3D shaker/rocker, catalog number: CLS-4029-100). 

(12) Agarose gel power supply (BioRad PowerPac Basic, catalog number: 1645050) or equivalent. 

(13) Horizontal electrophoresis chamber for agarose gels (Biorad Mini-Sub Cell GT, catalog number

1704487EDU) or equivalent. 

(14) 125 mL baffle flasks (Kimax, catalog number: 25630). 

(15) SDS-PAGE power supply (Invitrogen PowerEase 90 W power supply, catalog number: PS0090)

or equivalent. 

(16) SDS-PAGE gel chamber (Invitrogen Xcell SureLock TM Mini-Cell, catalog number: EI0 0 01) or

equivalent. 

(17) Sonicator equipped with 1/8 in probe (Fisherbrand 

TM Model 120 Sonic Dismembrator, catalog

number: FB120110) or equivalent. 
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(18) Gel imaging system (BioRad ChemiDoc TM Imaging System, catalog number:12003153) or 

equivalent. 

(19) Ultrapure water source (Milipore MilliQ Reference Water Purification System) or equivalent. 

Software 

(1) GE Life Sciences Unicorn 7.3 or equivalent. 

Recipes 

Modified YEME medium adapted from Kieser et al. [12] 

Yeast extract – 3 g. 

Acid casein peptone - 5 g. 

Oxoid malt extract - 3 g. 

Glucose - 10 g. 

Sucrose - 340 g (34% w/v final). 

Distilled water up to 10 0 0 mL. 

After autoclaving, add 5 mM MgCl 2. 

Add sterile glycine to 0.5% w/v. 

The YEME medium outlined in Kieser et al. calls for 5 grams of Difco Bacto-peptone. We have,

however, found acceptable growth and expression using acid casein peptone (Fisher sciences, 

BP1424-500) and routinely use it in place of Difco Bacto-peptone. If expression or growth issues

occur using our modified YEME recipe, try using Difco Bacto-peptone. 

Mannitol Soya flour medium (MS) adapted from Kieser et al. [12] 

Agar - 10 g. 

Mannitol - 10 g. 

Soya Flour - 10 g. 

Tap water - 500 mL. 

Mix the agar, mannitol, and soya flour in 2 L Erlenmeyer flask or baffle flask. Cover the lid with

foil and autoclave twice. Some flour may form clumps during the preparation despite thorough 

mixing. We used plates with small clumps and have not encountered any issues. 

50 mg/mL apramycin stock 

Apramycin sulfate 500 mg. 

Sterile water 10 mL. 

Add apramycin sulfate and water to sterile 15 mL conical tube. Vortex until fully suspended. Sterile

filter into a sterile 15 mL conical tube using a 0.2 μm filter. Make 500 μL aliquots in sterile 1.5

mL microcentrifuge tubes. Store at -20 °C for no longer than 1 year. 

25 mg/mL nalidixic acid stock in 0.3 M sodium hydroxide 

250 mg nalidixic acid. 

3 mL of 1 M sodium hydroxide. 

Fill to 10 mL with sterile water. 

Weigh out nalidixic acid into a sterile 15 mL conical tube. Add 3 mL of 1 M sodium hydroxide.

Fill to 10 mL with water. Vortex until fully solubilized. Sterile filter using a 0.2 μm filter into a

sterile 15 mL conical tube. Make 500 μL aliquots in sterile 1.5 mL microcentrifuge tubes. Store

at -20 °C for no longer than 1 year. 
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50 mg/mL thiostrepton stock 

500 mg thiostrepton. 

10 mL 100% DMSO. 

Add 500 mg thiostrepton to 15 mL conical tube. Fill to 10 mL with DMSO, vortexing in between.

ake 0.5 mL aliquots in sterile 1.5 mL microcentrifuge tubes. Store at -20 °C for no longer than a year.

SEC buffer – 150 mM sodium chloride, 20 mM Tris pH 7.5 

20 mL Tris pH 7.5. 

37.5 mL 4M sodium chloride. 

Fill to 1 L with MilliQ water. 

Add the Tris and sodium chloride to a 1 L graduated cylinder. Fill the cylinder to 1 L with MilliQ

ater with mixing. Filter and degas using 0.2 um vacuum filter. Store in 1 L bottle at 4 °C. 

Luria Broth (Miller) 

12.5 grams of granulated Luria broth. 

0.5 L of deionized water. 

Mix the granulated Luria broth and deionized water together in 1 L bottle. Autoclave the bottle

ith the lid loosely screwed on. Store at room temperature or at 4 °C. 

2X-YT 

1 capsule of 2X-YT mix. 

0.5 L of deionized water. 

Fill a 1 L bottle with 0.5 L of deionized water. Add 1 capsule of powdered 2X-YT mix to the bottle.

utoclave with the bottle lid loosely screwed on. Store at room temperature or at 4 °C. 

rocedure 

(A) Gibson cloning of the encapsulin gene or operon into the pGM1190 vector 

Section A outlines the steps required to PCR amplify and insert a single gene or a complete operon

nto the pGM1190 vector [11] which will be used as the S. coelicolor expression vector. 

(1) PCR amplify insert using forward primer with overhang 5’-GTCAGAGAAGGGAGCGGA CAT ATG …3’

and reverse primer with overhang 5 ′ -ATTCGAGCTCGGTACCCGGG GGATCC CTA …3’. The overhang

for the forward primer contains the start methionine, while the overhang for the reverse

primer contains the stop codon, both shown in bold. These primers are designed to anneal

to a pGM1190 vector that has been cut with NdeI and BamHI restriction enzymes during

Gibson cloning, while also maintaining the NdeI/BamHI sites to directly restriction clone into

the pGM1190 vector if necessary. The NdeI cut site is underlined in the forward primer and

the BamHI cut site is underlined in the reverse primer. Maintaining the NdeI/BamHI sites also

allows for plasmid screening by restriction digest. 

(a) Note: PCR amplification from GC-rich templates such as Streptomyces genomic DNA can be

challenging. We have found that the addition of 2–6% DMSO or use of the GC Buffer provided

with Phusion High Fidelity DNA Polymerase kit can improve PCR efficiency. Additionally,

annealing temperatures between 68 and 72 °C have been found to be optimal. We have

also seen higher rates of success using genomic DNA that has been partially fragmented

via several freeze-thaw cycles. In some instances, we have also had improved success using

the Q5 High-Fidelity DNA Polymerase kit (NEB, catalog number: M0491S) with the provided

buffer for GC-rich targets. 

(2) Cut pGM1190 vector (2 μg) with BamHI and NdeI restriction enzymes using manufacturer’s

recommended protocol. 
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(a) Note: 2 μg of pGM1190 vector should be sufficient for performing at least five Gibson

assembly reactions in the later steps and compensate for low yields that commonly occur 

when purifying DNA by agarose gel extraction. 

(3) Run the digested pGM1190 vector from Step A.2. and PCR-amplified insert from Step A.1. over

1% agarose gel at 125 V for approximately 20–25 min, or until dye front reaches the end of the

agarose gel. 

(4) Extract and purify DNA from Step 3 using NEB Monarch DNA gel extraction kit according to the

manufacturer’s recommended protocol. 

(5) Gibson assemble the insert and vector using 2X Gibson Master Mix according to the 

manufacturer’s protocol. Our standard protocol is to prepare the mix with a 3:1 molar ratio

of insert to template and incubate at 50 °C for 15 min. Longer incubation times may be used

when multiple fragments are being assembled in the same reaction. 

(6) Transform electrocompetent E. coli DH10B with 1 μL of the Gibson-assembled vector by 

electroporation using a 1 mm gap electroporation cuvette and 1.8 keV. 

(7) Resuspend the electroporated cells in 300 μL of SOC outgrowth media and pipette into a sterile

1.5 mL microcentrifuge tube. Shake the tubes at 200 rpm and 37 °C for 45 min. 

(8) Plate 100 μL of the transformants on LB-agar plates containing 50 μg/mL apramycin. Incubate 

the plates for 18 h at 37 °C. 

(a) Note: It may be useful to also plate 100 μL of a 1:10 dilution as competency can vary among

batches and suppliers. 

(9) Screen colonies for insert by colony PCR or by restriction digest. 

(10) Pick 2–4 colonies and prepare overnight cultures in 5 mL LB containing 50 μg/mL apramycin. 

(11) Purify plasmids from the overnight growths using Qiagen miniprep plasmid extraction kit 

following the manufacturer’s protocols. 

(12) Sequence the plasmids by Sanger sequencing. 

(13) After the plasmid sequence has been verified by Sanger sequencing, transform E. coli ET12567 

(pUZ8002) chemically competent cells with the assembled plasmid by adding at least 50 ng of

plasmid to a 40 μL aliquot of chemically competent ET12567 (pUZ8002) cells on ice. ET12567

is a methylation-deficient strain carrying the tra -containing plasmid pUZ8002 to optimize 

conjugation efficiency to Streptomyces hosts. Heat shock the cells in a 37 °C water bath for 90 s,

then put on ice for 3 min. Add 300 μL of SOC outgrowth media and shake the transformed

cells at 37 °C for 45 min at 200 rpm. Plate 50–100 μL of the transformed cells on LB-agar

plates containing 50 μg/mL apramycin, 30 μg/mL chloramphenicol, and 50 μg/mL kanamycin. 

Incubate the plates overnight at 37 °C. Colony-containing plates can be stored at 4 °C for 1 month

if necessary. 

(B) Preparing the Streptomyces coelicolor spore stock for conjugation 

Section B addresses handling the S. coelicolor stock and creating a spore stock to be used for

conjugation with E. coli ET12567 (pUZ8002). The steps outlined in Sections B and C very closely follow

the protocols suggested by Tong et. al. [13] and Kieser et. al. [12] . All steps require the use of sterile

media, containers, and pipette tips. It is critical that the S. coelicolor stocks do not get contaminated

during handling. Fig. 1 A illustrates the steps required to prepare a spore stock for conjugation as

presented in Section B. 

(1) In a laminar hood, resuspend the desiccated S. coelicolor stock from ATCC in 1 mL ISP medium

#1. Pipette 100 μL of resuspended stock into a sterile centrifuge tube and prepare 1:10, 1:100,

1:10 0 0, and 1:10,0 0 0 serial dilutions in ISP medium #1. Plate 100 μL of each serial dilution on

fresh MS-agar plates, taking care to maintain proper sterile technique. 

(a) Note: if a laminar hood is unavailable, Step B.1. and all subsequent steps that require handling

Streptomyces during conjugation can be performed close to an active Bunsen burner on a 

benchtop surface. 

(2) Take 500 μL of the remaining resuspended stock and add 500 μL of sterile 50% glycerol. Mix,

and store at -80 °C as a stock for future use. 

(a) Note: Steps B.1. and B.2. assume the reader does not already have a viable Streptomyces 

coelicolor glycerol stock and is starting from the desiccated cells shipped from ATCC. If the
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Fig. 1. Flowchart for transferring plasmids into S. coelicolor by conjugation. (A) Flowchart for preparing S. coelicolor spore stocks 

ready for conjugation according to Section B. (B) Flowchart for preparing E. coli ET12567 (pUZ8002) cells according to Section 

C. (C) Flowchart for conjugating plasmids into S. coelicolor as in Section C. 

 

 

 

 

 

 

 

 

reader already has a pre-existing glycerol stock, then scrape a small amount of the glycerol

stock using a sterile pipette tip or sterile toothpick, resuspend in 200 μL of 2X-YT media, and

plate on MS-agar plates using dilutions as in B.1. 

(3) Store plates inverted at 30 °C for 2–5 days until plates are rich with visible spores. Refer to

Fig. 2 A for an example of a plate dense with spores. 

(a) Note: Once sporulated, plates can be stored at 4 °C for 1-2 months. However, it is best practice

to use fresh spores for conjugation. 

(4) When ready to prepare a spore stock for conjugation, pipette 10 mL of 2X-YT onto the plate.

Refer to Fig. 1 A for a visual workflow of Steps B.4. to B.10. 

(5) Use a sterile cotton swab to gently remove the spores from the surface of the plate. Be careful

not to dig into the MS-agar. 

(6) After the spores are completely resuspended, pipette them into a sterile 15 mL conical tube and

vortex vigorously to break apart spore chains. 

(7) Pour over a sterile syringe containing a sterile cotton plug. Collect the flowthrough in a sterile

conical tube. 
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Fig. 2. Images of plates for a successful conjugation. (A) Lawn of spores as should be expected in Step B.1. (B) A typical plate 

after an overnight incubation prior to antibiotic overlay as in Step C.9. (C) A plate containing S. coelicolor conjugates after 5 

days after adding antibiotics as in Step C.11. (D) A succesful streak of 4 spore colonies onto MS-agar containing apramycin and 

nalidixic acid as in Step C.14. 

 

 

 

 

 

 

 

 

 

 

 

 

(8) Centrifuge the tube for 10 min at 3800 x g at 4 °C to pellet spores. 

(9) Carefully discard the clarified supernatant. 

(10) Resuspend the spore pellet in 2 mL 2X-YT. This spore stock can be used for downstream

conjugations and can be stored in the refrigerator for up to 2 weeks. 

a. Note: The spore stock at this stage can also be stored in 20% glycerol at -80 °C instead of 2X-

YT. Spores from the 20% glycerol stock can also be used in the subsequent conjugation steps

in Section C, however, we have observed significantly lower conjugation efficiencies from the 

20% glycerol stocks. If a glycerol stock is used for conjugation, we recommend centrifuging the

thawed glycerol stock for 10 min at 3800 x g to pellet the spores, then resuspend the spores in

2X-YT to be used in Section C. 

(C) Conjugation of Streptomyces coelicolor 

Section C provides the necessary steps to transfer the modified pGM1190 vector into S. coelicolor

via conjugation with E. coli ET12567 (pUZ8002) cells. Steps C.1. to C.6. are illustrated in Fig. 1 B . Steps

C.7. to C.13. are illustrated in Fig. 1 C . 

(1) The day before the conjugation, prepare an overnight culture of 20 mL LB containing 50 μg/mL

apramycin, 30 μg/mL chloramphenicol, and 50 μg/mL kanamycin. Inoculate the 20 mL LB 

overnight culture with a colony of E. coli ET12567 (pUZ8002) containing the desired plasmid.

Grow overnight with shaking at 37 °C. 

(2) The next day, centrifuge the E. coli ET12567(pUZ8002) cells for 10 min at 3800 x g at 4 °C. 

(3) Pipette 200 μL of the prepared spore stock from Step B.10. into a sterile microcentrifuge tube

and incubate at 50 °C for 10 min to activate the spores. After 10 min, the tube containing the

spores can be stored at room temperature to briefly cool prior to conjugation. 

(4) Dispose of the supernatant from Step C.2., resuspend the E. coli ET12567 (pUZ8002) cell pellet

in 20 mL LB, and centrifuge again for 10 min at 3800 x g at 4 °C. 
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Fig. 3. Flowchart for encapsulin expression in S. coelicolor . Outline of the steps required to produce proteins in S. coelicolor as 

presented in Section D. 
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(5) Repeat Step C.4. 

(6) After the E. coli ET12567 (pUZ8002) cells have been washed twice with LB, resuspend the final

cell pellet in 2 mL LB, and store the tube containing the cells on ice. 

(7) Mix 500 μL of the E. coli ET12567 (pUZ8002) suspension with 200 μL of the activated S.

coelicolor spores in a sterile tube. 

(8) Pipette 200 μL, 100 μL, and 50 μL of the conjugation mix on separate MS-Agar plates

containing 10 mM MgCl 2 . Incubate the plates at 30 °C for 18 h. See Fig. 2 B for an example

of a plate to be overlaid after an overnight incubation. 

(9) The following day prepare a solution containing 1 mg/mL nalidixic acid (from a stock in 300

mM NaOH) and 1 mg/mL apramycin in sterile water. Prepare 1 mL of this mixture for each

plate to be overlayed. 

(10) Pipette 1 mL of the antibiotic overlay mixture to each plate. Spread the antibiotic over the plate

by gently rocking. A spreader may be used to help spread the overlay, but it is not necessary

and must be used very gently. 

(11) Incubate the plates at 30 °C for 3–5 days until spores are visible. See Fig. 2 C for an example of

a plate with visible spores from a successful conjugation. 

(12) Using sterile pipette tips or toothpicks, pick 4 spore colonies from Step C.11. and streak the

spore colonies onto an MS-agar plate containing 50 μg/mL apramycin and 25 μg/mL nalidixic

acid. 

a Note: This step helps to enrich the S. coelicolor and further screen against S. coelicolor cells

that do not contain the desired plasmid. 

(13) Incubate the struck plate at 30 °C for 3–5 days until spores are visible. See Fig. 2 C for an example

of a well-struck plate with all positive conjugates. 

(D) Small-scale expression in Streptomyces coelicolor 

Section D provides the necessary steps for expressing an encapsulin or encapsulin-containing

peron that has been inserted in the pGM1190 vector. The steps for Section D are illustrated in Fig. 3 .

(1) Prepare a sterile 125 mL baffled flask by adding 3–6 mm glass beads and autoclaving on dry

cycle. 

(2) Prepare 500 mL YEME media stock. 

(3) Add 25 mL YEME to autoclaved 125 mL baffle flask. 

(4) Add 25 μL of 50 mg/mL apramycin to the flask. 

(5) Using a pipette tip, scrape off approximately ¼ of the spores from a single struck colony in Step

C.13. Use this to inoculate the YEME media. 

(6) Shake at 30 °C for ca. 72 h, or until O.D. 600 reaches approximately 0.4–0.8. The culture may

start to appear red due to production of secondary metabolites. 

(7) When the O.D. 600 reaches 0.4–0.8, induce protein expression by adding 10 μL of 50 mg/mL

thiostrepton in DMSO to bring the thiostrepton concentration to 20 μg/mL. 

a Note: The amount of thiostrepton can be modified to modulate expression levels if needed.

Refer to Fig. S1 in the Further Notes section for the effect of different thiostrepton

concentrations on overall expression levels. 
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Fig. 4. Outline of encapsulin purification from S. coelicolor . Steps required to purify an overexpressed encapsulin from S. 

coelicolor according to Section E. 

 

 

 

 

 

 

 

 

 

 

 

 

(8) Express the cells with shaking at 30 °C for 24–72 h. The media will often appear dark red or

dark blue due to the production of secondary metabolites. 

(9) After cells have been expressed for the desired amount of time, centrifuge cells for 10 min at

80 0 0 x g. Discard the supernatant, and store cell pellet at -20 °C. For longer term storage, store

cell pellet at -80 °C. 

(E) Protein purification from Streptomyces coelicolor 

Section E outlines the steps required to purify overexpressed encapsulins from S. coelicolor . The

steps for Section E are illustrated in Fig. 4 . This method is suitable for purifying encapsulins from 1

and 2 grams of frozen S. coelicolor cell pellets. 

(1) Prepare 1 L of lysis buffer containing 150 mM NaCl, 20 mM Tris pH 7.5, 2 mM MgCl 2 . 

(2) Weigh the frozen cell pellet from Step D.9. Add cold lysis buffer at a ratio of 5 mL / 1 gram of

cell pellet. Keep the lysate on ice as much as possible for the remainder of the purification. 

(3) Add 1 mg/mL of lysozyme to the lysis buffer. 

(4) Add 1 μL of Benzonase nuclease to the lysis buffer. 

(5) Add SIGMA FAST protease inhibitor cocktail. For small scale purifications, it may be helpful to

prepare a 10X concentrated stock of SIGMA FAST protease inhibitor cocktail in lysis buffer and

store at -80 °C until use. 

(6) Sonicate the cell pellet using a 1/8-inch diameter tip with the following parameters: 80% power

(18 watts), 10 s on, 20 s off, 3 min total sonication time. Keep the tube containing the lysate

on ice the entire time. 

(7) Centrifuge the cell lysate for 10 min, 20,0 0 0 x g at 4 °C in order to remove cell debris. 

(8) Carefully collect supernatant into a 15 mL conical tube and place at 4 °C for 30 min to improve

Benzonase digestion of contaminating nucleic acids. 

(a) Note: If nucleic acid contamination is not a concern, Step E.8. is not necessary. 

(9) Add ammonium sulfate to the lysate to 50% saturation. For 1 mL of lysate, add 314 mg of

ammonium sulfate. This can be scaled according to the volume of the lysate. 

(a) Note: Ammonium sulfate at 50% saturation is a general recommendation for encapsulins. 

However, the amount of ammonium sulfate added may have to be adjusted depending on 

the surface charge distribution of the encapsulin protein being purified. 
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(10) Gently rock at 4 °C for at least 30 min to precipitate protein. 

(a) Note: Longer incubations in ammonium sulfate can often increase yield. 

(11) Centrifuge sample for 10 min at 10,0 0 0 x g, 4 °C to precipitate the protein sample. 

(12) Resuspend the protein pellet immediately in 10 mL of 150 mM NaCl, 20 mM Tris pH 7.5, 2 mM

MgCl 2 and concentrate to at least 0.5 mL in a 100 kDa cutoff Amicon concentrator. This step

helps to reduce the concentration of ammonium sulfate in the protein sample and can prevent

downstream precipitation of protein. Additionally, removing ammonium sulfate can improve the

activity of Benzonase. 

(13) Add 0.5 μL of Benzonase nuclease to the sample. Let the protein sample incubate at 4 °C for

15–30 min. 

(14) Centrifuge the protein sample for 10 min, 10,0 0 0 x g, 4 °C. There will likely be a deep red pellet

consisting mostly of insoluble material. The supernatant may also appear red. 

(15) Run the clarified supernatant over a Superose 6 Increase 10/300 GL column pre-equilibrated in

150 mM NaCl, 20 mM Tris pH 7.5 at a flow rate of 0.5 mL/min and collect 1 mL fractions. T1

encapsulins typically elute between 10 and 13 mL. See Fig. 5 A for a typical elution profile when

running on a Superose 6 Increase 10/300 GL column. 

(16) Verify the purity of encapsulin-containing fractions by running the protein-containing fractions

on an SDS-PAGE gel. See Fig. 5 B for an example SDS-PAGE gel from an encapsulin purification. 

(17) Store the protein sample at 4 °C. 

(18) The protein sample should be clean enough after this step for analysis by negative stain

transmission electron microscopy (TEM) and even cryo-EM. See Fig. 5 C for an example

negative stain TEM micrograph of encapsulins according to the steps provided in Section E.

If higher purity is required, it may be necessary to further purify the protein by ion exchange

chromatography. 

ethod validation and further notes 

ffect of thiostrepton on expression levels 

We have observed relatively consistent expression levels between 5 and 20 μg/mL thiostrepton.

ig. S1 illustrates the different levels of expression of encapsulin and cargo protein when induced at

ifferent concentrations of thiostrepton at different time points. We chose 20 μg/mL thiostrepton for

2 h for our protocol due to the reduced background and increased mass of cell pellet compared to

4 h of induction. 

. coelicolor expression improves cargo loading and solubility 

While yields can vary depending on the protein being expressed, we have found the protocol

resented here to provide a more homogenous sample with significantly improved cargo-loading and

olubility compared with E. coli expression. To demonstrate this, we initially co-expressed a Family 2B

ncapsulin and its cargo protein from S. griseus in E. coli and observed that only 34% of encapsulins

ontained apparent cargo by 2D class averages of extracted particles from a cryo-EM dataset as shown

n Fig. S2A and S2C . When the same proteins were expressed in S. coelicolor , we observed cargo in

lmost 96% of the particles from based on a cryo-EM dataset as shown in Fig. S2B and S2C . 

We further expressed the same Family 2B encapsulin without cargo in both S. coelicolor and

. coli and found that the S. coelicolor overexpression dramatically improved the solubility of the

ncapsulin compared to expression in E. coli , as seen in Fig. S2D . The protein purified from S. coelicolor

dditionally had improved purity over protein purified from E. coli following the same purification

rotocol. 
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Fig. 5. Successful purification of an encapsulin from S. coelicolor . (A) Size exclusion chromatography (Superose 6 Increase 

10/300 GL) of an encapsulin (Q54255) and its cargo protein (A0A2 × 2LWM5) according to Section E. T1 encapsulin samples 

generally elute between 10 and 13 mL. Enc: encapsulin. (B) SDS-PAGE gel of the encapsulin sample purified in panel A. Enc 

and the cargo protein bands were unambiguously identified via tryptic digest and mass spectrometry identification. The bands 

around the 26 and 34 kDa marker bands represent the following often co-purifying ribosomal proteins as identified via tryptic 

digest and mass spectrometry: TsnR family 23S rRNA methyltransferase, 29 kDa (A0A6M9XPU2), 30S ribosomal protein S3, 

30 kDa (Q9L0D4), 30S ribosomal protein S4, 24 kDa (Q9KXP5). The encapsulin protein is most enriched in fractions 10–12 

and is less enriched in fraction 13. MW: molecular weight marker, (NH 4 ) 2 SO 4 : ammonium sulfate pellet. (C) Negative stain 

TEM micrograph of fraction 10 from panels A and B. The micrograph was collected using an FEI Morgagni 100 kV electron 

microscope. The sample concentration: 0.1 mg/mL, stain: 0.2% uranyl formate, grid: freshly glow-discharged formvar-reinforced 

carbon grid (EMS, FCF200-AU-EC). 
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