ARTICLE B v

https://doi.org/10.1038/541467-021-23415-2 OPEN

Masked graph modeling for molecule generation

Omar Mahmood® ', Elman Mansimov?, Richard Bonneau® 3 & Kyunghyun Cho@® 2%

De novo, in-silico design of molecules is a challenging problem with applications in drug
discovery and material design. We introduce a masked graph model, which learns a dis-
tribution over graphs by capturing conditional distributions over unobserved nodes (atoms)
and edges (bonds) given observed ones. We train and then sample from our model by
iteratively masking and replacing different parts of initialized graphs. We evaluate our
approach on the QM9 and ChEMBL datasets using the GuacaMol distribution-learning
benchmark. We find that validity, KL-divergence and Fréchet ChemNet Distance scores are
anti-correlated with novelty, and that we can trade off between these metrics more effec-
tively than existing models. On distributional metrics, our model outperforms previously
proposed graph-based approaches and is competitive with SMILES-based approaches.
Finally, we show our model generates molecules with desired values of specified properties
while maintaining physiochemical similarity to the training distribution.

TCenter for Data Science, New York University, New York, NY, USA. 2 Department of Computer Science, Courant Institute of Mathematical Sciences, New
York, NY, USA. 3 Center for Genomics and Systems Biology, New York University, New York, NY, USA. ®email: kyunghyun.cho@nyu.edu

NATURE COMMUNICATIONS | (2021)12:3156 | https://doi.org/10.1038/541467-021-23415-2 | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-23415-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-23415-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-23415-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-23415-2&domain=pdf
http://orcid.org/0000-0002-4437-5416
http://orcid.org/0000-0002-4437-5416
http://orcid.org/0000-0002-4437-5416
http://orcid.org/0000-0002-4437-5416
http://orcid.org/0000-0002-4437-5416
http://orcid.org/0000-0003-4354-7906
http://orcid.org/0000-0003-4354-7906
http://orcid.org/0000-0003-4354-7906
http://orcid.org/0000-0003-4354-7906
http://orcid.org/0000-0003-4354-7906
http://orcid.org/0000-0003-1669-3211
http://orcid.org/0000-0003-1669-3211
http://orcid.org/0000-0003-1669-3211
http://orcid.org/0000-0003-1669-3211
http://orcid.org/0000-0003-1669-3211
mailto:kyunghyun.cho@nyu.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

he design of de novo molecules in-silico with desired prop-

erties is an essential part of drug discovery and materials

design but remains a challenging problem due to the very
large combinatorial space of all possible synthesizable molecules!.
Recently, various deep generative models for the task of molecular
graph generation have been proposed, including: neural auto-
regressive models>3, variational ~autoencoders*, adversarial
autoencoders®, and generative adversarial networks”:S.

A unifying theme behind these approaches is that they model
the underlying distribution p*(G) of molecular graphs G. Once
the underlying distribution is captured, new molecular graphs are
sampled accordingly. As we do not have access to this underlying
distribution, it is typical to explicitly model p*(G) by a dis-
tribution pg(G). This is done using a function fy so that pg(G) =
fo(G). The parameters 0 are then learned by minimizing the KL-
divergence KL(p*||pg) between the true distribution and the
parameterized distribution. Since we do not have access to p*(G),
KL(p*||pe) is approximated using a training set D= (G, G, ...,
G) which consists of samples from p*. Once the model has been
trained on this distribution, it is used to carry out generation.

Each of these approaches makes unique assumptions about
the underlying probabilistic structure of a molecular graph.
Autoregressive models?39-12 specify an ordering of atoms and
bonds in advance to model the graph. They decompose the
distribution p(G) as a product of temporal conditional dis-
tributions p(g;|G.;), where g; is the vertex or edge to be added to
G at time ¢ and G, are the vertices and edges that have been
added in previous steps. Generation from an autoregressive
model is often done sequentially by ancestral sampling.
Defining such a distribution requires fixing an ordering of the
nodes and vertices of a graph in advance. Although directed
acyclic graphs have canonical orderings based on breadth-first
search (BFS) and depth-first search (DFS), graphs can take a
variety of valid orderings. The choice of ordering is largely
arbitrary, and it is hard to predict how a particular choice of
ordering will impact the learning process!3.

Latent variable models such as variational autoencoders and
adversarial autoencoders assume the existence of unobserved
(latent) variables Z={z),z,, ...,z that aim to capture depen-
dencies among the vertices V and edges E of a graph G. Unlike an
autoregressive model, a latent variable model does not necessarily
require a predefined ordering of the graph!4. The generation
process consists of first sampling latent variables according to
their prior distributions, followed by sampling vertices and edges
conditioned on these latent variable samples. However, learning
the parameters 6 of a latent variable model is more challenging
than learning the parameters of an autoregressive model. It
requires marginalizing latent variables to compute the marginal
probability of a graph, i.e., p(G) = [,p(G|Z)p(Z)dZ, which is often
intractable. Recent approaches have focused on deriving a tract-
able lower-bound to the marginal probability by introducing an
approximate posterior distribution g(Z) and maximizing this
lowerbound instead*=®. Unlike variational autoencoders, gen-
erative adversarial networks (GAN) do not use KL-divergence to
measure the discrepancy between the model distribution and data
distribution and instead estimate the divergence as a part of
learning.

In addition to using a specific factorization, each model uses a
specific representation of molecules; two such representations are
string-based and graph-based. The ability of a language model to
model molecules is limited by the string representation used!®.
Directly modeling molecules as graphs bypasses the need to find
better ways of serializing molecules as strings. It also allows for
the use of graph-specific features such as distances between
atoms, which are not readily encoded as strings. Developing
datasets and benchmarks that incorporate these features would

enable more informative comparisons between models that use
different molecular representations.

Existing graph-based generative models of molecules attempt
to directly model the joint distribution. Some of these models
follow the autoregressive framework earlier described. Li et al.1®
proposed a deep generative model of graphs that predicts a
sequence of transformation operations to generate a graph. You
et al.l” proposed an RNN-based autoregressive generative model
that generates components of a graph in breadth-first search
(BES) ordering. To speed up the autoregressive graph generation
and improve scalability, Liao et al.!® extended autoregressive
models of graphs by adding blockwise parallel generation. Dai
et al.!% proposed an autoregressive generative model of graphs
that utilizes sparsity to avoid generating the full adjacency matrix
and generates novel graphs in log-linear time complexity. Grover
et al.20 proposed a VAE-based iterative generative model for
small graphs. They restrict themselves to modeling only the graph
structure, not a full graph including node and edge features for
molecule generation. Liu et al.2! proposed a graph neural network
model based on normalizing flows for memory-efficient predic-
tion and generation. Mercado et al.2? proposed a graph neural
network-based generative model that learns functions corre-
sponding to whether to add a node to a graph, connect two
existing nodes or terminate generation. These learned functions
are then used to generate de-novo graphs. The approach requires
selecting an ordering of graph components, which the authors
choose to be the BFS ordering.

There are also latent variable methods for graph generation.
For example, Simonovsky and Komodakis?? proposed a graph
VAE to generate graph representations of molecules. Jin et al.?*
proposed using a VAE to generate a junction tree followed by
the generation of the molecule itself. This approach is likely to
generate valid chemical structures as it uses a predetermined
vocabulary of valid molecular substructures. Kwon et al.2> pro-
posed a non-autoregressive graph variational autoencoder, which
is trained with additional learning objectives to the standard VAE
ELBO for unconditional and conditional molecular graph
generation.

Along with these works on autoregressive and latent variable
generative models of graphs, there is work applying reinforcement
learning objectives to the task of molecular graph generation26-28
and reaction-driven molecule design?-31. In addition, Yang et al.32
proposed a target augmentation approach for improving molecular
optimization, a model-agnostic framework that can be used with
any black box model. Hence several existing works on generating
graph representations of molecules (see the Supplementary Dis-
cussion section of the Supplementary Information for more
examples) directly model the joint distribution p(G) or incorporate
additional objectives that can be used with a variety of models.

Here, we explore another approach to probabilistic graph
generation based on the insight that we do not need to model the
joint distribution p(G) directly to be able to sample from it. We
propose a masked graph model, a generative model of graphs that
learns the conditional distribution of masked graph components
given the rest of the graph, induced by the underlying joint dis-
tribution. This allows us to use a procedure similar to Gibbs
sampling to generate new molecular graphs, as Gibbs sampling
requires access only to conditional distributions. Concretely, our
approach, to which we refer as masked graph modeling, para-
meterizes and learns conditional distributions p(y|G,,) where 7 is
a subset of the components (nodes and edges) of G and G, is a
graph without those components (or equivalently with those
components masked out). With these conditional distributions
estimated from data, we sample a graph by iteratively updating its
components. At each generation iteration, this involves choosing
a subset of components, masking them, and sampling new values

2 | (2021)12:3156 | https://doi.org/10.1038/s41467-021-23415-2 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

for them according to the corresponding conditional distribution.
By using conditional distributions, we circumvent the assump-
tions made by previous approaches to model the unconditional
distribution. We do not need to specify an arbitrary order of
graph components, unlike in autoregressive models, and learning
is exact, unlike in latent variable models. Our approach is inspired
by masked language models3 that model the conditional
distribution of masked words given the rest of a sentence, which
have shown to be successful in natural language understanding
tasks#-3% and text generation®0. As shown in previous
works#0-42, sampling from a trained denoising autoencoder,
which is analogous to sampling from our masked graph model, is
theoretically equivalent to sampling from the full joint distribu-
tion. Therefore, even though we train our model on conditional
distributions, sampling repeatedly from these distributions is
equivalent to sampling from the full joint distribution of graphs.

In this work, we evaluate our approach on two popular
molecular graph datasets, QM9434* and ChEMBL*’, using a set
of five distribution-learning metrics introduced in the GuacaMol
benchmark?®: the validity, uniqueness, novelty, KL-divergence?’
(KLD) and Fréchet ChemNet Distance*® (FECD) scores. The KL-
divergence and Fréchet ChemNet Distance scores are measures of
the similarity between generated molecules and molecules from
the combined training, validation and test distributions, which we
call the dataset distribution. We find that the validity, Fréchet
ChemNet Distance and KL-divergence scores are highly corre-
lated with each other and inversely correlated with the novelty
score. We show that state-of-the-art autoregressive models are
ineffective in controlling the trade-off between novelty and the
validity, Fréchet ChemNet Distance, and KL-divergence scores,
whereas our masked graph model provides effective control over
this trade-off. Overall, the proposed masked graph model, trained
on the graph representations of molecules, outperforms pre-
viously proposed graph-based generative models of molecules
and performs comparably to several SMILES-based models.
Additionally, our model achieves comparable performance on
validity, uniqueness, and KL-divergence scores compared to state-
of-the-art autoregressive SMILES-based models, but with lower
Fréchet ChemNet Distance scores. We also carry out conditional
generation to obtain molecules with target values of specified
physiochemical properties. This involves predicting the masked
out components of a molecular graph given the rest of the graph,
conditioned on the whole graph having a specified value of the
physiochemical property of interest. Example target properties for
this approach include the LogP measure of lipophilicity, and
molecular weight. We find that our model produces molecules
with values close to the target values of these properties without
compromising other metrics. Compared with a baseline graph
generation approach, the generated molecules maintain physio-
chemical similarity to the training distribution even as they are
optimized for the specified metric. Finally, we find that our
method is computationally efficient, needing little time to gen-
erate new molecules.

Results

Masked graph modeling overview. A masked graph model
(MGM) operates on a graph G, which consists of a set of N vertices
V = {v,}Y| and a set of edges £ = {e; J}Z* |- A vertex is denoted by

v; = (i, 1;), where i is the unique index assigned to it, and ;€ C, =
{1,..., T} is its type, with T the number of node types. An edge is
denoted by e;; = (i, , r;;), where i, are the indices to the incidental
vertices of this edge and r;; € C, = {1,..., R} is the type of this edge,
with R the number of edge types.

We use a single graph neural network to parameterize any
conditional distribution induced by a given graph. We assume

that the missing components # of the conditional distribution p
(111Gy,) are conditionally independent of each other given G,

plGy) = [[p01G) [ plelGyy). 1)

vey ec€

where V and £ are the sets of all vertices and all edges in #
respectively.

To train the model, we use fully observed graphs from a
training dataset D. We corrupt each graph G with a corruption
process C(G,|G), i.e. Gy, ~ C(G,|G). In this work, following the
work of Devlin et al.33 for language models, we randomly replace
some of the node and edge features with the special symbol
MASK. After passing G, through our model we obtain the
conditional distribution p(#|G,,). We then maximize the log
probability logp(#|G,,) of the masked components # given the
rest of the graph G,,. This is analogous to a masked language
model33, which predicts the masked words given the corrupted
version of a sentence. This results in the following optimization
problem:

arg max Ee-ple ~c@c,i0108Pa1IG\,)- )

Once we have trained the model, we use it to carry out
generation. To begin generation, we initialize a molecule in one of
two ways, corresponding to different levels of entropy. The first
way, which we call training initialization, uses a random graph
from the training data as an initial graph. The second way, which
we call marginal initialization, initializes each graph component
according to a categorical distribution over the values that
component takes in our training set. For example, the probability
of an edge having type r € C, is equal to the fraction of edges in
the training set of type .

We then use an approach motivated by Gibbs sampling to
update graph components iteratively from the learned conditional
distributions. At each generation step, we sample uniformly at
random a fraction « of components # in the graph and replace the
values of these components with the MASK symbol. We compute
the conditional distribution p(y|G,,) by passing the partially
masked graph through the model, sampling new values of the
masked components according to the predicted distribution, and
placing these values in the graph. We repeat this procedure for a
total of K steps, where K is a hyperparameter. A schematic of this
procedure is given in Supplementary Figure 4.

We carry out conditional generation using a modified version
of this approach. We frame this task as generating molecules with
a target value of a given physiochemical property. We use the
same training and generation procedures as for unconditional
generation but with an additional, conditioning, input to the
model. This input y is the molecule’s graph-level property of
interest. During training, y corresponds to the ground-truth value
y* of the molecule’s graph-level property of interest. This results
in a modified version of Equation (2):

argmax K plic o, i0108Ps(lG\,y = ¥7) 3)

During generation, y instead corresponds to the target value y
of this property. The initialization process is the same as for
unconditional generation. Iterative sampling involves updating
the graph by computing the conditional distribution

PG,y = ).

Mutual dependence of metrics from GuacaMol. We evaluate
our model and baseline molecular generation models on
unconditional molecular generation using the distribution-
learning benchmark from the GuacaMol%® framework. We first
attempt to determine whether dependence exists between metrics
from the Guacamol framework. We do this because we notice

| (2021)12:3156 | https://doi.org/10.1038/s41467-021-23415-2 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Table 1 Spearman's correlation coefficient between
benchmark metrics for results using the masked graph
model on the QM9 dataset.

Fréchet Dist

Validity Uniqueness Novelty KL Div

Validity 1.00 -0.56 -0.83 0.73 0.75
Uniqueness —0.56 1.00 0.50 -032 -037
Novelty -0.83 0.50 .00 -094 -0.95
KL Div 0.73 -0.32 -0.94 1.00 0.99
Fréchet Dist 0.75 -0.37 —0.95 0.99 1.00

Table 2 Spearman’s correlation coefficient between
benchmark metrics for results using LSTM, Transformer
Small and Transformer Regular on the QM9 dataset.
Novelty KL Div

Validity Uniqueness Fréchet Dist

Validity 1.00 0.03 -0.99 0.98 0.98
Uniqueness 0.03 1.00 0.00 0.03 0.03
Novelty -0.99 0.00 1.00 -099 -0.99
KL Div 098 0.03 —-0.99 1.00 1.00
Fréchet Dist 098 0.03 —-0.99 1.00 1.00

that some of these metrics may measure similar properties. For
example, the Fréchet and KL scores are both measures of simi-
larity between generated samples and a dataset distribution. If the
metrics are not mutually independent, comparing models using a
straightforward measure such as the sum of the metrics may not
be a reasonable strategy.

To determine how the five metrics are related to each other, we
calculate pairwise the Spearman (rank) correlation between all
metrics on the QM9 dataset*>#4, presented in Table 1, while
varying the masking rate, initialization strategy and number of
sampling iterations K. We carry out a similar run for three
baseline autoregressive SMILES-based models that we train
ourselves: two Transformer models® with different numbers of
parameters (Transformer Small and Transformer Regular) and an
LSTM. Each of these autoregressive models has a distribution
output by a softmax layer over the SMILES vocabulary at each
time step. We implement a sampling temperature parameter in
this distribution to control its sharpness. By increasing the
temperature, we decrease the sharpness, which increases the
novelty. The Spearman correlation results for these baselines are
shown in Table 2.

From Tables 1 and 2, we make three observations. First, the
validity, KL-divergence and Fréchet Distance scores correlate
highly with each other. Second, these three metrics correlate
negatively with the novelty score. Finally, uniqueness does not
correlate strongly with any other metric. These observations
suggest that we can look at a subset of the metrics, namely the
uniqueness, Fréchet and novelty scores, to gauge generation
quality. We now carry out experiments to determine how well
MGM and baseline models perform on the anti-correlated
Fréchet and novelty scores, which are representative of four of
the five evaluation metrics.

Analysis of representative metrics. To examine how the masked
graph model and baseline autoregressive models balance the
Fréchet ChemNet Distance and novelty scores, we plot these two
metrics against each other in Fig. 1. To obtain the points for the
masked graph models, we evaluate the scores after various
numbers of generation steps. For the QM9 MGM points, we use

both training and marginal initializations, which start from the
top left and bottom right of the graph respectively, and converge
in between. For the ChEMBL MGM points, we use only training
initialization.

On both QM9 and ChEMBL, we see that as novelty increases,
the Fréchet ChemNet Distance score decreases for the masked
graph models as well as for the LSTM and Transformer models.
We also see that the line’s slope, which represents the marginal
change in Fréchet ChemNet Distance score per unit change in
novelty score, has a lower magnitude for the masked graph
model than for the autoregressive models. This shows that our
model trades off novelty for similarity to the dataset distributions
(as measured by the Fréchet score) more effectively relative to the
baseline models. This gives us a higher degree of controllability in
generating samples that are optimized towards either metric to
the extent desired.

On QM9, we see that our masked graph models with a 10% or
20% masking rate maintain a larger Fréchet ChemNet Distance
score as the novelty increases, compared to the LSTM and
Transformer models. Several of the MGM points on the plot are
beyond the Pareto frontier formed by each baseline model. On
ChEMBL, the LSTM and Transformer models generally achieve
a higher combination of novelty and Fréchet ChemNet Distance
score than does the masked graph model with either masking
rate. However, to the bottom right of Fig. 1b, we can see a few
points corresponding to the 5% masking rate that are beyond
the Pareto frontier of the points formed by the Transformer
Regular model.

We also observe that for ChEMBL, which contains larger
molecules, using a 1% masking rate yields points that are beyond
the Pareto frontier of those obtained using a 5% masking rate.
This further indicates that masking a large number of components
hurts generation quality, even if this number represents a small
percentage of the graph.

We plot validity against novelty in Supplementary Figure 3 and
observe that the same analysis holds for the trade-off between
these two metrics. Hence even though state-of-the-art autore-
gressive models can trade off between representative metrics by
changing the sampling strategy, the trade-off is poor and leads to
a rapid decline in molecule quality as the novelty increases.
MGM, on the other hand, is able to maintain a similar molecule
quality as the novelty increases.

Comparison with baseline models. We now compare distribu-
tional benchmark results for MGM using our ‘best’ initialization
strategy and masking rate (see the Supplementary Discussion
section of the Supplementary Information for details) to baseline
models. The baseline models include models we train ourselves
and those for which we obtain results from the literature. The
distributional benchmark results on QM9 and ChEMBL are
shown in Table 3 and Table 4 respectively.

On QM9Y, our model performs comparably to existing SMILES-
based methods. Our approach shows higher validity and uniqueness
scores compared to CharacterVAE#® and GrammarVAE?(, while
having a lower novelty score. Compared to the autoregressive
LSTM and Transformer models, our model has lower validity, KL-
divergence and Fréchet Distance scores; however it exhibits slightly
higher uniqueness and significantly higher novelty scores.

Compared to the graph-based models, our approach performs
similarly to or better than existing approaches. Our approach has
higher validity and uniqueness scores compared to GraphVAE?3
and MolGAN®!, and a lower novelty score. KLD and Fréchet
Distance scores are not provided for these two models. Our
model outperforms the non-autoregressive graph VAE?” on all
metrics except novelty.

4 | (2021)12:3156 | https://doi.org/10.1038/s41467-021-23415-2 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

[J] (0]

a s b s
Q10T @10
() 3 .o‘..ma.»,'/;r, 8 . ® oo o e ep0eeniee . ..
20.8 20.8
© 2. © .
- d -
2 o O Meep,, v .,
0 0.6 . oo 0 0.6
o . MGM 10% Sup o « MGM 1% .
% 0.4 MGM 20% E 0.4 MGM 5% %,
o » Transformer Sml . 9 » Transformer Sml Sie
0 0.2 « Transformer Reg . 0 0.2 » Transformer Reg
E . LSTM . © . LSTM
S 0.0 : 5 0.0
:,:" 0.0 0.2 0.4 0.6 0.8 1.0 L 0.0 0.2 0.4 0.6 0.8 1.0

Novelty v Novelty

Fig. 1 Plots of the Fréchet ChemNet Distance score against novelty on QM9 and ChEMBL. The FCD score and novelty are two anti-correlated metrics
from the GuacaMol“€ distribution-learning benchmark. Each point corresponds to the values of these two metrics for a set of molecules that are generated
using the same model with the same generation hyperparameters. Different points of the same color correspond to different sets of molecules, with each
set generated from the same model using different generation hyperparameters (number of generation iterations and masking rate for the masked graph
models, sampling temperature for autoregressive models). The percentages indicated next to MGM in the figure legends indicate the masking rate at
generation time. (For example, MGM 10% indicates an MGM model with a generation masking rate of 10%.) a Plots for QM9. For each QM9 MGM model,
the series of points originating at the top left of the graph corresponds to training initialization, whereas the series of points originating at the bottom right
corresponds to marginal initialization. b Plots for ChEMBL. For ChEMBL, only training initialization was used to sample valid molecules due to
computational constraints, as marginal initialization did not yield enough valid molecules to calculate reliable distributional metrics in a reasonable amount
of time. This is likely because the masking rate is low so it would take a long time for the sampler to converge to the training distribution. Using a high
masking rate would result in a large number of spurious edges, which would be problematic for the MPNN to handle. Finding a way to alleviate this issue
would be a valuable direction for future work.

Table 3 Distributional results on QM9. CharacterVAE4°, GrammarVAE>9, GraphVAE23 and MolGAN>' results are taken from
Cao and Kipf>1,

Model Valid Uniq Novel KL Div Fréchet Dist
SMILES CharacterVAE 0.103 0.675 0.900 N/A N/A

GrammarVAE 0.602 0.093 0.809 N/A N/A

LSTM (ours) 0.980 0.962 0.138 0.998 0.984

Transformer Sml (ours) 0.947 0.963 0.203 0.987 0.927

Transformer Reg (ours) 0.965 0.957 0.183 0.994 0.958
Graph GraphVAE 0.557 0.760 0.616 N/A N/A

MolGAN 0.981 0.104 0.942 N/A N/A

NAT GraphVAE (ours) 0.875 0.317 0.895 0.843 0.509

MGM (ours proposed) 0.886 0.978 0.518 0.966 0.842

NAT GraphVAE25 stands for non-autoregressive graph VAE. Models labelled as ‘ours’ were trained by us and subsequently used to carry out generation. Our masked graph model results correspond to a
10% masking rate and training graph initialization, which has the highest geometric mean for all five benchmark metrics. (See the Supplementary Discussion section of the Supplementary Information for
details.) Values of validity(1), uniqueness(1), novelty(1), KL Div(t) and Fréchet Dist(1) metrics are between O and 1.

Table 4 Distributional results on CREMBL. LSTM, Graph MCTS52, AAES7, ORGAN®2 and VAE#° (with a bidirectional GRU>3 as
encoder and autoregressive GRU33 as decoder) results are taken from Brown et al.46.

Model Valid Uniq Novel KL Div Fréchet Dist
SMILES AAE 0.822 1.000 0.998 0.886 0.529
ORGAN 0.379 0.841 0.687 0.267 0.000
VAE 0.870 0.999 0.974 0.982 0.863
LSTM 0.959 1.000 0.912 0.991 0.913
Transformer Sml (ours) 0.920 0.999 0.939 0.968 0.859
Transformer Reg (ours) 0.961 1.000 0.846 0.977 0.883
Graph Graph MCTS 1.000 1.000 0.994 0.522 0.015
NAT GraphVAE 0.830 0.944 1.000 0.554 0.016
MGM (ours proposed) 0.849 1.000 0.722 0.987 0.845

NAT GraphVAEZ25 stands for non-autoregressive graph VAE. Models labelled as ‘ours’ were trained by us and subsequently used to carry out generation. Our masked graph model results correspond to a
1% masking rate and training graph initialization, which has the highest geometric mean for all five benchmark metrics. (See the Supplementary Discussion section of the Supplementary Information for
details.) Values of validity(1), uniqueness(1), novelty(1), KL Div(1) and Fréchet Dist(t) metrics are between O and 1.

On ChEMBL, our approach outperforms existing graph-based  scores. The baseline graph-based models do not capture the
methods. Compared to graph MCTS>? and non-autoregressive  properties of the dataset distributions, as shown by their low KL-
graph VAE?®, our approach shows lower novelty scores while divergence scores and almost-zero Fréchet scores. This demon-
having significantly higher KL-divergence and Fréchet Distance strates that our proposed approach outperforms graph-based

| (2021)12:3156 | https://doi.org/10.1038/s41467-021-23415-2 | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23415-2

methods in generating novel molecules that are similar to the
dataset distributions.

The proposed masked graph model is competitive with models
that rely on the SMILES representations of molecules. It outper-
forms the GAN-based model (ORGAN) across all five metrics and
outperforms the adversarial autoencoder model (AAE) on all but
the uniqueness score (both have the maximum possible score) and
the novelty score. It performs comparably to the VAE model with
an autoregressive GRU>3 decoder on all metrics except novelty. Our
approach lags behind the LSTM, Transformer Small and Transfor-
mer Regular SMILES-based models on the ChEMBL dataset. It
outperforms both Transformer models on KL-divergence score but

5]
/@% o g}\
0 W o]
0 0

0 steps | Non-novel 1 step | Novel

A

200 steps | Novel

e

100 steps | Non-novel

0 steps | Novel

1 step | Novel

10 steps | Novel

o
0 /\O‘..n-"'"&o

300 steps | Novel

50 steps | Novel

400 steps | Novel

underperforms them on validity, novelty and Fréchet score. Our
approach also results in lower scores across most of the metrics
when compared to the LSTM model.

Some examples of generated molecules after the final sampling
iteration are shown in Supplementary Figures 6 and 7. Full lists of
molecules can be accessed via the Data Availability section.

Generation trajectories. We present a few sampling trajectories
of molecules from the proposed masked graph model in Figs. 2-3.
Each image represents the molecule after a certain number of
sampling iterations; the first image in a figure is the molecular

\\\\,m- g}\o O{ }‘
(0]
(0]

10 steps | Novel 50 steps | Novel

0

N\

300 steps | Novel 400 steps | Novel

S /\/Yv
2

OH’

2 steps | Novel 3 steps | Novel

0]

fo— g fa—
’>“W P

o}

(=)

100 steps | Novel 200 steps | Non-novel

Fig. 2 Generation trajectory of a molecule each for training initialization and marginal initialization. The model is trained on QM9, and generation is
carried out using a 10% masking rate. a Training initialization. b Marginal initialization.

6 NATURE COMMUNICATIONS | (2021)12:3156 | https://doi.org/10.1038/s41467-021-23415-2 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

0 steps | Non-novel 1 step | Non-novel

100 steps | Novel 200 steps | Novel

0 steps | Non-novel

1 step | Non-novel

Oq*o O*Q’ﬁ

100 steps | Novel 200 steps | Novel

10 steps | Novel 50 steps | Novel

300 steps | Novel

10 steps | Novel 50 steps | Novel

%

300 steps | Novel

Fig. 3 Generation trajectory of a molecule each for a 1% and a 5% masking rate. The model is trained on ChEMBL, and generation is carried out using

training initialization. a 1% masking rate. b 5% masking rate.

graph initialization before any sampling steps are taken. Figure 2
shows a trajectory each for training and marginal initializations
with a 10% masking rate. Figure 3 shows a trajectory each for 1%
and 5% masking rates with training initialization. All molecules
displayed in the figures are valid, but molecules corresponding to
some of the intermediate steps not shown may not be.

Figure 2a shows the trajectory of a molecule initialized as a
molecule from the QM9 training set. As generation progresses,
minor changes are made to the molecule, yielding novel molecules.
After 100 generation steps, the molecule has converged to another
non-novel molecule. Further generation steps yield novel molecules
once again, with the molecule’s structure gradually moving further
away from the initialized molecule.

Figure 2b shows the trajectory of a molecule initialized from the
marginal distribution of the QM9 training set. The initialized graph
consists of multiple disjoint molecular fragments. Over the first
three generation steps, the various nodes are connected to form a
connected graph. These changes are more drastic than those in the
first few steps of generation with training initialization. The
molecule undergoes significant changes over the next few steps until

it forms a ring and a chiral center by the 10-th step. The molecule
then evolves slowly until it converges to a non-novel molecule by
200 steps. Further generation steps yield a series of novel molecules
once again.

Figure 3a shows the trajectory of a ChEMBL molecule with a
1% masking rate. In the first step, the molecule changes from one
training molecule to another non-novel molecule, following
which it undergoes minor changes over the next few steps to yield
a novel molecule. Figure 3b shows the trajectory of a ChEMBL
molecule with a 5% masking rate. In the first step, this molecule
also changes from one training molecule to another non-novel
molecule. Following this, further changes yield a novel molecule.
The molecule evolves again in further iterations, albeit forming
unexpected ring structures after 300 steps.

Conditional generation. In accordance with the framework
proposed by Kwon et al.2%, we generate molecules conditioned on
three different target values of the molecular weight (MolWt) and
Wildman-Crippen partition coefficient (LogP) properties. We
also compute KLD scores for the generated molecules. The KLD

| (2021)12:3156 | https://doi.org/10.1038/s41467-021-23415-2 | www.nature.com/naturecommunications 7


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

initialization strategies.

Table 5 Conditional generation results on QM9. Results for MGM are chosen from a range of sampling iterations and both

Target Condition Model G-mean Unique Count Property Value KLD Score
MolWt = 120 NAT GraphVAE 0.623 3048 124.47 +7.58 0.843
MGM 0.522 8800 120.02+7.66 0.8M1
MGM - Final Step 0.404 8509 19.42+7.67 0.761
Dataset — — — 0.679
MolWt = 125 NAT GraphVAE 0.565 2326 127.21+£7.05 0.827
MGM 0.561 9983 125.00+£8.48 0.850
MGM - Final Step 0.354 9293 122.48 +7.20 0.936
Dataset — — — 0.835
MolWt = 130 NAT GraphVAE 0.454 1204 12912+ 6.79 0.614
MGM 0.501 9465 128.85 £ 8.85 0.705
MGM - Final Step 0.369 8892 126.85+7.43 0.789
Dataset — — — 0.695
LogP =-0.4 NAT GraphVAE 0.601 2551 —0.409+0.775 0.739
MGM 0.424 9506 —0.349+0.503 0.803
MGM - Final Step 0.300 9495 —0.337+£0.523 0.876
Dataset . — — 0.81
LogP = 0.2 NAT GraphVAE 0.562 2188 0.051+£0.746 0.803
MGM 0.378 9524 0.200 +0.468 0.846
MGM - Final Step 0.376 9487 0.202+0.462 0.895
Dataset - - - 0.816
LogP = 0.8 NAT GraphVAE 0.515 1837 0.588 £0.759 0.807
MGM 0.418 9360 0.769 +0.473 0.826
MGM - Final Step 0.300 9294 0.745+0.442 0.857
Dataset - - - 0.797

The results shown here correspond to the best mean property value (MGM) or the final sampling iteration with initialization chosen according to the better geometric mean among the five GuacaMol
metrics (MGM—Final Step). Results for the NAT GraphVAE baseline model2> that we trained are also shown. ‘Dataset’ rows refer to molecules sampled from the dataset with MolWt within + 1 for the
MolWt conditions and LogP within = 0.1 for the LogP conditions. G-mean refers to the geometric mean of validity, uniqueness and novelty.

score is expected to decrease compared to unconditional gen-
eration since MolWt and LogP are two of the properties used to
calculate this score; as these properties become skewed towards
the target values, the similarity to the dataset will decrease. If a
model maintains a reasonably high KLD score while achieving a
mean property value close to the target value, it indicates that the
other physiochemical properties of the generated molecules are
similar to those of the dataset molecules. Conditional generation
results for our model and the baseline Kwon et al.2> model are
shown in Table 5.

MGM generates molecules with property values close to the
target value of the desired property. For the MolWt=120,
MolWt=125, LogP=0.2 and LogP=0.8 conditions, the mean target
property of the molecules generated by MGM is closer to the target
value than of those generated by NAT GraphVAE. For the
MolWt=130 and LogP=-0.4 conditions, the mean is slightly
further. For LogP, MGM has lower standard deviations whereas for
MolWt, NAT GraphVAE has slightly lower standard deviations. A
lower standard deviation corresponds to more reliable generation of
molecules with the target property. The G-means of validity,
uniqueness and novelty are similar for both models on MolWt, and
better for NAT GraphVAE on LogP.

The molecules generated by MGM have similar properties to
the dataset molecules. This is reflected by the KL-divergence
scores, which are generally higher for MGM than for NAT
GraphVAE and greater than 0.8 in all cases but one. The KLD
scores in the Dataset rows of Table 5 are considerably less than 1,
showing the decrease in similarity to the full dataset as the MolWt
or LogP values are skewed. MGM achieves a higher KL-
divergence score than Dataset in the majority of cases. This
indicates that MGM produces molecules that are optimized for
the target property while maintaining physiochemical similarity
to the dataset distribution.

Table 6 Time taken for training and generation.

Dataset Training time per
epoch (min)

QM9 6

ChEMBL 280

Generation time/sample/sampling
iteration (sec)

0.00542

0.00622

Genekration time/sam/p\e/sam#aling i;e/ratior/w is measured as:

time taken to carry out 100 sampling iterations for a batch of J samples _ _
- Ty o 007 L For QM9, J= 2500 whereas for ChEMBL, J =
1500 due to memory constraints.

The results for MGM—Final Step approach slightly differ from
those for MGM. By design, the mean values of the target
properties are a little further from the target values than for
MGM. Compared with MGM, the standard deviations and G-
means for MGM—Final Step are generally lower while the KL-
divergence scores are higher.

Computational efficiency. Time taken to train and generate
from models is shown in Table 6. For each sample, generation
time per sampling iteration is low (on the order of milli-
seconds), as the forward pass through the neural network is
computationally cheap and many molecules can be processed in
parallel. The ChEMBL model takes longer than the QM9 model
for generation as it has more MPNN layers and also because
ChEMBL molecules are on average larger than QM9 molecules.
The ChEMBL model takes longer to train per epoch than the
QM9 model for the same reasons and also because ChEMBL
has many more molecules than QM9. Note that training time
for ChEMBL could be significantly lowered if dynamic batching
strategies are used so that the batch size is not constrained by

8 | (2021)12:3156 | https://doi.org/10.1038/s41467-021-23415-2 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

the size of the largest molecule in the dataset. See the Datasets
and Evaluation part of the Methods section for more details on
the datasets. We use one Nvidia Tesla P100-SXM2 GPU with 16
GB of memory for all our experiments; the use of multiple
GPUs or a GPU with larger memory would further increase
computational speed.

Discussion

In this work, we propose a masked graph model for molecular
graphs. We show that we can sample novel molecular graphs
from this model by iterative sampling of subsets of graph com-
ponents. Our proposed approach models the conditional dis-
tributions of subsets of graph components given the rest of the
graph, avoiding many of the drawbacks of previously proposed
models, such as expensive marginalization and fixing an ordering
of variables.

We evaluate our approach on the GuacaMol distribution-
learning benchmark on the QM9 and ChEMBL datasets. We find
that the benchmark metrics are correlated with each other, so
models and generation configurations with higher validity, KL-
divergence and Fréchet ChemNet Distance scores usually have
lower novelty scores. Hence evaluating models based on the
trade-off between different metrics may be more informative than
evaluating them based on a heuristic such as the sum of the
metrics. We observe that by varying generation hyperparameters,
our model balances these metrics more efficiently than previous
state-of-the-art baseline models.

For some applications, it is convenient to evaluate results based
on one masking rate rather than evaluating this trade-off. A
discussion of how to choose this generation hyperparameter is
given under the Model Architecture, Training and Unconditional
Generation Details part of the Methods section. We recommend
using a generation masking rate corresponding to masking out 5-
10 edges of a complete graph having the median number of nodes
in the dataset.

We show that on distribution-learning metrics, overall our
model outperforms baseline graph-based methods. We also
observe that our model is comparable to SMILES-based
approaches on both datasets, but underperforms the LSTM,
Transformer Small and Transformer Regular SMILES-based
autoregressive models on ChEMBL. There are several differ-
ences between the QM9 and ChEMBL datasets (see the Datasets
and Evaluation part of the Methods section) that could account
for this, including number of molecules, median molecule size
and presence of chirality information. There has also been
extensive work in developing language models compared to
graph neural networks, which may account for the greater
success of the LSTM and Transformers. Furthermore, the
ChEMBL dataset is provided as SMILES strings and the Gua-
caMol benchmark requires that graph representations be con-
verted into SMILES strings before evaluation. This may
advantage approaches that work with SMILES strings directly
rather than converting to and from graph representations of
molecules. Although there are molecular benchmarks for
evaluating different aspects of machine learning-based mole-
cular generation0->4, they use string representations of mole-
cules and do not evaluate graph-level properties. Developing
datasets and benchmarks that incorporate graph-level infor-
mation that is not readily encoded as strings, such as spatial
information, would alleviate this issue. We leave further
investigation into the reasons behind the difference in perfor-
mance to future work.

From our observations of molecular trajectories, we see that
molecules converge towards the space of dataset molecules
regardless of whether training or marginal initialization is used.

This verifies that the sampler produces molecules from the
distribution that it was trained on. We also see that using a
higher masking rate results in greater changes between sam-
pling iterations and molecules that are less similar to the dataset
used. We hypothesize that this is the case for two reasons. First,
a greater proportion of the graph is updated at each step.
Second, the predictive distributions are formed from a graph
with a greater proportion of masked components, resulting in
higher entropy.

We carry out conditional generation, observing that our model
captures the target properties of molecules better than a baseline
graph-based generative model while maintaining similarity of the
generated molecules to the distribution of dataset molecules.

Finally, we observe the computational cost of our models and
note that generation time per molecule is low after training
the model.

Future avenues of work include incorporating additional
information such as inter-atomic distances into our graph
representations. In the GuacaMol benchmark*®, for example, the
data is provided as strings and must be converted back into
strings for evaluation. Hence features that are not readily encoded
as strings are not used by either the text-based or graph-based
models, and cannot be a part of evaluation. The development of
benchmarks that account for the spatial nature of molecules, for
example by incorporating 3D coordinates, would help highlight
the advantages of graph-based generative models compared to
SMILES-based models.

As discussed in the Model Architecture, Training and
Unconditional Generation Details part of the Methods section,
using the same masking rate for molecules of different sizes
results in a disproportionately large number of ‘prospective’
edges being masked out for large molecules, which is proble-
matic for our MPNN to handle. Finding a way to address this
problem would be beneficial in scaling this work to larger
molecules.

Another direction is to make our model semi-supervised.
This would allow us to work with target properties for which
the ground-truth cannot be easily calculated at test time and
only a few training examples are labelled. Our work can also be
extended to proteins, with amino acids as nodes and a contact
map as an adjacency matrix. Conditional generation could be
used in this framework to redesign proteins to fulfil desired
functions. Furthermore, although we use the principle of
denoising a corrupted graph for learning the joint distribution,
the same procedure could be adapted for lead optimization.
Finally, as our approach is broadly applicable to generic graph
structures, we leave its application to non-molecular datasets to
future work.

Methods

Model architecture. A diagram of our model including featurization details is
given in Fig. 4. We start by embedding the vertices and edges in the graph G,,, to
get continuous representations h, € R% and h, € R% respectively, where dy is

the dimensionality of the continuous representation space®>. We then pass these
representations to a message passing neural network (MPNN)>°. We use an
MPNN as the fundamental component of our model because of its invariance to
graph isomorphism. An MPNN layer consists of an aggregation step that
aggregates messages from each node’s neighboring nodes, followed by an update
step that uses the aggregated messages to update each node’s representation. We
stack L layers on top of each other to build an MPNN; parameters are tied across
all L layers. For all except the last layer, the updated node and edge repre-
sentations output from layer [ are fed into layer [ + 1. Unlike the original version
of the MPNN, we also maintain and update each edge’s representation at each
layer. Any variant of a graph neural network that effectively models the rela-
tionships between node and edge features can be used, such as an MPNN. Our
specific design is described below.

Diagrams of our MPNN’s node and edge update steps are given in
Supplementary Figure 5. At each layer I of the MPNN, we first update the hidden
state of each node v; by computing its accumulated message uf/’,) using an

| (2021)12:3156 | https://doi.org/10.1038/s41467-021-23415-2 | www.nature.com/naturecommunications 9


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

plmask) = a Atom type \
o
o

- z — | Node embedding

L[] /
plmask) = a Chirality

MPNN (L layers)

Feedforward
Network |~ | Atom type
/ . °
N ° _— .

\ [ ] °
Feedforward _,[ Chirality ]

Network

p(mask) = a Bond type —— | Edge embedding _— Fe::::lr::zrd —— | Bond type

Fig. 4 Model architecture. A description of the node and edge features is given in the Property Embeddings part of the Methods section.

aggregation function J, and a spatial residual connection R between neighboring
nodes:

o — h(l—l)_{ha—w} _{h(z—n R {ha—n} 4
a ]"< i U Jjeney” U S jeny + i Jjenay )’ )

ROSV {ha—l)} ) {h(t—n — 3 p=D . pt-D
]V< e T U Jjene) U S jeney je%(i) i K ©)
R {hu—n} = ¥ ht-D, 6
( Y Jjene jeNG) Y ©
h?” = LayerNorm (GRU (hf,lfl),u(vl))), (7)

where N(i) is the set of indices corresponding to nodes that are in the one-hop
neighbourhood of node v, GRU®? refers to a gated recurrent unit which updates
the representation of each node using its previous representation and accumulated
message. LayerNorm®’ refers to layer normalization.

Similarly, the hidden state of each edge he’] is updated using the following rule

for all j € N(i):
I - I-
B =7, (a7 +hd0). ®)

The sum of the two hidden representations of the nodes incidental to the edge is
passed through J,, a two-layer fully connected network with ReLU activation
between the two layers®®>?, to yield a new hidden edge representation.

The node and edge representations from the final layer are then processed by a
node projection layer A, : R% — AT and an edge projection layer
A, : R% — AR where AT and AR are probability simplices over node and edge

types respectively. The result is the distributions p(v|G,,) and p(e|G,,) for all v € V
and all e € .

Property embeddings

Node property embeddings. We represent each node using six node properties
indexed as {x € Z : 1 <x <6}, each with its own one-hot embedding. The prop-
erties are obtained using RDKit®. Each node in a graph corresponds to a heavy
atom in a molecule. During the forward pass, each of these embeddings is mul-
tiplied by a separate weight matrix W, € R where T, is the number of
categories for property . The resulting continuous embeddings are summed
together to form an overall embedding for the node. The entries of the one-hot
embeddings for each of the properties are:

® Atom type: chemical symbol (e.g. C, N, O) of the atom;

®  Number of hydrogens: number of hydrogen atoms bonded to the atom;

® Charge: net charge on the atom, where the first index represents the
minimum charge on an atom in the dataset and the last index represents
the maximum;

®  Chirality type: unspecified, tetrahedral clockwise, tetrahedral counter-
clockwise, other;

® [s-in-ring: atom is or is not part of a ring structure;

® [s-aromatic: atom is or is not part of an aromatic ring.

Each one-hot embedding also has an additional entry corresponding to the
MASK symbol.

After processing the graph with the MPNN, we pass the representation of each
node through six separate fully-connected two-layer networks with ReLU
activation between the layers. For each node, the output of each network is a
distribution over the categories of the initial one-hot vector for one of the
properties. During training, we calculate the cross-entropy loss between the
predicted distribution and the ground-truth for all properties that were masked out
by the corruption process.

The choice of nodes for which a particular property is masked out is
independent of the choice made for all other properties. The motivation for this is

to allow the model to more easily learn relationships between different property
types. The atom-level property information that we use in our model is the same as
that provided in the SMILES string representation of a molecule. We also tried
masking out all features for randomly selected nodes, but this yielded a significantly
higher cross-entropy loss driven largely by the atom type and hydrogen terms.

Since the ChEMBL dataset does not contain chirality information, the chirality
type embedding is superfluous for ChEMBL.

We note from preliminary experiments that using fewer node features,
specifically only the atom type and number of hydrogens, results in a substantially
higher cross-entropy loss than using all the node features listed above.

Edge property embeddings. We use the same framework as described for node
property embeddings. We only use one edge property with the weight matrix

W e R®%, whose one-hot embedding is defined as follows:

® Bond type: no, single, double, triple or aromatic bond.

Model architecture, training and unconditional generation details. For the
QM09 dataset, we use one 4-layer MPNN, with parameter sharing between layers.
For the ChEMBL dataset, we use one 6-layer MPNN with parameter sharing. We
experiment with using more layers for ChEMBL in case more message passing
iterations are needed to cover a larger graph. The results of an extensive
hyperparameter search on ChEMBL are given in Supplementary Table 2. For
both datasets, we use an embedding dimensionality dy = 2048. We use the Adam
optimizer®! with learning rate set to 0.0001, ; = 0.9 and 3, = 0.98. We use a
batch size of 800 molecules for QM9 and 512 molecules for ChEMBL. For
ChEMBL, we perform 16 forward-backward steps with minibatches of 32 each to
compute the gradient of the minibatch of 512 molecules, in order to cope with
the limited memory size on a GPU. We clip the gradient for its norm to be at
most 10.

During training, we uniformly at random mask each node feature (including
atom type) and edge feature (including bond type) with probability «, while
randomly varying « uniformly between 0 and 0.2. Nodes are considered as
neighbors in the MPNN if they are connected by an edge that is either masked out,
or does not have bond type no-bond. For the purposes of masking, the total
number of edges in the graph is m i.e. every possible node pair (excluding
self-loops) in the symmetric graph is considered as a ‘prospective edge’ that can be
masked out. During validation, we follow the same procedure but with « fixed at
0.1, so that we can clearly compare model checkpoints and choose the checkpoint
with the lowest validation loss for generation.

For QMY, we carry out generation experiments while using a masking rate of
either 10% or 20%, corresponding to the mean and maximum masking rates
during training respectively. For ChEMBL, we use a masking rate of either 1% or
5%, as we found that the higher masking rates led to low validity scores in our
preliminary experiments. The number of prospective edges masked and replaced
for a median ChEMBL molecule with a 1% masking rate and for a median QM9
molecule with a 10% masking rate are both approximately 4. This indicates that
the absolute number rather than portion of components masked out directly
impacts generation quality. For a constant masking rate, the number of masked
out prospective edges scales as the square of the number of nodes in the graph.
The number of bonds in a molecule does not scale in this way; larger molecules
are likely to have sparser adjacency matrices than small molecules. Masking out
a very large number of prospective edges could degrade performance as this
would yield an unnaturally dense graph to the MPNN. This is because every
prospective edge of type ‘no edge’ that is masked out would appear as an edge to
the MPNN. This would result in message passing between many nodes in the
input graph that are far apart in the sparse molecule. We therefore propose a
masking rate corresponding to masking out a similar number of prospective
edges (approximately 5-10) when using MGM on other datasets. Nevertheless,
finding an automated way of setting the masking rate would be a valuable
direction for future research.

10 | (2021)12:3156 | https://doi.org/10.1038/541467-021-23415-2 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

We use the same independence constraint during generation as we use during
training when choosing which properties to mask out for each node or edge. We
vary the initialization strategy between training and marginal initialization.

For QM9, we run 400 sampling iterations sequentially to generate a sequence of
sampled graphs. For ChEMBL, we run 300 iterations. We calculate the GuacaMol
evaluation metrics for our samples after every generation step for the first 10 steps,
and then every 10-20 steps, in order to observe how generation quality changes
with the number of generation steps.

Conditional generation details. We carry out conditional generation corre-
sponding to two different molecular properties: molecular weight (MolWt) and the
Wildman-Crippen partition coefficient (LogP). We train a separate model for each
property on QM9, with the same hyperparameters as used for the unconditional
case. For each property, we first normalize the property values by subtracting the
mean and dividing by the standard deviation across the training data. We obtain an
embedding of dimension d, for the property by passing the one-dimensional
standardized property value through a two-layer fully-connected network with
ReLU activation between the two layers. We add this embedding to each node
embedding and then proceed with the forward pass as in the unconditional case.
For generation, we use a 10% masking rate and carry out 400 sampling iterations
with both training and marginal initializations.

We evaluate 10,000 generated molecules using the framework outlined by Kwon
et al.?° in their work on non-autoregressive graph generation. This involves
computing summary statistics of the generated molecules for target property values
of 120, 125 and 130 for MolWt, and —0.4, 0.2 and 0.8 for LogP. We choose results
corresponding to the initialization and number of sampling iterations that yield the
mean property value that is closest to the target value. We also provide results from
the final generation step with the initialization corresponding to the higher
geometric mean among the five GuacaMol metrics.

Finally, we calculate KLD scores for molecules from the QM9 dataset with
property values close to the target values. For the MolWt conditions, we sample
10,000 molecules from the dataset that have a MolWt within 1 of the target MolWt.
For the LogP conditions, we sample 10,000 molecules from the dataset that have
LogP value within 0.1 of the target LogP value.

Details of baseline models. We train two variants of the Transformer? archi-
tecture: Small and Regular. The Transformer Regular architecture consists of 6
layers, 8 attention heads, embedding size of 1024, hidden dimension of 1024, and
dropout of 0.1. The Transformer Small architecture consists of 4 layers, 8 attention
heads, embedding size of 512, hidden dimension of 512, and dropout of 0.1. Both
Transformer-Small and -Regular are trained with a batch size of 128 until the
validation cross-entropy loss stops improving. We set the learning rate of the
Adam optimizer to 0.0001, 3; =0.9 and f3, = 0.98. The learning rate is decayed
based on the inverse square root of the number of updates. We use the same
hyperparameters for the Transformer Small and Regular models on both QM9 and
ChEMBL.

We follow the open-source implementation of the GuacaMol benchmark
baselines at https://github.com/BenevolentAl/guacamol_baselines for training an
LSTM model on QM. Specifically, we train the LSTM with 3 layers of hidden size
1024, dropout of 0.2 and batch size of 64, using the Adam optimizer with learning
rate 0.001, ; = 0.9 and 3, = 0.999. We do not train the rest of the baseline models
ourselves. For QM9: CharacterVAE#), GrammarVAE®Y, GraphVAE?3, and
MOolGAN®! results are taken from Cao and Kipf>!. For ChEMBL: AAES,
ORGAN®2, Graph MCTS2, VAE, and LSTM results are taken from Brown et al.%0,
NAT GraphVAE results are taken from Kwon et al.?> for ChEMBL. To carry out
unconditional and conditional generation from NAT GraphVAE on QM9, we train
a model using the publicly available codebase provided by the paper’s authors at
https://github.com/seokhokang/graphvae_approx.

Datasets and evaluation. We evaluate our approach using two widely used?3:4%-63
datasets of small molecules: QM94344, and a subset of the ChEMBL database*>
(Version 24) as defined by Fiscato et al.>* and used by Brown et al.4%. All references
to ChEMBL in this paper are references to this subset of the database. Heavy atoms
and bonds in a molecule correspond to nodes and edges in a graph, respectively.

The QM9 dataset consists of approximately 132,000 molecules with a median
and maximum of 9 heavy atoms each. Each atom is of one of the following T = 4
types: C, N, O, and F. Each bond is either a no-bond, single, double, triple or
aromatic bond (R = 5). The ChEMBL dataset contains approximately 1,591,000
molecules with a median of 27 and a maximum of 88 heavy atoms each. It contains
12 types of atoms (T'=12): B, C, N, O, F, Si, P, S, Cl, Se, Br, and I. Each bond is
either a no-bond, single, double, triple or aromatic bond (R = 5).

The QM9 dataset is split into training and validation sets, while the ChEMBL
dataset is split into training, validation and test sets. We use the term dataset
distribution to refer to the distribution of the combined training and validation sets
for QM9, and the combined training, validation and test sets for ChEMBL.
Similarly, we use the term dataset molecule to refer to a molecule from the
combined QM9 or ChEMBL dataset.

To numerically evaluate our approach, we use the GuacaMol benchmark*S, a
suite of benchmarks for evaluating molecular graph generation approaches. The

GuacaMol framework operates on SMILES strings, so we convert our generated
graphs to SMILES strings before evaluation. Specifically, we evaluate our model
using distribution-learning metrics from GuacaMol: the validity, uniqueness,
novelty, KL-divergence?” and Fréchet ChemNet Distance® scores. GuacaMol uses
10,000 randomly sampled molecules to calculate each of these scores. Validity
measures the ratio of valid molecules, uniqueness estimates the proportion of
generated molecules that remain after removing duplicates and novelty measures
the proportion of generated molecules that are not dataset molecules. The KL-
divergence score compares the distributions of a variety of physiochemical
descriptors estimated from the dataset and a set of generated molecules. The
Fréchet ChemNet Distance score*® measures the proximity of the distribution of
generated molecules to the distribution of the dataset molecules. This proximity is
measured according to the Fréchet Distance in the hidden representation space of
ChemNet, which is trained to predict the chemical properties of small molecules®.

Data availability
The datasets used in this work are publicly available. They are referenced in the Datasets
and Evaluation part of the Methods section.

Code availability

Code, pretrained MGM models, training and generation scripts for MGM and baseline
models, and lists of generated molecules can be found at https://github.com/nyu-dl/
dl4chem-mgm®®.

Received: 21 January 2021; Accepted: 28 April 2021;
Published online: 26 May 2021

References

1. Bohacek, R. S., Mcmartin, C. & Guida, W. C. The art and practice of structure-
based drug design: a molecular modeling perspective. Med. Res. Rev. 16, 3-50
(1996).

2. Hochreiter, S. & Schmidhuber, ]. Long short-term memory. Neural Comput. 9,

1735-1780 (1997).

Vaswani, A. et al. Attention is all you need. arXiv, abs/1706.03762 (2017).

4. Kingma, D. P. & Max, W. Auto-encoding variational bayes. arXiv, abs.6114
(2013).

5. Rezende, D. J., Mohamed, S. & Wierstra, D. Stochastic backpropagation and
approximate inference in deep generative models. In ICML (2014).

6. Makhzani, A., Shlens, J., Jaitly, N. & Goodfellow, I. J. Adversarial
autoencoders. arXiv, abs/1511.05644 (2015).

7. Goodfellow, L. J. et al. Generative adversarial nets. In NIPS (2014).

8. Elton, D., Boukouvalas, Z., Fuge, M. D. & Chung, P. W. Deep learning
for molecular design-a review of the state of the art. arXiv, abs/1903.04388
(2019).

9. Tomas, M. et al. RNNLM - Recurrent Neural Network Language Modeling
Toolkit. In IEEE Automatic Speech Recognition and Understanding
Workshop (2011).

10. Bengio, Y. & Bengio, S. Modeling high-dimensional discrete data with multi-
layer neural networks. In NIPS, pages 400-406 (1999).

11. Hugo, L. & Iain, M. The neural autoregressive distribution estimator. In The
Proceedings of the 14th International Conference on Artificial Intelligence and
Statistics (2011).

12. Segler, M. H. S., Kogej, T., Tyrchan, C. & Waller, M. P. Generating focussed
molecule libraries for drug discovery with recurrent neural networks. CoRR,
abs/1701.01329 (2017).

13. Vinyals, O., Bengio, S. & Kudlur, M. Order matters: Sequence to sequence for
sets. arXiv, abs/1511.06391 (2016).

14. Shu, R, Lee, J., Nakayama, H. & Cho, K. Latent-variable non-autoregressive
neural machine translation with deterministic inference using a delta
posterior. arXiv, abs/1908.07181 (2019).

15. Mario, K. et al. Self-referencing embedded strings (selfies): A 100% robust
molecular string representation. arXiv, abs/1905.13741 (2019).

16. Li, Y. et al. Learning deep generative models of graphs. arXiv, abs/1803.03324
(2018).

17. You, J. et al. Graphrnn: Generating realistic graphs with deep auto-regressive
models. In ICML (2018).

18. Liao, R. et al. Efficient graph generation with graph recurrent attention
networks. In NeurIPS (2019).

19. Dai, H. et al. Scalable deep generative modeling for sparse graphs. arXiv, abs/
2006.15502 (2020).

20. Grover, A., Zweig, A. & Ermon, S. Graphite: Iterative generative modeling of
graphs. In ICML (2019).

21. Liu, J. et al. Graph normalizing flows. In NeurIPS (2019).

22. Rocio, M. et al. Graph networks for molecular design. ChemRxiv (2020).

©w

| (2021)12:3156 | https://doi.org/10.1038/s41467-021-23415-2 | www.nature.com/naturecommunications 1


https://github.com/BenevolentAI/guacamol_baselines
https://github.com/seokhokang/graphvae_approx
https://github.com/nyu-dl/dl4chem-mgm
https://github.com/nyu-dl/dl4chem-mgm
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Simonovsky, M. & Komodakis, N. Graphvae: Towards generation of small
graphs using variational autoencoders. arXiv, abs/1802.03480 (2018).

Jin, W. Barzilay, R. & Jaakkola, T. S. Junction tree variational autoencoder for
molecular graph generation. In ICML (2018).

Kwon, Y. et al. Efficient learning of non-autoregressive graph variational
autoencoders for molecular graph generation. Journal of Cheminformatics, 11
(2019).

Jiaxuan, Y. et al. Graph convolutional policy network for goal-directed
molecular graph generation. arXiv, abs/1806.02473 (2018).

Zhou, Z. et al. Optimization of molecules via deep reinforcement learning.
Scientific Reports, 9 (2019).

Simm, G. N. C,, Pinsler, R. & Hernéndez-Lobato, ]. M. Reinforcement learning
for molecular design guided by quantum mechanics. arXiv, abs/2002.07717
(2020).

Wang, L., Zhang, C,, Bai, R,, Li, ]. & Duan, H. Heck reaction prediction using
a transformer model based on a transfer learning strategy. Chem. Commun.
56, 9368-9371 (2020).

Liu, B. et al. Retrosynthetic reaction prediction using neural sequence-to-
sequence models. ACS Central Science 3, 1103-1113 (2017).

Bradshaw, J. et al. Barking up the right tree: an approach to search over
molecule synthesis dags. arXiv, abs/2012.11522 (2020).

Yang, K. et al. Improving molecular design by stochastic iterative target
augmentation. arXiv, abs/2002.04720 (2020).

Devlin, J., Chang, M.-W., Toutanova, K. & Lee, K. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL (2019).
Wang, A. et al. Glue: A multi-task benchmark and analysis platform for
natural language understanding. arXiv, abs/1804.07461 (2018).

Wang, A. et al. Superglue: A stickier benchmark for general-purpose language
understanding systems. arXiv, abs/1905.00537 (2019).

Nogueira, R. & Cho, K. Passage re-ranking with bert. arXiv, abs/1901.04085
(2019).

Liu, Y. et al. Roberta: A robustly optimized bert pretraining approach. arXiv,
abs/1907.11692 (2019).

Lan, Z. et al. Albert: A lite bert for self-supervised learning of language
representations. arXiv, abs/1909.11942 (2020).

Lample, G. & Conneau, A. Cross-lingual language model pretraining. arXiv,
abs/1901.07291 (2019).

Mansimov, E., Wang, A. & Cho, K. A generalized framework of sequence
generation with application to undirected sequence models. arXiv, abs/
1905.12790 (2019).

Guillaume, A. & Bengio, Y. What regularized auto-encoders learn from the
data generating distribution. arXiv, abs/1211.4246 (2014).

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. & Manzagol, Pierre-Antoine
Stacked denoising autoencoders: Learning useful representations in a deep
network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371-3408
(2010).

Ruddigkeit, L., Deursen, R. V., Blum, L. C. & Reymond, J.-L. Enumeration of
166 billion organic small molecules in the chemical universe database GDB-
17. J. Chem. Inf Model. 52, 2864-2875 (2012).

Raghunathan, R, Dral, P. O., Rupp, M. & Von Lilienfeld, O. A. Quantum
chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 1-7
(2014).

Anna, G. et al. The ChEMBL database in 2017. Nucleic Acids Res. 45,
D945-D954 (2016).

Brown, N,, Fiscato, M., Segler, M. H. S. & Vaucher, A. C. Guacamol:
Benchmarking models for de novo molecular design. arXiv, abs/811.09621 (2018).
Kullback, S. & Leibler, R. A. On information and sufficiency. Ann. Math. Stat.
22, 79-86 (1951).

Kristina, P., Renz, P., Unterthiner, T., Hochreiter, S. & Klambauer, G. Fréchet
chemnet distance: a metric for generative models for molecules in drug
discovery. J. Chem. Inf. Model. 58, 1736-1741 (2018).

Gomez-Bombarelli, R. et al. Automatic chemical design using a data-driven
continuous representation of molecules. arXiv, abs/1610.02415 (2016).
Kusner, M. J., Paige, B. & Herndndez-Lobato, J. M. Grammar variational
autoencoder. In ICML (2017).

Cao, N. D. & Kipf, T. Molgan: An implicit generative model for small
molecular graphs. arXiv, abs/1805.11973 (2018).

Jensen, J. H. Graph-based genetic algorithm and generative model/monte
carlo tree search for the exploration of chemical space. ChemRxiv (2018).
Cho, K. et al. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, 1724-1734 (2014).
Josep, A.-P. et al. Randomized smiles strings improve the quality of molecular
generative models. ChemRxiv (2019).

55. Bengio, Y., Ducharme, R. éjean, Vincent, P. & Janvin, C. A neural probabilistic
language model. J. Mach. Learn. Res. 3, 1137-1155 (2003).

56. Gilmer, J. et al. Neural message passing for quantum chemistry. In
Proceedings of the 34th International Conference on Machine Learning,
1263-1272 (2017).

57. Ba, J. L, Kiros, J. R. & Hinton, G. E. Layer normalization. arXiv, abs/
1607.06450 (2016).

58. Nair, V. & Hinton, G. E. Rectified linear units improve restricted boltzmann
machines. In ICML, 807-814 (2010).

59. Glorot, X., Bordes, A. & Bengio, Y. Deep sparse rectifier neural networks. In
Proceedings of Machine Learning Research, 15, 315-323 (2011).

60. Rdkit: Open-source cheminformatics. URL http://www.rdkit.org.

61. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980 (2015).

62. Guimaraes, G. L. et al. Objective-reinforced generative adversarial networks
(ORGAN) for sequence generation models. CoRR, abs/1705.10843 (2017).

63. Li, Y., Zhang, L. & Liu, Z. Multi-objective de novo drug design with
conditional graph generative model. J. Cheminform. 10, 33 (2018).

64. Fiscato, M., Vaucher, A. C. & Segler, M. Guacamol all smiles (2018).

65. Goh, G. B, Siegel, C., Vishnu, A. & Hodas, N. O. Chemnet: A transferable
and generalizable deep neural network for small-molecule property prediction.
arXiv, abs/1712.02734 (2017).

66. Mahmood, O. & Cho, K. Masked Graph Modeling for Molecule Generation.
nyu-dl/dl4chem-mgm: accepted. https://doi.org/10.5281/zenodo.4708242
(2021).

67. Polykovskiy, D. et al. Entangled conditional adversarial autoencoder for de
novo drug discovery. Molecular Pharmaceutics (2018).

Acknowledgements
O.M. would like to acknowledge NRT-HDR: FUTURE. K.C. thanks Naver, eBay and
NVIDIA.

Author contributions

O.M., EM. and K.C. conceived the initial idea and started the project. O.M. wrote the
code and ran most of the experiments with the help of EM. O.M., EM., R.B. and K.C.
wrote the paper and conceived improvements to the experiments. EM worked on this

project during his time at New York University.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-23415-2.

Correspondence and requests for materials should be addressed to K.C.

Peer review information Nature Communications thanks Youngchun Kwon and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

| (2021)12:3156 | https://doi.org/10.1038/541467-021-23415-2 | www.nature.com/naturecommunications


http://www.rdkit.org
https://doi.org/10.5281/zenodo.4708242
https://doi.org/10.1038/s41467-021-23415-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Masked graph modeling for molecule generation
	Results
	Masked graph modeling overview
	Mutual dependence of metrics from GuacaMol
	Analysis of representative metrics
	Comparison with baseline models
	Generation trajectories
	Conditional generation
	Computational efficiency

	Discussion
	Methods
	Model architecture
	Property embeddings
	Node property embeddings
	Edge property embeddings
	Model architecture, training and unconditional generation details
	Conditional generation details
	Details of baseline models
	Datasets and evaluation

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




