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Mesoscopic structures form in dense granular materials due to the self-organisation of the constituent
particles. These structures have internal structural degrees of freedom in addition to the translational degree
of freedom. The resultant granular elasticity, which exhibits intrinsic variations and inevitable relaxation, is
a key quantity that accounts for macroscopic solid- or fluid-like properties and the transitions between
them. In this work, we propose a potential energy landscape (PEL) with local stable basins and low elastic
energy barriers to analyse the nature of granular elasticity. A function for the elastic energy density is
proposed for stable states and is further calibrated with ultrasonicmeasurements. Fluctuations in the elastic
energy due to the evolution of internal structures are proposed to describe a so-called configuration
temperature Tc as a counterpart of the classical kinetic granular temperature Tk that is attributed to the
translational degrees of freedom. The two granular temperatures are chosen as the state variables, and a
fundamental equation is established to develop non-equilibrium thermodynamics for granular materials.
Due to the relatively low elastic energy barrier in the PEL, granular elasticity relaxes more under common
mechanical loadings, and a simple model based on mean-field theory is developed to account for this
behaviour.

D ense granular materials are collections of distinct macroscopic particles and are widely encountered in
engineering and natural hazards1,2. Due to their discrete and dissipative nature, particles self-organise into
various types of coherent structures, such as vortices, even at small Reynolds numbers3,4 and force net-

works5, which indicates that these particles have a pronounced short range order but no long-range structural
order, as represented by the pair correlation function6. Such mesoscopic structures have been a long-standing
mystery and cause the unique properties of granular materials that are not present in other materials, such as
elasto-plastic granular solids, Herschel-Bulkley granular flows, or combinations of the two. Granular elasticity is a
key physical quantity that controls the unique thermodynamic, kinetic and dynamic properties of granular
materials. The elastic modulus can be determined by measuring the elastic wave velocity in acoustic experi-
ments7,8 or by applying an infinitesimal strain (e.g., less than 1024) to measure the effective elastic response via
discrete element simulations9.

Granular materials exhibit significant fluctuations and uncertainties in their physical quantities. The fluctua-
tions in particle velocities and their importance in granular gases were appreciated by A. Einstein in his studies of
Brownian motion in the early 1900s10. Because velocity fluctuations nearly vanish in dense systems, the fluctua-
tions in the contact stress or elastic energy become more significant11. Several ensemble theories for static states
have been proposed to explore the influence of granular configurations on the statistical properties of the free
volume or contact stress. This was first studied by Edwards and co-workers by proposing a temperature-like
parameter compactivity x 12, and measurements of x for binary disc packing were recently reported13. Different
concepts of granular temperatures have been considered in several contexts14–18. Moreover, granular elasticity
inevitably relaxes into more stable states due to its metastable nature, although the process of relaxation is
extremely slow under small mechanical agitations, as has been observed in acoustic measurements19.
Accordingly, elastic relaxation may be a powerful means of understanding the nature of solid- and fluid-like
transitions in granular materials.

Understanding the elasticity of granular materials is one of the oldest and most challenging problems in the
theory of matter. It may provide an essential bridge to link grain-scale dynamics to complex macroscopic
phenomena and facilitate future efforts in establishing a non-equilibrium thermodynamic theory of granular
materials20,21. In this paper, we report on a preliminary exploration of granular elasticity based on the contact
stress distributions in 50 static packings of smooth particles at a constant confining pressure of 10 kPa. We then
employ a configuration potential energy landscape (PEL) to illustrate the intrinsic variations of the elastic energy.
An elastic energy density function is proposed for local stable states. The elastic and kinetic energies for sheared
granular flows is probed, and it is found that for well-jammed systems elastic dominates kinetic energy, and
energy fluctuations become primarily elastic in nature. An additional granular temperature, called the config-
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uration temperature Tc, is then proposed to denote the elastic energy
fluctuations. To describe the transition between neighbouring stable
states in the PEL, we propose a simple model for granular elasticity
relaxation that is based on mean-field theory.

Results
Contact stress and potential energy density. The packing of
cohesionless spheres with a finite value of surface friction m is
hyper-static except at the isostatic limits as m 5 0 or m R ‘. This
means that for a single granular packing, many different sets of force
networks exist that satisfy the force balance on each particle11. Each
set of force network configurations may be characterised by a
tensorial form variable Y, such as the fabric tensor9. Force network
ensemble (FNE) theory describes fluctuations in the first invariant of
the contact stress by averaging over all of the balanced force networks
on a single frozen spatial distribution of particle positions11. In this
study, we focus on the local pressure distribution. Fifty granular
assemblies with a confining pressure of 10 kPa were generated
using the discrete element method. Each packing consists of N
frictionless spheres in a cubic box with periodic boundary
conditions with N 5 10,000. To avoid crystallisation, we use a
binary mixture of particles with diameter 6.0 mm and 4.2 mm, i.e.,
the ratio is 1.4. The material properties are E 5 69.6 GPa, n 5 0.20
and m5 0.0. The particle density rp5 2,650 kg/m3 (see METHODS
section for simulation details).
The inset of Fig. 1 shows the packing (lower part) and force net-

work (upper part) with a structural parameter Y. One microscopic

parameter is the pressure p on an individual grain, where p~
1
3
seii is

the trace of the contact stress and is calculated as seij~
1
Vp

XNc

c~1

f ci r
c
j ,

where the summation occurs over all of the contact forces that act on
the particle, Nc is the number of contacts of the particle, Vp is the
particle volume, f ci is the i-th component of the contact force that acts
on the contact, and rcj is the j-th component of the position vector
from the centre particle to the contact. The mean pressure for a

granular assembly is expressed as P~
1
V

XN
i~1

pVp, where V is the

volume of the sample andN is the number of particles. In the simula-
tions, P is equal to the confining pressure.
Fig. 1 shows the probability density distribution of the normalised

pressure p/P. Similar to the force distribution, a peak is located at

approximately p/P< 1. At the limit of small local pressures p, P, the
local pressure distribution can be fitted as f(p/P)5 0.21 exp(1.6p/P),
and the index value may reflect the local connectivity of the network
and the local force balance constraints. In this study, the coordina-
tion number of system Z was measured as 5.4, and the FNE predic-
tion would be f(p/P) , (p/P)1.4. This difference may arise from the
fact that the FNE ensemble is developed from the triangular lattice
model, in which the particles are identical and fixed at the lattice
positions, whereas the particles in this study are randomly packed.
For large local pressures p. P, f(p/P) exhibits a normal distribution
of f(p/P)5 2.20 exp(2(p/P2 0.19)2/0.892))1 0.057, which is similar
to the FNE results. The circumstances in which large pressure dis-
tributions are normal or exponential remain the subject of debate16.
For a given force networkY, a characteristic elastic strain at each

contact imay be defined as "ei (Y)~di=Ri, where di is the depth of the
contact deformation and Ri is the effective radius of the contacting
particles. The elastic potential energy at each contact can be
expressed as a power law function of "ei (Y)n; for instance, n 5 2.5
for Hertzian particles. In a granular assembly, the average potential

energy density can be calculated as ec(Y)~
1
V

XNc

i~1

"ei (Y)
� �n

*

"e(Y)½ �m, and the average characteristic strain is defined as

"e(Y)~
1
NC

XNc

i~1

"ei (Y). Fig. 2 implies that at a constant confining

pressure of 10 kPa, the characteristic strain ee(Y) varies from 0.01
to 0.025 due to the variation of the structure variable Y in the 50
packings. We can obtain the average elastic potential energy express-
ion by fitting these 50 packings; i.e., ec 5 1.5 3 105(ee)2.4 J/m3, as
shown by the red curve in Fig. 2. The fact that both the contact area
and strain change simultaneously as the particle is deformed leads to
a nonlinear contact response, i.e., m is slightly different than n.
Under an infinitesimal deformation of a jammed granular assem-

bly, every particle undergoes an extremely slightmotion such that the
configuration of the force network can completely recover after the
loading is removed. Thus, an elastic or reversible response is defined
when the configuration of the force network is unchanged during
mechanical deformation in the applied fields. Although extensive
work has been performed on granular elasticity using numerical
simulations9,22 or ultrasonic detection8, there is no general expression
for granular elasticity. A Green elastic density function may be

appropriate for an ideally elastic stage, such as ec("
e
ij,Y)~

ð
seijd"

e
ij.

The elastic moduli are directly dominated by the second derivative of

Figure 1 | Probability density of the normalised mean pressure p/P. The
symbols are calculated from 50 packings with a constant confining

pressure of P5 10 kPa. A static granular sample is shown in the inset. The

lower part shows particle packings, and the upper part shows the force

network.

Figure 2 | Variations of the elastic energy density with characteristic
strain in 50 packings. The enlarged inset shows three pairs of values in

packings labelled as Yi, Yj, Yk.
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the potential energy that corresponds to the current force network
state Y.
In granular solid hydrodynamics (GSH)23,24, an elastic energy den-

sity function is defined as ee~B0

ffiffiffiffi
D

p r{r1
rcp{r

 !c
2
5
D2z

1
j
us

2

� �
where r is the mass density of the system. rlp and rcp are the random
loose packing density and close packing density15, respectively.

r1~
1

az1
2rlp{(1{a)rcp
h i

. D~{"ekk and u2s~
1
2
"e,0ij "

e,0
ij are the

first and second invariants of the contact strain "eij of the particles,

respectively, and "e,0ij is the traceless part. As a granular system enters
the well-jammed state (i.e. rR rcp) the calculated elastic energy and

elastic stress would both become infinitely large, eeR‘, seij~
Lee
L"eij

~

B0
r{r1
rcp{r

 !a

D2z
1
2j

1ffiffiffiffi
D

p us
2

� �
-dij
� �

z
1
j

ffiffiffiffi
D

p
"e,0ij

	 

??. The fact

is that the elastic energy density of a granular material should not
exceed the elastic energy density of constituent particles. Consequently,
untrue elastic energy and stress, and thus bulk properties of granular
materials in solid-like states may be incorrectly predicted.
Recent jamming studies find that mechanical properties of granu-

lar material after jammed can be well scaled with the distance to
Point J, i.e (w 2 wc) 25,26. In this study, we are inspired to revise the
elastic energy density as

ec~B0(w{wc)
bDa(D2zju2s ) ð1Þ

where B0 is an elastic constant, (w2 wc) reflects the influence of the
packing fraction after the system is jammed with the critical packing
fraction wc (c.f. 25,27). The parameters "eij and w are independent
from each other, and both contribute to the macroscopic strain. In
studies of the micro-macro quantification of the internal structure,
particles are often assumed to be rigid bodies, and thus, the deforma-
tions of individual particles are always neglected. In this work, both
"eij and r (i.e., wrp with a particle density rp) are chosen as state
variables to develop the thermodynamic descriptions in the next
section, whereas in jammed systems (w . wc), particles overlap, a
contact strain "eij is generated, and the invariant D, ms should be
related to (w 2 wc); however, the relationships are not known. In
Equation (1), the four factors B0, a, b and j are functions of both the
structural variable Y and the material properties of the particles,
such as the modulus, size distribution, and friction28–30.
The acoustic method can ensure that accurate parameters are used

in the elastic potential, which provides us with an important way to
study the nonlinear elasticity behaviour of granular materials in
detail if the stresses, densities, and uniformity of the sample are
thoroughly controlled and measured. In isotropic compression, the
static pressure P in a granular assembly can be derived as

P~
Lec
LD

~B0(w{wc)
b(az2)Daz1 ð2Þ

and the longitudinal wave velocity vp and transversal wave velocity vs
are

vp~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B0(w{wc)

bDa(3a2z9az6z4j)=3r
q

,

vs~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B0(w{wc)

bDaj=r

q ð3Þ

In the acoustic experiments by Makse et al.31, glass beads were used.
The particle diameter of was 45 mm. The typical material properties
were E 5 69.6 GPa, n 5 0.20 and m 5 0.0. The particle density rp 5

2,650 kg/m3. They found that vs=vp~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3j=(3a2z9az6z4j)

p
<0:66

in isotropic compression tests. The contact potential of cohensionless

spherical glass beads can be reasonably treated as Hertzian potential;
thus, we simply set a 5 0.50 in this study, and obtain j 5 3.88. In
their experiment, wc was measured as 0.63. In this study, by employ-
ing the numerical technique to determine wc 32, wc < 0.635 is deter-
mined for 10,000 uniform glass beads under isotropic compression.
The factors B0 5 9.223 109 Pa, b5 0.39 are obtained by comparing
wave velocities calculated in this study and from previous experi-
ments in Ref. 31, as shown in Fig. 3. It demonstrates that acoustic
methods are appropriate to determine the factors in the revised
elastic energy density function in future applications in specific
granular materials.

Elastic energy fluctuations and configurational temperature.Most
thermodynamic systems at equilibrium states have strong scale
separation, and the concept of temperature may be an important
characterisation of fluctuations in the molecular velocity. In
statistical mechanics, the second moment of the internal energy
fluctuations is related to temperature as

E{hEið Þ2~rCvT
2 ð4Þ

where Cv is the thermal capacity of the system. In heterogonous
systems, the energy is not equally distributed among the several
degrees of freedom, and different degrees of freedom with different
relaxation times may have different temperatures33,34. A classic
example of such a system is found in plasma physics. Here,
electrons and ions may have widely different kinetic energies, and
the energy exchange through collisions is extremely slow. This
situation may be described by the equations for the evolution of
the electron and ion temperatures, respectively.
We analyse the mean and fluctuating parts of the elastic and

kinetic energy of a jammed granular flow under simple shear. The
material properties are E 5 69.6 GPa, n 5 0.20 and m 5 0.2. The
particle density rp 5 2,650 kg/m3. a 5 0.07, corresponding to a
typical restitution coefficient of 0.9. The volume (i.e. w 5 0.648) is
constant. To avoid crystallisation, we use a binary mixture of part-
icles with diameter 6.0 mm and 4.2 mm. The steady state velocity
distribution in the x-direction for a typical case is shown in Fig. 4.
Darker shading indicates slower velocities. Besides energy dissipa-
tion, the system’s energies are the elastic potential energy and the
kinetic energy stored in particles. The kinetic energy Ek is a sum-
mation over the kinetic energy of all the particles. The elastic energy
is a summation over the elastic energy of all contacts, Ec~P 8

15
Eeff

ffiffiffiffiffiffiffi
Reff

p
d5=2 where d is the inter-particle overlap. The mean

parts of the elastic and kinetic energy are hEki and hEci shown in

Figure 3 | Wave velocities versus pressure obtained in this study and
from previous experiments7,31.
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Fig. 4. hEci slightly increases from 8.70 Jole/m3 to 54.20 Jole/m3,
while hEki increases nearly 8 orders. hEki is much smaller than hEci.
Even at shear rate of 10.0/s, hEci is still about 25.5 times of hEki.
According to equation (4), the fluctuating parts of the elastic and

kinetic energy are defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ec{hEcið Þ2� �q

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek{hEkið Þ2� �q

,

respectively. The results are shown in Fig. 5. It is found thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek{hEkið Þ2� �q

*10{2hEki and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ec{hEcið Þ2� �q

*10{1hEci. For
the whole range of shear rates,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek{hEkið Þ2� �q

is smaller by at least

3 orders of magnitude than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ec{hEcið Þ2� �q

. It clearly shows that for

well-jammed systems elastic dominates kinetic energy, and energy
fluctuations become primarily elastic in nature.
The kinetic granular temperature Tk measures the fluctuations in

the translational velocity of the particles and can be defined as

Tk:
1
D
hv0

iv
0
ii, where D is the dimension of the system, v

0
i is the

fluctuation in the i-th component of the velocity of a particle,
and h:::i indicates the ensemble average35–39. Several remarkable
properties of Tk have been reported, including the decay of the
temperature in granular gas (i.e., the so-called Haff’s law), non-
homogeneous cluster formation, and shock wave propagation39–41.
However, non-equilibrium statistical mechanics are still not well
developed for discussions of the kinetic granular entropy Sk (the
conjugate variable of Tk), the transport coefficients and the entropy
production rate42. The ensemble-averaged kinetic energy fluctuation

should be rigorously expressed as TkSk~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek{hEkið Þ2� �q

; however,

in most textbooks, it is simply written as rTk. Figs. 4 and 5 clearly
demonstrate Tk does not suffice to even approximately describe a
dense slowly sheared granular system, and it is essential to incorp-
orate elastic energy and its fluctuations.
By considering the translational and internal structural degrees of

freedom in granular materials, a two-granular-temperature descrip-
tion is appropriate to apply for the two different degrees of freedom.
As a granular assembly is jammed, a force network is established, and
an additional parameter that indicates the structural state of the
material is required. We introduce the configurational granular tem-
perature Tc to account for fluctuations in the contact stress in the
force network. The ensemble-averaged elastic potential energy fluc-
tuation can be expressed as Ec,f5TcScwith the configurational granu-
lar entropy Sc. The determination of Sc is one of the main themes in
studies of the statistical mechanics of static granular materials. The
rigorous definition of Tc would be rather complicated due to the
tensorial nature of elastic stress and strain. At the preliminary stage,
Tc may be simply defined as Tc 5 hp9p9i1/2, where p9 5 p 2 P is the
fluctuation pressure (see Fig. 1). The average elastic energy fluc-

tuation may be simply expressed as Tc"e~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ec{hEcið Þ2� �q

. This

consideration of Tc is not perfect, but might view this as a further
step fromGSH towards a more reasonable thermodynamics descrip-
tion of dense granular systems. The ultimate test will be to perform
physical experiments where the validity of the proposed concept ofTc

can be verified.
At the primary stage, the absolute zeros of Tk and Tc can be exam-

ined. Tk 5 0 indicates that all particle velocities are the exactly the
same as the velocity of the frame. For orderly packed identical part-
icles under isotropic loading, the pressure on each particle is the same
such that Tc is zero. Tc also vanishes in unjammed systems because
there is no force network. Large values of Tc indicate large diver-
gences in the particle stress, which we observed as strong force chains
and weak force chains in photo-elastic tests. Because of the mutual
influences of the internal processes, energy would transfer between
several degrees of freedom. Tc may partially transfer to Tk, which is
often observed as stress stick-slip and simultaneous rearrangement
of local particles. BothTk andTcwould dissipate rapidly into heat, but
heat cannot easily transfer to Tk and Tc.

A two-granular temperature thermodynamics fundamental
equation. Additional variables that indicate the structural state of
matter typically need to be incorporated into the development of a
reliable thermodynamic connection between fundamental micro-
mechanical models and continuum-level models. In granular
materials, by keeping the basic variables in the equilibrium state,
the space of state variables are enlarged with the two non-
equilibrium variables, namely, the kinetic granular entropy density
sk and configurational granular entropy density sc:

s,w,V,r,pi,"
e
ij,s

k,sc
n o

ð5Þ

The thermodynamic quantities are all relative to a unit volume of the
deformed system. The subscripts i, j, and k indicate the space
coordinates in the Cartesian coordination system and satisfy the
Einstein summation convention. The conjugate variables of the
energy density w are temperature T 5 hw/hs, chemical potential
m 5 hw/hr, velocity vi 5 hw/hpi 5 rvi, contact stress s

e
ij~Lw=L"eij,

and two granular temperatures Tk
5 hw/hsk and Tc

5 hw/hsc. The
validity of the concepts of Tk and Tc should be investigated carefully
because the chaotic assumption may not hold further. However, the
values of Tk and Tc can still be used to qualitatively describe the degree
of shearing or perturbation. We assume that the process of
deformation occurs so slowly that thermodynamic equilibrium is
established in the granular systems at every instant according to
the external conditions.

Figure 4 | Variations of themean kinetic energy (circles) andmean elastic
energy (squares) with shear rates. The inset shows an example of shear

velocity distribution. A darker shading indicates slower velocities.

Figure 5 | Variations of the fluctuated kinetic energy (circles) and
fluctuated elastic energy (squares) with shear rates.
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The fundamental thermodynamic equation would be

dw~Tdszmdrzvidpizseijd"
e
ijzTkdskzTcdsc ð6Þ

where (Tds1 mdr) is the internal energy that is contributed from the
microscale, vidpi is the mean kinetic energy, Tkdsk is the fluctuation
kinetic energy, seijd"

e
ij is the mean elastic energy, and Tcdsc is the fluc-

tuation elastic energy. The thermodynamic pressure P of granular
flows is generated only by the random motions of the particles P 5
Ts 2 w 1 pivi 1 mr 1 Tksk 1 Tcsc. For relatively simple cases, the
fundamental thermodynamic equation (6) may be simplified as 1) dw
5Tds1 mdr1 vidpi1Tkdsk andP~Tksk!v2i for granular gases

34–41,
and 2) dw~Tdszseijd"

e
ij and P 5 0 for quasi-static deformations of

granular solids. A similar expression for the fundamental equation for
ordinary elastic solids was derived by Landau and Lifshitz43.
The equations for the evolution of the hydrodynamic variables

(e.g., mass, momentum, energy and entropy) are given by the normal
balance laws. seij,"

e
ij can be determined once the elastic energy

(Equation (1)) is specified. However, no general criteria for the equa-
tions for the evolution of granular temperatures or granular entro-
pies exist, with the exception of the restrictions imposed on them by
the second law of thermodynamics. Specifying the time evolutions of
Tk and Tc and quantifying energy cascading, especially the entropy
production rates, would be crucial points in future studies of the
thermodynamic descriptions of granular materials. A preliminary
scenario of energy cascading was proposed as a two-stage irrevers-
ibility, i.e., the transitions from hydrodynamic variables to granular
temperature and then to heat23.
Moreover, a generalisation of the kinetic temperature and config-

urational temperature would be more feasible than employing two
granular temperatures. A unified granular temperature Tg can be
defined as Tgdsg 5 Tkdsk 1 Tcdsc, which includes the collective fluc-
tuations of both the kinetic and elastic potential energy. The fun-
damental equation (6) would then be simplified to dw~Tdszmdrz
vidpizseijd"

e
ijzTgdsg . This is the fundamental equation in so-called

granular solid hydrodynamics, in which a single granular temper-
ature was used to quantify the extent of agitation24.

Elasticity relaxation. Classical thermodynamics typically interprets
the slow relaxation of protein folding and glasses in terms of a PEL
with simple structural features44,45. The PEL is an analogue of the
topological surface but in a multi-dimensional configuration space.
For granular materials, the quantities can be preferably chosen as
elastic energy (ec)-related variables, such as the force network
structure variable Y proposed in this work. We can clearly
illustrate the correlations between Y and ec on the PEL, which is
shown schematically in Fig. 6. The landscape of the PEL is
intrinsically rough with basins that are separated by energy
barriers. Three blue points with the structural variables Yi, Yj and
Yk and their elastic energy densities are also shown in Fig. 2. The
energy barriers are depicted schematically in this study, and the
volume of the potential energy basins can be measured using the
Monte Carlo method46. At each basin bottom the potential energy
is of local minimum and corresponds to a given realisation of the
force network. It would be stable if the mechanical excitation is
smaller than the energy barrier; see point Yk. In this case, Yk is
reversible upon unloading, and high-frequency relaxations would
correspond to mechanical excitations of the state. The elastic
moduli are directly dominated by the second derivative of the
potential energy in the structural state Yk. Equation (1) for the
potential energy would hold through a succession of deformations
at each basin in the PEL as a function of the corresponding Y.
Acoustic tests have shown that the elastic modulus of a granular

material is generally 103 times smaller than that of the constituent
particles due to structural disorder8. For example, the modulus of
quartz is on the order of tens of GPa, whereas the modulus of a sand

pile is on the order of MPa. Thus, elasticity relaxation, which is essen-
tially a rearrangement of force networks, would inevitably occur under
typical mechanical loadings and play an important role in changing the
elastic modulus of granular materials (see the transition between Yi

and Yj in Fig. 6). Such transitions between neighbouring basins rep-
resent slow dynamic relaxation. AsY evolves, the point that represents
the system travels on the PEL while following certain ensemble stat-
istics (c.f.11,12). The number of available basin minima at the corres-
ponding energy level on the PEL may be quantified with the
configuration entropy Sc. The packing structure, potential energy, con-
figuration entropy and effective energy barrier of a basin all correlate
with one another based on the PEL interpretation presented above.
Inspired by the analysis of an elastic deformation in metallic

glass47, we develop a simplemean-fieldmodel to quantitatively deter-
mine the elastic relaxation in granularmaterials using transition state
theory. Under mechanical agitation that is quantified with the uni-
fied granular temperature Tg, the transition rates Z0

ij and Z
0
ji between

two adjacent stable states i and j can be expressed as Z0
ij~

n exp ({DGij=rTg) and v0
ji~n exp ({DGji=rT

g ), respectively,
where v is the attempt frequency and DGij and DGij denote the two
energy barriers illustrated in the inset of Fig. 6. In equilibrium states,
Z0
ij<Z0

ji is a first-order approximation such that any spontaneous
flow of transitions can be neglected over short periods. If we assume
that the energy potential is biased toward the stable state j upon a
mechanical perturbation Z0

ij of the system, then we can approximate

the new transition rates by Zij~Z0
ij(1zVt=rTg ) and Zji~Z0

ji

(1{Vt=rTg), where t and V denote the applied shear stress and
activation volume of the force network, respectively, and satisfy Vt/
rTg

= 1. Assuming that Ni and Nj constrained structural transitions
occur and transformmany of the force networks from the stable state
i to j and back to i, we can write

dNi

dt
~{ZijNizZjiNj,

dNj

dt
~{ZjiNjzZijNi ð7Þ

The net flow of transitions in the loading direction is governed by

dx
dt

z ZijzZji
� �

x~Zij{Zji ð8Þ

where x 5 (M 2 Ni)/M 5 (Nj 2 M)/M, in which M 5 (Ni 1 Nj)/2
remains a constant throughout the process. Substituting the expres-
sions for Zij and Zji into this equation yields

Figure 6 | Schematic illustration of a PEL that arises from the disordered
nature of the force network and its inherent fluctuations. The bottom of

each basin corresponds to a given realisation of the force network. The

three packings Yi, Yj, Yk are calculated in Fig. 2. The energy barriers

between the basins are depicted schematically. The barrier-crossing event

leads to a constrained configuration change of the force networks.
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dx
dt

z2nx exp {
DG
rTg

� �
~2n

tV

rTg

� �
exp {

DG
rTg

� �
ð9Þ

with DG 5 DGij < DGji.
We can postulate how the generalised temperature Tg determines

which level of the PEL is being sampled. If a system is highly excited,
the energy fluctuation (Tg) would be so high that exp(2DG/rTg), 1;
granular elasticity is lost completely, which means that the material
enters the gaseous state. The system would travel globally around the
PEL and exhibit ergodicity. When Tg is sufficiently low that DG ?

rTg, such activation events are greatly suppressed (i.e., exp(2DG/
rTg), 0). The PEL becomes increasingly hierarchical, and the elastic
relaxation bifurcates into basin hopping. This model provides an
analytical framework to explain several phenomena that have been
recently explored and supports the theory that the variability in the
local rheological properties of granular materials is due to the
intrinsic structural heterogeneity.

Discussion
Granular elasticity originates from enduring interparticle contacts,
whereas the emergent force network structures generate a greater
variety of stable states, significant fluctuations and clear relaxations
than in molecular systems. The PEL employed in this work provides
a complete scenario of granular elasticity. The proposed elastic
energy density function can be calibrated simply with acoustic
experiments and is consistent with the major conclusions obtained
in recent jamming studies. The configuration temperature Tc in this
study is an extension of the kinetic temperature Tk that has been used
in most granular kinetics since the 1980s. Both temperatures would
be valid for a wide range of regimes of granular materials from static
to dynamic and from dilute to dense. The elastic relaxation model is
based on mean-field theory and neglects the interactions between
different structures when the stress is lower than a certain value. This
work was developed specifically for granular elasticity and empha-
sises the mesoscopic structure and macroscopic elasticity relation-
ships. Furthermore, it may suggest a general methodology for
handling a wide range of existing complex systems and their dynamic
heterogeneity.

Methods
Discrete element simulations. The contact model we use follows Hertz-Mindlin
contact theory with Coulomb sliding friction48. The contact forces in the directions
normal and tangential to the contact plane between two contacting particles, Fn and
Ft, are expressed as

Fn~{knd
3=2
n {gnd

1=4
n

_dn, Ft~minf{ktd
1=2
n dt{gtd

1=4
n

_dt ,mFng ð10Þ

where dn, dt are the corresponding deformations and m is the coefficient of friction.

The coefficients can be calculated as kn~
4
3

ffiffiffiffiffiffiffi
Reff

p
Eeff ,kt~8

ffiffiffiffiffiffiffi
Reff

p
Geff ,

gn~a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
meff kn

q
,gt~a

ffiffiffiffiffiffiffiffiffiffiffiffi
meff kt

q
where Eeff~ (1{n21)=E1z(1{n22)=E2

� �{1
,

Geff 5 [2(1 1 v1)(2 2 v1)/E1 1 2(1 1 v2)(2 2 v2)/E2]21 and Reff 5 [1/r1 1 1/r2]21.
Subscripts 1 and 2 refer to the two particles that are in contact, and Ei, vi,mi and Ri are
the Young’s modulus, Poisson’s ratio, mass and radius of particle i, respectively. To
prepare a static packing at a constant confining pressure, 10,000 particles are initially
generated in a cubic box, and the box then shrinks to ensure that the packing fraction
w increased by steps of 1 3 1025. After each increment step of w, the particles are
allowed to relax for a sufficiently long period of time to allow the system to reach a
static state. The stopping criteria for each step were 1) themean stress P for successive
iterations deviated by less than 1025 Pa, and 2) themean stress remained at a constant
value of P 5 10 kPa.

To simulate a simple shear flow, we follow the standard techniques developed for
non-equilibrium molecular dynamics. The velocity in the x-direction vx has a con-
stant gradient in the y-direction, as shown in Fig. 4. When a particle moves out of the
computational domain in any direction, it re-enters from the opposite direction. The
domain is expanded or compressed to the desired volume according to the prescribed
packing fraction. All data are obtained after the shearing motion has reached a steady
state, as detected by observing the time series of the stresses. The granular system is
sheared using a shear rate of vx/L with length L.

Elastic wave velocity analysis. To investigate the propagation of elastic waves in
granular materials, one can use the general equation of motion r€uizLjscij~0 and the
contact stress dscij~Mijkld"

c
kl , where ui is the elastic displacement vector in elastic

waves, andMijkl~L2ec=L"cijL"
c
kl is the stress-dependent stiffness tensor which can be

derived from Equation (1),

Mijkl~B0 w{wcð ÞDa{2 a(a{1)ju2s{(az2)(az1)D2z
4
3
jD2

� �	
dijdkl

{dikdjl{dildjkz2aDj(ukldijzuijdkl)
� ð11Þ

Assuming "cij~(LiujzLjui)=2 and ui~Aie
i(wt{kjxj) , the equation of motion is re-

written as

�Mijklkjkk{rv2dil
� �

ul~0 ð12Þ

with �Mijkl~(MijklzMijlk)=2 with the stiffness tensor. They have non-zero solutions
only if the determinate of the coefficient is zero, i.e. �Mijklkjkk{rv2dil



 

~0.
Substituting k2 5 kiki, ni 5 ki/k and the wave velocity v 5 v/k yields

Sil{v2dil


 

~0 ð13Þ

with the wave tensor Sil~ �Mijklnjnk=r and the eigenvalue v2. In the case of propaga-
tion along the principal stress axes Sil becomes diagonal.

Assuming wave propagation along the axe of sc33, n5 (0, 0, 1), three wave velocities
vi and corresponding displacement vectors ui can be expressed as

v1
v2
v3

0
B@

1
CA~

ffiffiffiffiffiffi
S11

pffiffiffiffiffiffi
S22

pffiffiffiffiffiffi
S33

p

0
B@

1
CA,

u1
u2
u3

0
B@

1
CA~

u1 0 0

0 u2 0

0 0 u3

0
B@

1
CA ð14Þ

where S115 (M13311M1313)/2, S225 (M23321M2323)/2. We can see that the elastic
waves traveling along direction n are either pure transversal (u1, u2) or longitudinal
(u3) modes, i.e. v1 and v2 are the transversal wave velocity, and v3 is the longitudinal
wave velocity. For an isotropically confined granular assembly, the stiffness tensor
component would be M1331 1 M2323, M1331 1 M2323. From Equation (1, 11), we

obtain S11~S22~
Bj
r
Da and S33~

BDa

r
(az1)(az2)z

4
3
j

� �
. Hence, the trans-

versal wave velocity and longitudinal wave velocity are

vp~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B0(w{wc)

bDa(3a2z9az6z4j)=3r
q

and vs~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B0(w{wc)

bDaj=r

q
.
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