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Abstract

Objective: To predict pathological nodal stage of locally advanced rectal cancer by a radiomic method that uses

collective features of multiple lymph nodes (LNs) in magnetic resonance images before and after neoadjuvant

chemoradiotherapy (NCRT).

Methods: A total of 215 patients were included in this study and chronologically divided into the discovery

cohort (n=143) and validation cohort (n=72). In total, 2,931 pre-NCRT LNs and 1,520 post-NCRT LNs were

delineated from all visible rectal LNs in magnetic resonance images. Geometric, first-order and texture features

were extracted from each LN before and after NCRT. Collective features are defined as the maximum, minimum,

mean, median value and standard deviation of each feature from all delineated LNs of each participant. LN-model

is  constructed  from collective  LN features  by  logistic  regression  model  with  L1  regularization  to  predict

pathological nodal stage (ypN0 or ypN+). Tumor-model is constructed from tumor features for comparison by

using DeLong test.

Results: The LN-model selects 7 features from 412 LN features, and the tumor-model selects 7 features from 82

tumor features. The area under the receiver operating characteristic curve (AUC) of LN-model in the discovery

cohort is 0.818 [95% confidence interval (95% CI): 0.745−0.878], significantly (Z=2.09, P=0.037) larger than 0.685

(95% CI: 0.602−0.760) of the tumor-model.  The AUC of LN-model in validation cohort is  0.812 (95% CI:

0.703−0.895), significantly (Z=3.106, P=0.002) larger than 0.517 (95% CI: 0.396−0.636) of the tumor-model.

Conclusions: The usage of collective features from all visible rectal LNs performs better than the usage of

tumor features for the prediction of pathological nodal stage of locally advanced rectal cancer.
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Introduction

Accurate prediction of pathological nodal stage may enable
individualized  treatments  for  the  patients  with  locally
advanced rectal cancer (LARC) (1-4). If pathological N0

[ypN0, no residual metastatic lymph nodes (LNs)] can be
confirmed  by  radiological  methods  after  neoadjuvant
chemoradiotherapy  (NCRT)  and  before  surgery,  the
following  treatment  could  be  changed  from  total
mesorectal excision (TME) into more conservative plans
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such as “wait and see” or local excision. It is particularly
beneficial  to  the  patients  with  rectal  cancer  at  lower
position to preserve anal sphincter function and improve
life quality. Magnetic resonance imaging (MRI) has been
recognized as the most effective method to preoperatively
evaluate LN status for LARC (5-7). However, the accuracy
of  preoperative  LN  evaluation  is  still  below  clinical
requirement (8).

The emerge of  radiomics makes it  possible to extract
many  features  from  images  and  construct  a  predictive
model by machine learning. Several studies on colon or
rectal  cancer  including our  previous  work have  applied
radiomics  in  the  prediction  of  pathological  complete
response (ypT0N0),  nodal stage (ypN0) or pathological
good response (ypT0-1N0) (9-16). It can be noticed that
the labels in all these studies contain pathological nodal
stage,  but  all  these  studies  extract  features  only  from
primary  tumors  and  no  LN features  are  included.  The
major difficulty of using LN features in most retrospective
studies is the lack of pathological ground truth of each LN
detected in the images. Consequently, it is impossible to
treat  each  LN  as  a  labeled  target.  If  we  treat  each
participant  as  a  labeled target,  another  challenge is  the
difference in LN number and LN position among different
participants. As a result, it is difficult to determine which
LN should be used for feature extraction and classification.

In this study, we propose a method to predict ypN0 stage
by  using  the  collective  features  from  LNs.  Collective
features are defined as 5 statistical measurements of each
feature from all delineated LNs of each participant. They
include the maximum, minimum, mean, median value and

standard  deviation.  Both  pre-NCRT  and  post-NCRT
features are used to measure the difference before and after
treatment.  The participants  are chronologically divided
into  discovery  cohort  and  validation  cohort.  Logistic
regression  model  with  L1  regularization  is  used  in  the
discovery cohort for model construction and the validation
cohort is used to test the model. Raters’ evaluation and a
radiomics model that only uses tumor features are used for
comparison.

Materials and methods

Patients

Due to  the  retrospective  nature  of  the  study,  a  written
consent  was  waived.  The  protocol  was  approved  by
Institutional  Medical  Ethics  Committee  of  Peking
University Cancer Hospital  (No. 2019KT76).  Inclusion
criteria: 1) biopsy-proven primary rectal adenocarcinoma;
2) LARC confirmed by pre-treatment MRI (T-stage ≥T3,
or  positive  nodal  status);  3)  no  treatment  before;  4)
complete  NCRT;  and  5)  TME  surgery  after  NCRT.
Exclusion criteria: 1) lack of pathological results; 2) lack of
MRI  scanning  before  or  after  NCRT,  or  scanning  on
different scanners; 3) lack of high-resolution T2-weighted
images;  4)  insufficient  image  quality  for  measurements
(e.g.,  motion  artefacts);  5)  mucious  adenocarcinoma
demonstrated by pathology after TME surgery; or 6) lack
of noticeable LNs on MRI. The inclusion and exclusion
flowchart is shown in Figure 1. Finally, 215 patients were
included in this  study,  and chronologically divided into

 

Figure 1 Inclusion and exclusion flowchart of this study.
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discovery  cohort  (n=143,  Aug  2011−Nov.  2014)  and
validation  cohort  (n=72,  Nov.  2014−Apr.  2015)  in  the
proportion of 2:1.

MRI data acquisition

All patients received MRI examinations at two time points:
within one week before the initiation of NCRT and within
one  week  before  surgery,  which  were  defined  as  pre-
NCRT MRI  and  post-NCRT MRI,  respectively.  MRI
examinations  were  performed  with  a  3.0  Tesla  MRI
scanner (Discovery 750; GE Healthcare, Milwaukee, WI,
USA) using an 8-channel  phased array body coil  in  the
supine  position.  To  reduce  colonic  motility,  20  mg  of
scopolamine butylbromide was injected intramuscularly 30
min prior to scanning. Patients were not asked to undergo
bowel preparation before the examination. T2-weighted
images were scanned in an oblique direction perpendicular
to the intestinal tube with following parameters: repetition
time  (TR)  =5,700  ms,  echo  time  (TE)  =110  ms,  echo
number  =25,  field  of  view (FOV)  =180  mm ×  180  mm,
image size = 512×512.

NCRT treatment

All  patients  underwent  intensity-modulated  radiation
therapy (IMRT) with RapidArc (Varian Medical System,
Palo Alto, CA, USA). The IMRT regimen consisted of 22
fractions of 2.3 Gy (gross tumor volume, GTV) and 1.9 Gy
(clinical target volume, CTV). The total dose of 50.6 Gy
(GTV)/41.8 Gy (CTV) was administered 5 times per week
over a period of 30 d (17,18).  Capecitabine (825 mg/m2

orally twice per day) was administered concurrently with
IMRT. All  patients  received TME surgery within 8−10
weeks after completion of IMRT. The treatment protocol
and timeline followed the National Comprehensive NCCN
guideline (19).

Pathologic assessment of response

Standard  TME  surgery  was  performed.  The  histo-
pathologic  evaluation was  standardized as  follows:  The
specimen was inked and fixed in formalin for 24−48 h. The
specimen was then sectioned every 5 mm perpendicularly
to the mesorectum. A careful search for LNs was made in
each  histopathologic  tissue  slice  by  an  experienced
pathologist with 10 years of experience. Each harvested LN
was processed according to standard methods and stained
with hematoxylin-eosin. Pathological nodal stage (ypN0 or
ypN+) is used as ground truth for classification. If any LN

is proved malignant, the participant is labeled as ypN+.

Feature extraction

¹§ 3¾

Region of interest (ROI) was manually delineated on the
whole tumor and all the noticeable LNs on each slice of the
T2-weighted image with itk-SNAP (www.itksnap.org) by
an experienced radiologist (20). ROIs were drawn along the
contour  of  the  tumor  and  LNs  (Figure  2).  The  re-
producibility of ROI delineation was tested on the first 50
patients by another experienced radiologist who is blind to
the first radiologist’s delineation. Dice similarity coefficient
(DSC) is used to evaluate the agreement of two ROIs (21).
Features were automatically extracted from the ROI by a
home-made  program  developed  on  the  platform  of
MATLAB (2017b, MathWorks, Natick, MA, USA). Intra-
class correlation coefficient (ICC) is used to evaluate the
agreement of  features extracted from the ROIs that  are
delineated  by  two  radiologists.  Voxels  with  intensities
outside the range  were rejected and not considered
in  the  subsequent  feature  extraction,  as  suggested  by
Collewet et al (22). The intensity of all images is scaled into
the range between 0 and 1 for normalization. Forty-one
features  were  extracted from each LN and the  primary
tumor.  They include  9  first-order  gray  level  histogram
features from the ROI volume, 24 second-order gray level
co-occurrence  matrix  (GLCM)  texture  features  and  8
geometric features from the whole volume and the slice
that has the largest ROI area. The mathematic expressions
of  the  41  features  are  described  in  the  Supplementary
materials.

Radiomics models

An  LN-model  is  constructed  by  using  the  collective

 

Figure 2  Example  of  region of  interest  (ROI)  delineation for
primary tumor and lymph nodes (LNs). (A) T2-weighted image;
(B)  ROI delineation on tumor and LNs.  Red color is  primary
tumor; yellow and green color are LNs.
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features  from all  visible  rectal  LNs.  Collective  features
include the maximum, minimum, mean, median value and
standard deviation of each feature of all visible rectal LNs
of each participant.  It  also includes the pre-NCRT LN
number  and  the  post-NCRT  LN  number  of  each
participant.  Therefore,  LN-model  has  412  features
(41×5×2+2) as both pre-NCRT and post-NCRT features
are included.

A tumor-model is constructed by the features from the
primary  tumor.  Tumor-model  uses  41  features  of  the
primary tumor in both pre-NCRT and post-NCRT data.
Therefore, Tumor-model has 82 features (41×2).

Subjective  evaluation was  performed by two raters,  a
junior radiologist and a senior radiologist. First, the junior
rater  classified  each  participant  into  cN0  and  cN+
according to all MRI protocols before and after NCRT.
Next, the senior rater reviewed the classification and made
necessary correction.

Training and validation

Prior  to  training,  redundant  features  are  examined and
removed. If the absolute value of correlation coefficient
between two features is larger than a hyperparameter r, the
feature  with  smaller  group  difference  is  removed.  The
remained features are trained by least absolute shrinkage
and selection operator (LASSO) with L1 regularization
(23).  The  positive  and  negative  samples  were  properly
weighted to keep a  balance between two classifications.
The  5-fold  cross-validation  is  used  to  tune  the
hyperparameter  λ  by  maximizing  the  area  under  curve
(AUC) of receiver operating characteristic (ROC) curve.
The detail of LASSO algorithm and the definition of λ are
described  in  the  Supplementary  materials.  After  λ  is
determined,  the  model  is  trained  with  all  data  in  the
discovery cohort and tested in the validation cohort.

Statistical analysis

All  continuous  data  were  expressed  as  ,  and  the
categorical data were presented with specific number and
proportions. Student’s t-test was used to compare the age
difference between discovery cohort and validation cohort.
Student’s t-test was also used to remove all features that
have no significant difference (P>0.05). Pearson Chi-square
test was used to compare the difference in gender, T-stage
and  N-stage.  Likelihood-ratio  was  used  if  any  cell  has
expected count less than 5. AUC of different methods was
compared by the method proposed by DeLong et al (24).

Maximum Youden index (sensitivity + specificity − 1) was
used to determine the cutoff value to separate predicted
ypN0  and  ypN+.  A  two-sided  P<0.05  was  regarded  as
statistically significant.

Results

Clinical characteristics

Clinical  characteristics  of  patients  are  summarized  in
Table 1. Significant difference (P<0.05) was found in age
between discovery cohort and validation cohort. Gender,
pre-NCRT TN-stage and pathological yTN-stage didn’t
show significant difference (P>0.05).

ROI characteristics

A total of 2,931 pre-NCRT LNs and 1,520 post-NCRT
LNs were delineated from 215 patients both in discovery
cohort  and  validation  cohort.  The  number  of  LN  is
13.6±5.0 in pre-NCRT data and 7.1±3.9 in post-NCRT
data  for  one  patient,  respectively.  The  DSC  of  ROI
delineation of 50 common participants delineated by two
radiologists is 0.93 for tumor and 0.87 for LN. The ICC
values  of  all  features  between  the  delineations  of  two
radiologists on 50 subjects are in the range from 0.82 to
0.95.

Discovery cohort

During the training of LN-model, 412 features were first
reduced to  156 by removing insignificant  features  with
Student’s  t-test.  Then the 156 features were reduced to
7 by removing redundant ones with r=0.6. All the 7 features
were selected by LASSO algorithm with L1 regularization.
The  hyperparameter  λ=0.0367  is  determined  by  5-fold
cross-validation. The 7 features in the final LN-model and
the corresponding weights are listed in Table 2.  Positive
weights indicate positive relation with ypN+ probability.
The “time” column is used to separate pre-NCRT features
from post-NCRT features. Finally, LN-model includes 3
pre-NCRT  features  and  4  post-NCRT  features.  The
“collective measurement” column points out the statistical
measurement to calculate the collective features from all
visible LNs of each participant.

During the training of tumor-model, 82 features were
first reduced to 25 by removing insignificant features with
Student’s t-test. Then the 25 features were reduced to 8 by
removing  redundant  features.  Finally,  8  features  were
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reduced  to  7  features  by  LASSO  algorithm  with  L1
regularization.  The  hyperparameter  λ=0.0111  is
determined by 5-fold cross-validation. The final 7 features

in the tumor-model  and the corresponding weights  are
listed in Table 3. They include 1 pre-NCRT features and 6
post-NCRT feature.

Table 1 Clinical characteristics of patients in discovery cohort and validation cohort

Characteristics Discovery cohort [n (%)] Validation cohort [n (%)] Test value P

Age ( ) (year) 55.59±9.75 58.56±10.32 2.065* 0.040
Gender 3.296** 0.069

　Male 81 (56.6) 50 (69.4)

　Female 62 (43.4) 22 (30.6)
Pre-NCRT T-stage 0.890** 0.828

　T2 21 (14.7) 8 (11.1)

　T3 106 (74.1) 55 (76.4)

　T4a 7 (4.9) 5 (6.9)

　T4b 9 (6.3) 4 (5.6)
Pre-NCRT N-stage 9.711*** 0.084

　N0 9 (6.3) 6 (8.3)

　N1a 8 (5.6) 3 (4.2)

　N1b 27 (18.9) 10 (13.9)

　N1c 0 (0) 1 (1.4)

　N2a 36 (25.2) 9 (12.5)

　N2b 63 (44.1) 43 (59.7)
Pathological T-stage 2.379*** 0.666

　yT0 28 (19.6) 16 (22.2)

　yT1 5 (3.5) 4 (5.6)

　yT2 54 (37.8) 25 (34.7)

　yT3 54 (37.8) 27 (37.5)

　yT4a 2 (1.4) 0 (0)
Pathological N-stage 3.402*** 0.638

　yN0 109 (76.2) 53 (73.6)

　yN1a 18 (12.6) 12 (16.7)

　yN1b 8 (5.6) 2 (2.8)

　yN1c 4 (2.8) 1 (1.4)

　yN2a 2 (1.4) 1 (1.4)

　yN2b 2 (1.4) 3 (4.2)

NCRT, neoadjuvant chemoradiotherapy; *, t value; **, Pearson χ2 value; ***, likelihood ratio.

Table 2 Features and their weights included in LN-model

Features Time Collective measurement Weight

GLCM correlation Pre-NCRT Maximum value 1.2316
Skewness Pre-NCRT Minimum value −1.9235
GLCM sum mean Pre-NCRT Median value 1.0979
GLCM homogeneity Post-NCRT Maximum value 3.2172
Minimum signal intensity Post-NCRT Minimum value −1.9282
Skewness Post-NCRT Minimum value −0.3457
Skewness Post-NCRT Standard deviation 0.2052

LN, lymph node; GLCM, gray level co-occurrence matrix; NCRT, neoadjuvant chemoradiotherapy.
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ROC curves were plotted in Figure 3A by comparing the
predictive scores of 143 participants in discovery cohort
with their pathological nodal stage. The AUC value of LN-
model in the discovery cohort is 0.818 [95% confidence
interval  (95% CI):  0.745−0.878),  significantly  (Z=2.09,
P=0.037) larger than 0.685 (95% CI: 0.602−0.760) of the
tumor-model. The AUC value of subjective evaluation by
raters is 0.581 (95% CI: 0.496−0.663) in discovery cohort.
The  corresponding  sensitivity,  specificity,  positive
predictive  value  and  negative  predictive  value  are
summarized in Table 4.

Validation cohort

The  LN-model  and  tumor-model  were  tested  by  the
participants in the validation cohort with the features and
their weights determined by training. The ROC curves of
validation cohort were plotted in Figure 3B. The AUC of
LN-model  in  validation  cohort  is  0.812  (95%  CI:
0.703−0.895), significantly (Z=3.106, P=0.002) larger than
0.517 (95% CI:  0.396−0.636)  of  the tumor-model.  The
AUC value of subjective evaluation by raters is 0.717 (95%
CI: 0.599−0.817) in validation cohort. The corresponding
sensitivity, specificity, positive predictive value and negative
predictive value are summarized in Table 5.

Discussion

Many studies have established radiomics models to predict
pathological complete response, pathological nodal stage or
pathological  good  response,  but  only  the  features  of
primary  tumor  are  included  (9-16).  It  is  a  challenging
problem to  utilize  LN features  in  machine  learning.  A
patient pathologically proven as ypN+ may have several
malignant  LNs  and  several  benign  LNs,  but  most

Table 3 Features and their weights included in tumor-model

Feature Time Weight

Maximum signal intensity Pre-NCRT −1.6684

Skewness Post-NCRT −0.9025

GLCM cluster shade Post-NCRT −0.3944

Elongation Post-NCRT 0.4355

GLCM inertia Post-NCRT −0.2893

Variation Post-NCRT 0.4140

Eccentricity Post-NCRT 0.0356

GLCM, gray level co-occurrence matrix; NCRT, neoadjuvant
chemoradiotherapy.

Table 4 AUC, sensitivity, specificity, PPV and NPV of LN-model, tumor-model, raters’ evaluation in the discovery cohort

Variables AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%)

LN-model 0.818 (0.745−0.878) 79.4 (62.1−91.3) 76.2 (67.0−83.8) 50.9 (36.8−64.9) 92.2 (81.4−94.1)

Tumor-model 0.685 (0.602−0.760) 88.2 (72.5−96.7) 43.1 (33.7−53.0) 32.6 (23.2−43.2) 92.2 (81.1−97.8)

Rater 0.581 (0.496−0.663) 82.4 (65.5−93.2) 33.9 (25.1−43.6) 28.0 (19.5−37.9) 86.0 (72.1−94.7)

AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; LN, lymph node.

 

Figure 3 Receiver operating characteristic (ROC) curves for LN-model, tumor-model and rater’s evaluation in discovery cohort (A) and
validation cohort (B).
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retrospective studies may not match the pathological result
of each LN with its position in the image. Therefore, all
LNs  must  be  viewed  as  one  target  with  a  single
pathological nodal stage as a label. It is difficult to include
all  features  from multiple  LNs into  a  radiomics  model
because the number and position of LNs probably vary a
lot among different individuals. To solve the problem, this
study proposed to calculate the collective features from
multiple LNs. Collective features include the maximum,
minimum, mean, median value and standard deviation of
each  feature  from  all  visible  LNs  of  each  participant.
Therefore, a fixed number of features can be selected to
represent all LNs of each participant. Results show that
LN-model  has  significant  larger  AUC than the  tumor-
model  to  predict  ypN0  in  both  discovery  cohort  and
validation cohort.

In  this  study,  features  were  first  selected  by  t-test,
redundancy test and then by logistic regression with L1
regularization.  Overfitting  is  a  challenging  problem in
machine learning. The recommended number of features
in the linear model is between 1/10 and 1/3 of the number
of participants in one classification (12). Both LN-model
and  tumor-model  contains  7  features  in  the  logistic
regression,  which  is  about  1/5  of  the  number  of  ypN+
participants (n=34) in the discovery cohort. Table 2 shows
that  two post-NCRT skewness  features  are  included in
final LN-model. They are the minimum value and standard
deviation of skewness feature extracted from multiple LNs
of  each  participant.  It  suggests  that  the  abnormality  of
feature distribution of one’s multiple LNs could be a hint
of the existence of malignant LNs.

Accurate  prediction  of  pathological  nodal  stage  is
desirable  for  the  treatment  of  LARC  by  NCRT.  If
pathological N0 stage is accurately predicted, the following
treatment could be changed to more conservative plans
such as local excision or “wait and see” and the patients
may  benefit  from  anus  preservation  or  avoidance  of
surgery. In this study, radiomics model is used to predict
pathological N0 stage. The AUC of LN-model is larger
than  that  of  the  raters’  evaluation  in  this  work  or  in

references (8). Although the sensitivity and specificity of
LN-model  are  still  insufficient  for  clinical  diagnosis,  it
might provide radiologists with a supplementary tool to
perform a preoperative individualized prediction of nodal
stage for the purpose of personalized medicine.

In  this  study,  only  T2-weighted  images  are  used  for
feature extraction and classification. It is a protocol with
reduced field of view and high resolution particularly useful
for the visualization of small  LNs. T2-weighted images
with high resolution are considered by radiologists as the
most effective protocol to evaluate rectal tumor and LNs.
The other useful protocol is diffusion weighted imaging
(DWI). Limited by the resolution, however, some small
LNs noticeable on T2-weighted images cannot be found
on the corresponding DWI images due to partial volume
effect or artifact. Thus, DWI features are not included in
this study. Limited by the retrospective nature of this study,
the pathological ground truth of each MRI-visible LN is
unavailable.  As  a  result,  the  pathological  status  of  each
rectal LN in the image is not predictable. An alternative
way is using the agreed diagnosis by several radiologists as
the  gold  standard  to  build  a  predictive  model  (25).
However, radiological agreement still cannot replace the
pathological ground truth. In order to predict pathological
status of each LN, prospective study might be required to
identify  the  same  LN  in  both  MRI  and  histological
examination.

Conclusions

The radiomics  model  using  collective  features  from all
visible  rectal  LNs  is  more  accurate  than  using  tumor
features for the prediction of pathological nodal stage of
LARC.

Acknowledgements

This  study  was  supported  by  Beij ing  Municipal
Administrat ion  of  Hospita ls  Cl inical  Medicine
Development  of  Special  Funding  Support  (No.
ZYLX201803),  Beijing  Hospitals  Authority’  Ascent

Table 5 AUC, sensitivity, specificity, PPV and NPV of LN-model, tumor-model, raters’ evaluation in the validation cohort

Variables AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%)

LN-model 0.812 (0.703−0.895) 94.7 (74.9−99.9) 60.4 (46.0−73.5) 46.2 (30.1−62.8) 97.0 (84.2−99.9)

Tumor-model 0.517 (0.396−0.636) 31.6 (12.6−56.6) 81.1 (68.0−90.6) 37.5 (15.2−64.6) 76.8 (63.6−87.0)

Rater 0.717 (0.599−0.817) 100 (82.4−100) 43.4 (29.8−57.7) 38.8 (25.2−53.8) 100 (85.2−100)

AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; LN, lymph node.

990 Zhu et al. Collective LN features predict rectal ypN0

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2019;31(6):984-992



Plan (No. DFL20191103), National Key R&D Program of
China (No. 2017YFC1309101, 2017YFC1309104).

Footnote

Conflicts  of  Interest:  The  authors  have  no  conflicts  of
interest to declare.

References

Fujita S, Mizusawa J, Kanemitsu Y, et al. Mesorectal
excision with or without lateral lymph node dissection
for  clinical  stage  II/III  lower  rectal  cancer
(JCOG0212): A multicenter, randomized controlled,
noninferiority trial. Ann Surg 2017;266:201-7.

1.

van  de  Velde  CJ,  Boelens  PG,  Borras  JM,  et  al.
E U R E C C A  c o l o r e c t a l :  m u l t i d i s c i p l i n a r y
management: European consensus conference colon
& rectum. Eur J Cancer 2014;50:1.e1-1.e34.

2.

Glynne-Jones R, Wyrwicz L, Tiret E, et al.  Rectal
cancer:  ESMO  clinical  practice  guidelines  for
diagnosis,  treatment  and  follow-up.  Ann  Oncol
2017;28:iv22-iv40.

3.

Lu Z, Cheng P, Yang F, et al. Long-term outcomes in
patients  with ypT0 rectal  cancer after neoadjuvant
chemoradiotherapy  and  curative  resection.  Chin  J
Cancer Res 2018;30:272-81.

4.

Brown  G,  Richards  CJ,  Bourne  MW,  et  al .
Morphologic predictors of lymph node status in rectal
cancer  with  use  of  high-spatial-resolution  MR
imaging with histopathologic comparison. Radiology
2003;227:371-7.

5.

Beets-Tan RGH, Lambregts  DMJ,  Maas  M,  et  al.
Magnetic  resonance  imaging  for  the  clinical
management  of  rectal  cancer  patients:  Updated
recommendations from the 2016 European Society of
Gastrointestinal and Abdominal Radiology (ESGAR)
consensus meeting. Eur Radiol 2018;28:1465-75.

6.

Kim JH, Beets GL, Kim MJ, et al. High-resolution
MR imaging for nodal staging in rectal cancer: are
there any criteria in addition to the size? Eur J Radiol
2004;52:78-83.

7.

Li  XT,  Sun  YS,  Tang  L,  et  al.  Evaluating  locally
lymph  node  metastasis  with  magnetic  resonance
imaging,  endoluminal  ultrasound  and  computed
tomography  in  rectal  cancer:  A  meta-analysis.
Colorectal Dis 2015;17:O129-35.

8.

Liu Z, Zhang XY, Shi YJ, et al. Radiomics analysis for
evaluation  of  pathological  complete  response  to
neoadjuvant chemoradiotherapy in locally advanced
rectal cancer. Clin Cancer Res 2017;23:7253-62.

9.

Horvat  N,  Veeraraghavan  H,  Khan  M,  et  al.  MR
imaging of rectal cancer: Radiomics analysis to assess
treatment  response  after  neoadjuvant  therapy.
Radiology 2018;287:833-43.

10.

Bibault  JE,  Giraud  P,  Housset  M,  et  al.  Deep
Learning and Radiomics predict complete response
after  neo-adjuvant  chemoradiation  for  locally
advanced rectal cancer. Sci Rep 2018;8:12611.

11.

Nie  K,  Shi  L,  Chen  Q,  et  al.  Rectal  cancer:
Assessment of neoadjuvant chemoradiation outcome
based  on  radiomics  of  multiparametric  MRI.  Clin
Cancer Res 2016;22:5256-64.

12.

Huang YQ, Liang CH, He L, et al. Development and
validation of a radiomics nomogram for preoperative
prediction  of  lymph  node  metastasis  in  colorectal
cancer. J Clin Oncol 2016;34:2157-64.

13.

Kim  JG,  Song  KD,  Kim  SH,  et  al.  Diagnostic
performance of MRI for prediction of candidates for
local  excision  of  rectal  cancer  (ypT0-1N0)  after
neoadjuvant chemoradiation therapy. J Magn Reson
Imaging 2016;44:471-7.

14.

Huang  Y,  He  L,  Dong  D,  et  al.  Individualized
prediction of perineural invasion in colorectal cancer:
development and validation of a radiomics prediction
model. Chin J Cancer Res 2018;30:40-50.

15.

Tang Z, Zhang XY, Liu Z, et al. Quantitative analysis
of diffusion weighted imaging to predict pathological
good  response  to  neoadjuvant  chemoradiation  for
locally  advanced  rectal  cancer.  Radiother  Oncol
2019;132:100-8.

16.

Wang L, Li ZY, Li ZW, et al. Efficacy and safety of
neoadjuvant intensity-modulated radiotherapy with
concurrent capecitabine for locally advanced rectal
cancer. Dis Colon Rectum 2015;58:186-92.

17.

But-Hadzic  J,  Anderluh  F,  Brecelj  E,  et  al.  Acute
toxicity and tumor response in locally advanced rectal
cancer after preoperative chemoradiation therapy with
shortening  of  the  overall  treatment  time  using
intensity-modulated  radiat ion  therapy  with
simultaneous integrated boost: A phase 2 trial. Int J
Radiat Oncol Biol Phys 2016;96:1003-10.

18.

National Comprehensive Cancer Network. NCCN19.

Chinese Journal of Cancer Research, Vol 31, No 6 December 2019 991

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2019;31(6):984-992



Clinical  Practice  Guidelines  in  Oncology:  Rectal
Cancer, V.2.2018. Available online: https://www.nccn.
org/professionals/physician_gls/pdf/rectal.pdf
Yushkevich  PA,  Piven  J,  Hazlett  HC,  et  al.  User-
guided 3D active contour segmentation of anatomical
structures:  significantly  improved  efficiency  and
reliability. Neuroimage 2006;31:1116-28.

20.

Dice  LR.  Measures  of  the  amount  of  ecologic
association  between  species.  Ecology  1945;26:
297-302.

21.

Collewet G, Strzelecki M, Mariette F. Influence of
MRI  acquisition  protocols  and  image  intensity
normalization methods on texture classification. Magn

22.

Reson Imaging 2004;22:81-91.
Friedman J, Hastie T, Tibshirani R. Regularization
paths  for  generalized linear  models  via  coordinate
descent. J Stat Softw 2010;33:1-22.

23.

DeLong  ER,  DeLong  DM,  Clarke-Pearson  DL.
Comparing the areas under two or more correlated
receiver  operating  characteristic  curves:  a  non-
parametric approach. Biometrics 1988;44:837-45.

24.

Lu Y, Yu Q, Gao Y, et al. Identification of metastatic
lymph nodes in MR imaging with faster region-based
convolutional  neural  networks.  Cancer  Res  2018;
78:5135-43.

25.

Cite this article as: Zhu H, Zhang X, Li X, Shi Y, Zhu H,
Sun  Y.  Prediction  of  pathological  nodal  stage  of  locally
advanced  rectal  cancer  by  collective  features  of  multiple
lymph nodes in magnetic resonance images before and after
neoadjuvant  chemoradiotherapy.  Chin  J  Cancer  Res
2019;31(6):984-992.  doi:  10.21147/j.issn.1000-9604.
2019.06.14

992 Zhu et al. Collective LN features predict rectal ypN0

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2019;31(6):984-992

https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf
https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf
https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf
https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf
https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf
https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf


 Supplementary materials

Part I: Features

First-order gray level features (9)

The 9 first-order gray level features include the maximum value, minimum value, median value, sum, mean value, standard
deviation,  variance,  skewness  and kurtosis  of  the image intensity.  Skewness  is  a  measure of  the degree of  distribution
symmetry. Kurtosis is a measure of whether a distribution is peaked or flat related to a normal shape. They are defined in the
following equations.

Skewness =
1
N
PN

i=1
¡
X (i)¡ ¹X

¢3Ãr
1
N
PN

i=1
¡
X (i)¡ ¹X

¢2!3 ;K urtosis =

1
N
PN

i=1
¡
X (i)¡ ¹X

¢4µ
1
N
PN

i=1
¡
X (i)¡ ¹X

¢2¶2

Second-order texture features (24)

Gray level co-occurrence matrix is calculated from 4 directions for each offset d according to the following 4 equations.½
¢x = d
¢y = 0

½
¢x = 0
¢y = d

½
¢x = d
¢y = d

½
¢x = ¡d
¢y = d

Twelve features are extracted from each gray level co-occurrence matrix C according to following definitions, where p is the
number of gray levels.

Energy:

E nergy =
pX

i=1

pX
j=1
[C (i; j )]2

Entropy

E ntropy =
pX

i=1

pX
j=1

C (i; j ) log2C (i; j )

Correlation
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Pp

i=1
Pp

j=1 ij C (i; j )¡ ¹i (i)¹j (j )
¾x (i)¾y (j )

Contrast
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ji ¡ j jC (i; j )

Homogeneity
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pX

i=1

pX
j=1

C (i; j )
1+ ji ¡ j j

Variance

Variance =
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pX
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Sum Mean
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2pX

i=2
iCx+y (i)

Inertia
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Inertia =
pX

i=1

pX
j=1
(i ¡ j )2 C (i; j )

Cluster Shade (CS)

CS =
pX

i=1

pX
j=1
[i + j ¡ ¹x (i)¡ ¹y (j ))3 C (i; j )
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Inverse Variance (IV)
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In this study, Haralick feature is used by averaging the features from the co-occurrence matrices calculated from 4 directions
at one offset d. We used d=1 and d=2 in this study. Therefore, 24 Haralick features were extracted in total.

Geometric features (8)

The 8 geometric features include the volume, major axis length a, minor axis length b, eccentricity, elongation, orientation,
volume of bounding box, perimeter. Orientation is the angle (in degrees ranging from −90 to 90 degrees) between the x-axis and
the major axis. The bounding box is the smallest box containing the region of interest (ROI). Perimeter is calculated in the
slice that has the largest area. Eccentricity and elongation are defined in following equations.

eccentricity =
p
(a2 ¡ b2)

a
; elongation =

b
a

Part II: Least absolute shrinkage and selection operator (LASSO)

LASSO was used in study for feature reduction and classification. LASSO selects only a subset of the provided covariates for
use in the final model rather than using all of them. Consider the usual linear regressions in the following equation.

y =
pX
i=1

¯ixi+ ¯0+ "

where y was 1 for the pathological N+ and 0 for the pathological N0; p was the number of features used in the model; xi was
the feature; βi was the model parameter; ε was the model parameter.

We use LASSO method to find our regression coefficients by solving the regularized least squares problem.

^̄ = argmin¯
1
2
jjy ¡ X¯ jj22 + ¸jj¯ jj1

The method has the effect of giving a solution with few nonzero entries in β. The probability of an observation with covariate
vector x belonging to label 1 is parameterized as:

P (y = 1jx) = 1
1+ e¡

Pp
i=1 ¯ixi+¯0+"
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