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ABSTRACT: Recent studies show that curcumin, a naturally fluorescent
dye, can be used for the noninvasive optical imaging of retinal amyloid-β
(Aβ) plaques. We investigated the molecular basis for curcumin’s specificity
for hierarchical Aβ structures using molecular dynamics simulations, with a
focus on how curcumin is able to detect and discriminate different amyloid
morphologies. Curcumin inhibits and breaks up β-sheet formation in Aβ
monomers. With disordered Aβ structures, curcumin forms a coarse-grained
composite structure. With an ordered fibril, curcumin’s interaction is highly
specific, and the curcumin molecules are deposited in the fibril groove.
Curcumin tends to self-aggregate, which is finely balanced with its affinity
for Aβ. This tendency concentrates curcumin molecules at Aβ deposition
sites, potentially increasing the fluorescence signal. This is probably why
curcumin is such an effective amyloid imaging agent.

■ INTRODUCTION

Given the immense societal impact of Alzheimer’s disease
(AD), the identification of patients with the early form of AD
(prodromal AD) is a health imperative. As of yet there is no
definitive diagnostic test for this presymptomatic phase of AD.
The diagnosis of full-blown AD in the clinic involves an
assessment and the evaluation of symptoms and cognitive skills
coupled with biochemical blood tests and brain imaging using
magnetic resonance imaging (MRI), X-ray-based computerized
tomography (CT), or positron emission tomography (PET),
which involves the use of a radiative tracer substance.1,2 The
biochemical tests and imaging are nonspecific and are mostly
used to rule out other conditions. Progress toward diagnosing
prodromal AD is promising but is still confined to research, i.e.,
clinical trials. The current framework includes more specific
PET scans that use amyloid-τ- and amyloid-β- (Aβ) binding
ligands and the use of biomarkers, including Aβ,β-secretase (a
β-site APP-cleaving enzyme 1 gene; BACE 1),3 soluble Aβ
precursor protein (sAPP), and anti-Aβ antibodies found in
cerebral spinal fluid and blood plasma.4 Beyond current
technical challenges, the application of these methods
(particularly amyloid-specific PET) to screen large populations
in a clinical setting would be prohibitive both economically and
due to safety concerns (exposure to radioactive isotopes).
Aβ accumulation is considered to begin as early as 20 years

before the manifestation of clinical dementia.5,6 This
prodromal phase therefore represents the best opportunity
window for therapy. In recognizing the need for early
therapeutic intervention, one confronts another equally

significant hurdle: the need to identify at-risk patients at the
earliest stages of AD development, ideally noninvasively. A
recent exciting finding is the detection of Aβ deposits and p-τ
in the retina, both in animal models and in humans afflicted by
AD.7 This has a sound basis given that the retina shares many
physiological and anatomical features with the brain and is
considered to be a projection of the central nervous system
(CNS).8 Moreover, in vivo studies show that the plaque
burden in the retina correlates to that in the brain,9 and
amyloid deposits in the retina can be detected earlier than
those in the brain.10 The retina therefore offers a potentially
noninvasive and accessible route to identify at-risk patients
with prodromal AD. Indeed, the concept has been demon-
strated in live patients using the pigment curcumin as an
amyloid-specific fluorescence probe coupled with a modified
scanning laser ophthalmoscope.11

Curcumin is a bright yellow pigment and a component of
the Indian spice turmeric. Structurally, it is comprised of two
phenols connected by a linear β-diketone linker (Figure 1). It
appears that both the aromatic rings and the rigid linker are
critical to curcumin’s specificity for amyloid. Removing one of
the rings or altering the length or flexibility of the linker results
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in a loss of the molecule’s ability to inhibit Aβ aggregation12

and by implication a loss in its binding affinity for Aβ.
Interestingly, other amyloid ligands, i.e., congo red and
chrysamine G,13 also share these features.
Small molecules such as thioflavin S and T and congo red

have been used as amyloid tracers for a very long time, but they
suffer from some serious drawbacks. Thioflavin is weakly
hydrophobic, which is why its binding affinity to amyloid fibrils
is low,14 while congo red is amyloid nonspecific,15 so it also
stains other nonamyloid deposits such as elastin,16 collagen,
elastotic dermis, and hyaline deposits17 in colloid milium and
lipid proteinosis.18 Curcumin, however, is not only amyloid-
specific, as it can differentiate between AD and non-AD
deposits with 80.6% specificity,19 but also able to discriminate
between various Aβ morphologies, i.e., core, neurite, diffuse,
and burned-out plaques.20 While its therapeutic success in
clinical trials remains controversial, curcumin-based near-
infrared (NIR) fluorescence imaging probes (CRANAD-2,
CRANAD-44, and CRANAD-28) have been developed that
have a higher binding affinity for Aβ aggregates (with Ki = 0.07
nM for 18F-labeled curcumin binding for fibrillar Aβ) than
well-known molecular imaging probes, such as Pittsburgh
compound B (PiB) employed in fludeoxyglucose positron
emission tomography (FDG-PET).21,22 Unlike other Aβ-
specific dyes, curcumin also has an additional property of
being able to inhibit amyloid aggregation.13,23−25 It binds to
Aβ oligomers and fibrils and retards plaque formation.26

Here we explore the molecular-level interaction of curcumin
with Aβ and its various morphologies by means of molecular
dynamics (MD) simulations to identify the molecular origin of
curcumin’s specificity for Aβ. We investigated the interaction
of curcumin at multiple levels: (i) its interaction with a single
Aβ monomer, (ii) its interaction with Aβ molecules during
their aggregation (self-assembly), and (iii) its interaction with a
preformed fibril. In this way we developed a ground-up
understanding of curcumin’s interaction. Such an approach
also enables us to rationalize how curcumin interacts with the
various Aβ morphologies and stages that characterize the full
Aβ pathway, from individual Aβ molecules to fully developed
fibrils.

■ MATERIALS AND METHODS
The details of simulations with various concentrations of Aβ42
and curcumin that were carried out during this study.
The Interaction of Curcumin with the Aβ42 Mono-

mer. Three simulations were carried out: (i) an Aβ42
monomer alone in an aqueous solution, (ii) an Aβ42 monomer
and a single curcumin molecule in an aqueous solution, and
(iii) an Aβ42 monomer and four curcumin molecules in an
aqueous solution.

Effect of Curcumin on the Self-Assembly of Aβ42
Monomers. The simulations investigated the effect of
increasing the concentration of curcumin on the self-assembly
of Aβ42 monomers. A total of three simulations were carried
out, each of which contained 24 monomers of Aβ42 and a
varying number of curcumin molecules, namely 0, 77, and 308.
One of the simulations was a control without curcumin. These
molar ratios correspond to 5 mM Aβ42 monomers and 0, 16,
and 64 mM curcumin relative to water. Note that the
simulated concentrations are in the millimolar range and hence
are markedly higher than experimental concentrations, which
are in the micromolar range, to enhance the driving force for
phase separation and make the system evolve quicker.

Interaction of Curcumin with the Aβ42 Fibril. The
fibril was comprised a 25-mer unit of Aβ monomers of residues
17−42. Two simulations in a set of three were carried out with
curcumin concentrations of 4 and 30 molecules. The summary
of the simulations carried out and the models used is given in
Table 1.

■ TECHNICAL DETAILS
The binding of curcumin with Aβ was explored using explicit-
solvent atomistic simulations on the nanosecond time scale.
The Aβ monomer (PDB ID 1IYT),27 protofibril (PDB ID
2BEG),28 and fibril (generated using CreateFibril, ver. 2.5)29

were chosen to serve as models. The fibril was comprised a 25-
mer unit of Aβ monomers of residues 17−42. The optimized
structure and charges of the curcumin diketone were taken
from the work done by Ngo et al. in 2012.30 The simulations
were carried out using the Gromacs 5.1 package with
parameters from the Gromos96 53A6 force field31,32 coupled
with the SPCE water model. Long-range electrostatic
interactions were calculated using particle-mesh Ewald
(PME).33 The van der Waals interaction cutoff was 1.4 nm,
as was the cutoff for the real-space Ewald interaction. All the
systems were subjected to energy minimization using 5000
steps of the steepest descent algorithm to remove any bad
contacts and then equilibrated for 500 ps using the NVT
ensemble, followed by the NPT ensemble with the peptides
positions restrained. The simulations were carried out at 360 K
and 0.001 kbar using the Nose−Hoover thermostat and the
Parrinello−Rahman barostat (isotropic mode).34,35 The higher
temperature was used to accelerate the system evolution given
that standard MD simulations can only access a limited time
scale. We used the analysis utilities in the Gromacs package for
the trajectory analysis and visual molecular dynamics (VMD)
for visualization.36 The binding energy of curcumin with the
amyloid structures was calculated using the MM-PBSA37

method implemented in Gromacs 5.1.

Figure 1. Structure of curcumin, showing the hydrophobic linker
region and the polar substituted aromatic rings.

Table 1. Summary of Aβ42 Models and Simulation Systems

model system Aβ42:curcumin simulation time

Aβ42 monomer 1:0 200 ns
1:1
1:4

Aβ42 monomer (self-assembly) 24:0 100 ns
24:77
24:308

Aβ42 fibril 1:4 100 ns
1:30
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■ RESULTS AND DISCUSSION

We employed standard unbiased MD. The interaction of
curcumin is strong and specific, and there appears to be no
ergodicity (dependence on a starting configuration) issues,
making the interaction trajectories wholly accessible using
unbiased MD. The self-assembly systems were comprised of 24
monomers of Aβ42 with a varying number of curcumin
molecules, namely 2, 5,19, 77, and 308 molecules, including a
control without curcumin. For the interaction of curcumin
with the preformed fibril, we constructed an Aβ fibril (based
on the PDB ID 2BEG) with two parallel β-sheets, each of
which was comprised of 25 antiparallel in-register β-strands.
For the interaction of curcumin with the preformed fibril, we
investigated two curcumin concentrations, namely 5 and 30
curcumin molecules, which were located randomly in the initial
configuration.
The simulations reveal that curcumin’s interaction with the

Aβ42 monomer is nonspecific, with the curcumin molecule
continuously moving around and interacting with multiple
residues including Phe, Leu, Val, Ala, and Ile. The curcumin
molecule, wherever it locates itself about the Aβ structure, it
destroys the β-sheet in its vicinity. When it leaves that position,
the β-sheet reappears. Curcumin was found to hover over the
whole structure for most of the time, in accordance with earlier
literature.38 Illustrative conformations of the Aβ42 monomer

with curcumin are shown in Figure 2. At the higher curcumin
concentration, an Aβ42:curcumin ratio of 1:4, curcumin
disrupts Aβ42 such that more than 50% of Aβ42 is in the
coil conformation with only about 13% β-sheet content,
compared to 26% coil conformation and 36% β-sheet content
in the control (without curcumin). Energetically, curcumin’s
interaction with the Aβ monomer is relatively strong. The
binding energy estimated using the MM-PBSA method is
ΔGbinding = −17 kcal mol−1, which equates to about ≈23 kβT.
The significance of expressing binding energies in terms of kβT
is that it is a good order-of-magnitude estimate for the energy
needed for a process to occur at a particular temperature. A
useful rule of thumb is that if a process needs energy in the
range from 15 to 30 kβT, it would occur at an appreciable rate.
Above 30 kβT the process would be very slow, while below 15
kT the processes would be too fast to accomplish any
significant phenomenon.
In the self-assembly simulations without curcumin, the Aβ

molecules form a disordered structure rich in β-sheets. Indeed,
this morphology, which represents the early stage of Aβ
aggregation, has been observed in earlier studies.39 In the
presence of curcumin, the emergent structures are coarse,
composite-like, and disordered (see Supporting Information
Figure SI 1). Although, the Aβ and curcumin are integrated in
the aggregates, the integration is not homogeneous. Structur-
ally, the aggregates are devoid of any β-sheets, in contrast to

Figure 2. Snapshots of the interaction of Aβ42 with curcumin 200 ns into the trajectory. (Top) Initial Aβ helical structure obtained from the
Protein Data Bank (PDB ID 1IYT). (Bottom Left) Without curcumin. (Bottom Middle) Aβ and curcumin in a 1:1 ratio. (Bottom, Right) Aβ and
curcumin in a 1:4 ratio. Curcumin is represented by a skeleton line structure in red. The peptide structure is shown in a cartoon representation,
where yellow represents β-strands, the red ribbon-like structure represents the α-helix, green represents turns, and white represents coil regions. It is
evident from the figure that curcumin destroys the β-sheet structure in its vicinity; thus, the higher the concentration of curcumin, the lower the β-
sheet content.
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the structure formed by pure Aβ. A noteworthy feature is that
curcumin shows a strong affinity for itself (indeed, curcumin
has a low solubility), which drives it to form large clusters of
pure curcumin that are then integrated with Aβ in a coarse-
grained manner. Could the concentrated curcumin density in
these aggregates serve to possibly amplify the florescence
signal?
While curcumin’s interaction with the Aβ monomer is

nonspecific, its interaction with the preformed fibril is highly
specific, as almost all curcumin molecules deposit within a
particular groove on the fibril. In the system containing 30
curcumin molecules, some individual molecules of curcumin
were attracted directly to the fibril surface, while others formed
aggregates through stacking (one curcumin on top of another)
that then deposited on the surface of fibril (Figure 3a). This is
due to the hydrophobic nature of curcumin (consistent with its
low aqueous solubility), which drives its self-assembly in an
aqueous medium.
Beyond the primary and dominant preference of curcumin

for the Aβ fibril groove, the simulations reveal that a curcumin
molecule can enter the hydrophobic core of the fibril via the
open ends (see Figure 3b) and show a minor curcumin
presence at the hairpin region around Gly29. Within the fibril
groove, there is considerable space for the alignment of the
curcumin molecules, and we are able to identify two main
modes of curcumin binding through population analysis
(Figure 3c): (i) parallel alignment with the fibril axis and
(ii) perpendicular to the fibril axis. In the (predominant)

parallel-mode, the curcumin molecules are aligned perpendic-
ular to the β-sheets and intercalate two and in some case three
or even four β-sheet strands, preferentially binding to the two
Gly33 units on two different Aβ units. In the perpendicular
mode, the curcumin molecules are aligned parallel to the β-
sheets and are localized to a low-width surface path that runs
along the fibril containing hydrophobic residues, specifically
Met, Ile, and Val, which are present very close to the well-
known G33XXXG37 motif of Aβ fibril.
We observed similar binding preferences in the lower

concentration system where only four curcumin molecules
were present. Of the four curcumin molecules, two bind to the
GXXXG motif parallel to the β-strands, one of goes into the
core of the fibril, and the other is present around hairpin region
around Gly29 (Figure 4). Similar binding patterns have also
been observed for other amyloid dyes, such as Congo Red33,
BTH, and ThT.40 This is due to the presence of the C-terminal
residues 28−42, which represent a hydrophobic domain
associated with the cell membrane in APP, and the
hydrophobicity of curcumin.40

The specific interactions were confirmed using the radial
distribution function to ascertain the probability of finding a
curcumin molecule at a certain distance from the individual
active site residues. As anticipated, sharp peaks for residues
Gly, Val, Ile, and Met were found at 1.3 Å, 1.0 Å, 0.7, and 0.4
Å, respectively (see Supporting Information Figure SI 2). All
three parts of curcumin, i.e., the two aromatic rings and the
linker region bearing the diketone moiety, show comparable

Figure 3. Binding of curcumin to the Aβ fibril. (a) The fibril is shown in a cartoon representation (yellow represents β-sheets, green represents
turns, and white represents coil regions), while curcumin is represented as the surface in red to give a clear perspective of the highly specific
binding. (b) An enlarged image of the fibril end where curcumin enters the core of the fibril. (c) A plot of the population of curcumin molecules
oriented and located at various positions on the Aβ fibril.
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probabilities, suggesting their equal participation in binding to
the Aβ fibril. Earlier MD simulations and NMR experiments
have proposed the importance of Met35,41 Gly33,42 and the
hydrophobic turn located at C-terminal Gly37 and Gly38.43

Based on sampling, the interaction (free) energy of
individual curcumin molecules for the Aβ fibril groove is
between −25 and −31 kcal mol−1, which is larger than the
curcumin−Aβ monomer interaction. This equates to about
≈34−42 kβT, indicating that the interaction is strong and
essentially (spontaneously) irreversible. The major contribu-
tion comes from the van der Waal’s energy (−22 kcal mol−1)
that corresponds to the hydrophobic interaction. Free energy
decomposition analysis indicates that the key residues, i.e.,
those with the strongest interactions (ΔGbinding > 2.0 kcal
mol−1), are Gly, Val, Ile, and Met (see Supporting Information
Figure SI 3). Considering the full set of simulation results, the
interaction of curcumin with Aβ shows distinctive features with
respect to the Aβ monomer, Aβ disordered structures, and the
ordered fibrillary structure.
Curcumin exhibits a nonspecific interaction with the Aβ

monomer, which is essentially a hydrophobic interaction.
Being hydrophobic itself, curcumin endeavors to reduce its
interface with water and is attracted to the hydrophobic
regions on the Aβ, which is in accordance with an MD study
showing that curcumin in water is always present in an
aggregated state.44 The nonspecific interaction implies that
curcumin is likely to concentrate in any region of the brain
where there is a high concentration of peptides or proteins
with exposed hydrophobic stretches, such as Aβ. Therefore, in

principle, curcumin (and curcumin-based imaging probes)
should be able to detect the preamyloid stage, although the
sensitivity is likely to be low.
The self-assembly simulations yield a disordered Aβ

structure with which curcumin interacts to form an integrated
composite structure at the coarse-grained level, comprising
significant curcumin-only and Aβ-only regions. The cause for
the formation of curcumin-only regions is the tendency of
curcumin to aggregate with itself due to its low solubility in
aqueous media. The high concentration of curcumin within the
curcumin-only regions may be responsible for the increased
fluorescence signal strength, rationalizing the ability of
curcumin to discriminate between the deposited (disordered)
amyloid and high concentrations of Aβ in solution.
The interaction of curcumin with the fibrillary structure is

highly specific, with the curcumin depositing within the fibril
groove. Here again a particular feature (as a result of
curcumin’s strong affinity for itself) is that the curcumin
does not form a monomolecular layer on the surface of the
groove but rather forms a continuous curcumin-only deposit
over the whole region of the fibril groove. The surface grooves
created by aligned side chains in the fibril parallel to the
growing axis present a large surface area to the curcumin
molecules for binding, thus establishing extra contacts. This
likely explains the higher binding energy of this curcumin−
fibril complex (−25 to −30 kcal/mol) compared to that of the
curcumin−monomer complex (−17 kcal/mol). This unique
form of interaction increases the number of curcumin

Figure 4. Interaction of curcumin with the Aβ fibril at a lower concentration of curcumin. Curcumin is represented as line structure in red. (a)
Illustration showing the binding of curcumin with the Aβ fibril in the following three modes: (1 and 3) curcumin parallel to the β-strands (BE =
−30 and −25 kcal mol−1, respectively), (2) curcumin interacting with the loop region between the β-strands parallel to the fibril axis (BE = 26 kcal
mol−1), and (4) curcumin going into the core of the fibril (BE = −27 kcal mol−1). (b) Top view of curcumin entering the central cavity. (c) The
G33XXXG37 motif showing the main residues involved in binding with curcumin.
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molecules that interact with the fibril, which in principle may
serve to increase the fluorescence signal.

■ CONCLUSION
In summary, we have explained the molecular basis for the
specificity of curcumin for Aβ and its amyloid structures. Our
findings explain the previous experimental findings by
demonstrating how curcumin is able to detect and discriminate
Aβ in solution and among differing amyloid morpholo-
gies.45,19,20 A unique feature of the curcumin molecule appears
to be its tendency to self-aggregate, which is finely balanced
with its affinity for Aβ and its amyloid structures. The self-
aggregation tendency concentrates curcumin molecules at its
deposition sites, serving to increase the fluorescence signal; this
is probably why curcumin is such an effective amyloid imaging
agent. Further, the molecular-level insights gained here would
be invaluable in the design of more effective and discriminating
curcumin-based imaging agents. To our knowledge, our results
provide new insight into how to further optimize curcumin and
its derivatives for the personalized treatment of AD.
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