
INVESTIGATION

Inferring Selection Intensity and Allele Age
from Multilocus Haplotype Structure
Hua Chen1 and Montgomery Slatkin
Department of Integrative Biology, University of California, Berkeley, California 94720

ABSTRACT It is a challenging task to infer selection intensity and allele age from population genetic data.
Here we present a method that can efficiently estimate selection intensity and allele age from the multilocus
haplotype structure in the vicinity of a segregating mutant under positive selection. We use a structured-
coalescent approach to model the effect of directional selection on the gene genealogies of neutral
markers linked to the selected mutant. The frequency trajectory of the selected allele follows the Wright-
Fisher model. Given the position of the selected mutant, we propose a simplified multilocus haplotype
model that can efficiently model the dynamics of the ancestral haplotypes under the joint influence of
selection and recombination. This model approximates the ancestral genealogies of the sample, which
reduces the number of states from an exponential function of the number of single-nucleotide poly-
morphism loci to a quadratic function. That allows parameter inference from data covering DNA regions as
large as several hundred kilo-bases. Importance sampling algorithms are adopted to evaluate the
probability of a sample by exploring the space of both allele frequency trajectories of the selected
mutation and gene genealogies of the linked sites. We demonstrate by simulation that the method can
accurately estimate selection intensity for moderate and strong positive selection. We apply the method to
a data set of the G6PD gene in an African population and obtain an estimate of 0.0456 (95% confidence
interval 0.014420.0769) for the selection intensity. The proposed method is novel in jointly modeling the
multilocus haplotype pattern caused by recombination and mutation, allowing the analysis of haplotype
data in recombining regions. Moreover, the method is applicable to data from populations under expo-
nential growth and a variety of other demographic histories.
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INTRODUCTION
There is an increased interest in elucidating the role of natural selection
in the evolution of human and other species using population genetic
data. Evidence shows that selection has been actively shaping the
genetic diversity of human populations during the process of adapta-
tion to new environments and infectious diseases (Sabeti et al. 2002;
Bersaglieri et al. 2004; Tishkoff et al. 2007; Simonson et al. 2010; Yi
et al. 2010; Peng et al. 2011; Xu et al. 2011; Kamberov et al. 2013).
Selection in human populations can leave “footprints” in patterns of
single-nucleotide polymorphisms (SNPs) in the vicinity of the selected

mutant. Numerous methods have been developed to detect natural
selection based on such polymorphism patterns (Tajima 1989; Fu and
Li 1993; Fay and Wu 2000; Kim and Stephan 2002; Sabeti et al. 2002;
Nielsen et al. 2005; Voight et al. 2006; Sabeti et al. 2007; Tang et al.
2007; Chen et al. 2010). However, only a few methods are available for
inferring quantities of the selective process, such as selection intensity
and allele age. Among the existing methods, some consider single
markers linked to the selected locus (e.g., Slatkin 2001; Kim and
Stephan 2002), whereas more sophisticated methods gain information
by exploiting the haplotype structure of multiple marker loci. For
example, Coop and Griffiths (2004) inferred selection intensity and
allele age by analyzing mutations among different haplotypes along
their genealogical history. Coop and Griffiths (2004) used an impor-
tance sampling algorithm to explore possible gene genealogies. Re-
combination is not allowed by their method, and thus it works only
for nonrecombining regions. Rannala and Reeve (2004) extended their
former likelihood approach for disease mapping (Rannala and Reeve
2001) to estimate allele age of a mutant under neutrality using mul-
tiple linked markers, and employed Markov Chain Monte Carlo to
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generate the posterior distribution of allele age of the mutant. Slatkin
(2008) presented a Bayesian method for jointly inferring selection
intensity and allele age of the mutant using linkage disequilibria of
multiple marker loci and generated the probability of data with an
importance sampling algorithm.

The aforementioned multilocus methods all require modeling the
effect of selection on the genealogical structure of neutral markers under
a coalescent framework, which can be done in two ways. The first
approach is to use the Krone-Neuhauser ancestral selection graph (ASG;
Krone and Neuhauser 1997). In the ASG, the genealogy of the selected
allele is embedded in a branching-coalescing graph so that both selection
and mutation can be incorporated in the graph. The ASG approach is
useful for simulating genealogies under weak selection. For moderate or
strong selection, the ASG becomes so large that the computation
becomes intractable. The ASG method’s performance was dramatically
improved by truncating the ASG (Slade 2000) to avoid generating very
large ASGs. This approach, however, has not been extended to the
analysis of multiple linked neutral mutations. The second approach is
the structured coalescent (Kaplan et al. 1988; Hudson and Kaplan 1988),
which generates historical frequency trajectories of the selected allele and
then treats chromosomes carrying the mutant allele and nonmutant
allele as subpopulations between which there exists “gene flow” caused
by recombination. For alleles under balancing selection, the allele fre-
quencies were assumed to be constant. For positively selected alleles, the
allele frequency trajectories can either be generated by stochastic simu-
lation or be approximated using deterministic equations.

The aforementioned multilocus methods all adopted the struc-
tured-coalescent model of selection to estimate the selection param-
eters (Coop and Griffiths 2004; Slatkin 2008), which is also the model
used in our proposed method. But the approach to sampling the allele
frequency trajectory from its probability distribution in our method
differs from these others. Coop and Griffiths (2004) generated random
trajectories of selected mutations under the Moran model, which has
the property of time reversibility under mutation and additive selec-
tion (Watterson 1975) but works only for populations of constant size.
Rannala and Reeve (2004) made an assumption that the historical
allele frequencies of neutral markers are constant during the whole
process, which may not hold for real populations, especially for
markers under the hitch-hiking effect. Slatkin (2008) used a linear
birth-and-death process to approximate the genealogical trees of hap-
lotypes carrying selected mutants, which is an adequate approxima-
tion for mutants in low frequency, but may not be suitable for
common mutants. We use the Wright-Fisher model instead of the
Moran model to generate allele frequency trajectories, and apply the
importance sampling scheme in Slatkin (2001) to weight the trajecto-
ries when estimating selection parameters. This allows us to model the
selective sweeps in a population with time-varying size, and allows us
to analyze both high- and low-frequency alleles under selection.

One advantage of the proposed method over the existing methods
is that we model the dynamics of ancestral haplotypes under the joint
effects of selection, mutation and recombination during a selective
sweep process. In contrast, Coop and Griffiths (2004) assumed no
recombination in their model, whereas both Slatkin (2008) and Ran-
nala and Reeve (2004) simplified the transitions among different
multi-loci haplotypes induced by recombination. In particular, some
of the recombination events between different types of haplotypes
within the selected haplotype group were ignored. This restriction
can cause significant bias when the selected allele is in medium or
high frequency in the population. Our method explicitly describes the
frequencies of different selected haplotypes over time during the se-
lective process. Therefore, our proposed method applies to both high-

and low-frequency mutants. Our method also requires some approx-
imations to improve computational efficiency.

As we will demonstrate in the section A simplified multi-locus
model for haplotype structure, the model efficiently reduces the state
space of ancestral haplotypes from an exponential function of the
number of SNP loci to a quadratic function, and thus allows the in-
ference of allele age and selection intensity from multi-SNP haplotypes
spanning several hundred kilo-bases or even mega-bases affected by
strong selections. We then modify the importance sampling method of
Griffiths and Tavaré (1994b) to obtain the probability of a sample
configuration and to estimate the selection parameters by averaging
over genealogies of the linked sites. Note that an alternative choice is to
adopt the existing importance sampling algorithms developed for mul-
tilocus ancestral recombination graph (ARG) under neutrality (Griffiths
and Marjoram 1996; Fearnhead and Donnelly 2001) and incorporate
the ARG into the structured-coalescent model. However, because of the
large state space of genealogies that has to be explored by the impor-
tance sampling algorithms for a multilocus ARG, this approach is in-
tractable on a genomic scale of hundreds of kilobases.

OVERVIEW OF THE METHOD
Suppose the data consist of nsample haplotypes with known phase
collected from the current population. If genotype data are collected,
the phase can be estimated by available algorithms (Scheet and Ste-
phens 2006). The haplotypes are divided into two groups: the selected
haplotypes, which are the chromosomes carrying the selected allele,
and the background haplotypes, which do not carry the selected allele.
In this method, we view the coalescent process in the n selected
haplotypes as in a structured subpopulation (see Figure 1). The n

Figure 1 An illustration of the structured-coalescent approach for
modeling positive selection. The historical population sizes are indicated
by the distance between the two dashed lines; and the allele frequency
trajectory of the selected allele is indicated with a thin solid curve. The
coalescent history of the selected locus with five derived lineages (solid
bold lines) and five ancestral lineages (dotted bold lines) is super-
imposed on the trajectory and population size curves. The present time,
t = 0, is at the bottom. And the time at which the trajectory of the
selected mutant merged to the population-size curve denotes the time
when the selected mutant arose in the population, i.e., the allele age T.
In the model presented in the main text, only the sub-genealogies in the
selected allele groups (bold solid lines) are considered.
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selected haplotypes are represented by a n by mmatrix with “1” or “0”
for each entry, Di,j, corresponding to the allele type of the ith haplo-
type at the jth SNP position. The position of the selected mutant is
assumed to be known, as is the genetic distance between the j1th and
j2th SNP, {rj1j2, 1 # j1, j2 # m}.

We model the effect of selection with the structured-coalescent
scheme (see Figure 1). The likelihood function of the observed selected
haplotype data, D, can be computed from

LðsÞ ¼ ℙðDjs;GÞ ¼ ∬ℙðDjGÞℙðGjHÞℙðHjs;GÞdGdH; (1)

where G denotes the genealogy andH the frequency trajectory of the
selected mutant. NeitherH nor G is observed directly. When construct-
ing the likelihood function, they are often integrated out (Felsenstein
1988; Griffiths and Tavaré, 1994b; Kuhner et al. 1995).

The frequency trajectory of the selected mutant, H, is a random
process that follows the Wright-Fisher model and has a probability
distribution, ℙ(H|s, G), that depends on the selection intensity s and
the nuisance parameter set G, which includes all the other parame-
ters related to the population history. Conditional on any given fre-
quency trajectory, the sampling probability of the data is constructed
by summing over all possible genealogical events: ℙðDjHÞ ¼R
ℙðDjGÞℙðGjHÞdG.
For computationally efficient evaluation of the sampling proba-

bility, we propose a novel simplified multilocus model for the
transition of different types of selected haplotypes (see the section A
simplified multilocus model for haplotype structure). We compute the
extent of the ancestral haplotypes in the vicinity of the selected
mutant under the combined effects of recombination and selection.
Together with the infinitely-many-sites model for mutations, the
simplified multilocus haplotype model is used to approximate the
evolutionary dynamics of the data.

Because the spaces of both gene genealogies and allele frequency
trajectories are too large to explore, ℙ(G|H) and ℙ(H|s, G) cannot be
expressed in closed forms. We use the importance sampling algo-
rithms to sample genealogies and trajectories that are compatible with
the data from the proposal distributions. Then the likelihood is esti-
mated as the weighted average probability for the samples. The im-
portance weights are obtained by taking the ratio of the probabilities
of true distribution and the proposal distribution. The procedure of
evaluating the likelihood is illustrated by the flowchart in Figure 2.
Two main steps of the flowchart correspond to sampling H and G
using the importance sampling algorithms. The details of the algo-
rithms and calculation of the importance ratios are presented in the
section Importance sampling and proposal distributions.

A SIMPLIFIED MULTILOCUS MODEL FOR HAPLOTYPE
STRUCTURE
We model the transition of the selected haplotypes (haplotypes
carrying the selected mutant) under the influence of evolutionary
events including recombination and mutation. We start with a sample
of selected haplotypes collected from the current generation. When
looking backward in time, we can eventually trace these selected
haplotypes to one common ancestor (the ancestral haplotype) because
all copies of the selected allele are descended from a single mutation.
During the selection process, recombination breaks up and mixes the
fragments with the background haplotypes. Recombination combined
with mutation generates the different selected haplotypes that contain
some segments of the ancestral haplotype. The number of distinct
selected haplotypes at different times in the history is called the
ancestral process. This ancestral process, conditional on the frequency

trajectory of the selected mutant, can be viewed as a structured-
coalescent process, because the selected haplotypes evolve as a sub-
population of the entire haplotype pool, with the size of the
subpopulation determined by the mutant allele frequency, and the
transitions among different haplotypes following the simplified
multilocus model.

To illustrate the state space of the ancestral process and the joint
effect of selection and recombination on the transitions between the
ancestral states, we will start with a simple case of only two loci, the
selected locus and a partially linked SNP locus. We then extend the
two-locus model to a simplified multi-locus haplotype model, after
making several approximations for computational efficiency. Then in
the section Sampling probability of a multi-locus haplotype configura-
tion, the simplified multilocus haplotype model and the infinitely-
many-sites model for mutation are used to derive the sampling prob-
ability for haplotype configuration of a sample by summing over
possible ancestral states of the genealogical history, that is, theP

GℙðDjGÞℙðGjHÞ component of likelihood function conditional
on a simulated allele frequency trajectory.

A two-locus model
The two-locus haplotype model involves only the selected locus and
one neutral marker, the positions of which are assumed known. The
selected locus has the mutant allele A and the other neutral allele a.
The neutral marker locus has two alleles B and b. Let Q(t) = (q1, q2; q3,
q4) denote the number of haplotypes AB, Ab, aB, and ab in the sample
at time t. Conditional on the ancestral allele frequency trajectory, {Xt,
t. 0}, the “ancestral process” Q(t), which is defined as the numbers of
each haplotype, can be approximated by the inhomogeneous Markov
process (Hudson and Kaplan 1988; Durrett and Schweinsberg 2004).
The states that the process Q(t) can jump from state (q1, q2; q3, q4) to
include (q1 2 1, q2; q3, q4), (q1 2 1, q2 + 1; q3, q4), (q1 2 1, q2; q3 + 1,
q4), (q1 2 1, q2; q3, q4 + 1), (q1, q2 2 1; q3, q4), (q1 + 1, q2 2 1; q3, q4),
(q1, q2 2 1; q3 + 1, q4), (q1, q2 2 1; q3, q4 + 1), (q1, q2; q3 2 1, q4), (q1 +
1, q2; q3 2 1, q4), (q1, q2 + 1; q3 2 1, q4), (q1, q2; q3 2 1, q4 + 1), (q1, q2;
q3, q4 2 1), (q1 + 1, q2; q3, q4 2 1), (q1, q2 + 1; q3, q4 2 1) and (q1, q2;
q3 + 1, q4 2 1). The transition probabilities from (q1, q2; q3, q4) to the
first four states are listed in Table 2, and the other transition proba-
bilities can be constructed similarly. We assume an infinitely-many-
sites model for mutations, so there are no new or recurrent mutations
between the two alleles of either the selected locus or the neutral
marker locus. Let NAB(t), NAb(t), NaB(t), and Nab(t) be the population
counts of the four corresponding haplotypes AB, Ab, aB and ab at
time t respectively. For the transition from (q1, q2; q3, q4) to (q1 2 1,
q2; q3, q4), no recombination has occurred and two lineages of
haplotype AB are chosen to coalesce. The coalescence rate is

q1ð12 rÞ q1 2 1
NABðtÞ ; for the transition from (q1, q2; q3, q4) to (q1 2 1,

q2 + 1; q3, q4), one of the NAb(t) + Nab(t) lineages, which carry
the b allele, must be chosen to recombine, and the rate is

q1r
NAbðtÞþNabðtÞ2 q2 2 q4

2Nt
. And the other transition rates can be obtained

by similar rationale. Note that the selected allele first entered into the
population at time T, so the states of the embedded Markov chain
should satisfy Q(T) 2 {(1, 0; q3, q4), (0, 1; q3, q4)} and Q(t) = (0, 0; q3,
q4), t . T.

A simplified multilocus model for haplotype structure
The model for two-locus haplotypes can be naturally extended to
multilocus haplotypes. However, the extent of haplotype structure that
is used to infer selection intensity and allele age usually spans a large
region which covers several hundred kilobases, or even more than
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a mega-base. In such a large region, there may be hundreds of
polymorphic sites. When the number of SNP loci increases, the number
of possible states of the ancestral process increases exponentially, and
the transition matrix becomes so large that numerical evaluation
becomes impossible. It is thus necessary to develop a parsimonious
model for multilocus haplotypes that is both computationally fast
and statistically efficient.

The novel multilocus model we present here exploits the extents of
the “ancestral haplotypes” retained during the selection process. We
use the term “ancestral haplotype” to refer to the alleles at each SNP
position on the ancestral chromosome, and the term “background
haplotypes” to refer to the other haplotypes. In this model, we con-
sider the interplay between selection and recombination acting upon
the ancestral haplotype. As the selected allele increases its frequency,
recombination breaks up the ancestral haplotypes and mixes them
with the background haplotypes, resulting in the sample we observe
at present. We make several simplifications or assumptions to expe-
dite the computation in the sections to follow.

The ancestral state of each position along the haplotypes is
assumed known: For each position of a chromosome, it is assumed to
be known whether the allele at that position is descended from an
ancestral haplotype or one of the background haplotypes. In
reality, the ancestral haplotype information cannot be observed
directly from the data. The ancestral states and the break points of
the ancestral haplotypes have to be inferred for each chromosome
from patterns of SNP variation by other means (for example, the
hidden Markov model for detecting recent positive selection, see
Chen (2007)).

The haplotype structure of background haplotypes is ignored: It
is reasonable to believe that the primary information for the
inference of allele age and selection intensity comes from the
extent of the ancestral haplotypes retained during selection. For
example, states of the jump process for a two-locus haplotype
model are reduced to Q(t) = (q1, q2), and the absorbing states are
now (1,0) and (0,1).

Figure 2 Flowchart of impor-
tance sampling procedures of
the method.
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The population frequencies of ancestral haplotypes at time t are
approximated using the expectations: To obtain the transition rates
in Table 2 for a two-locus model, the population counts of haplotypes
AB, Ab, aB, and ab at time t, NAB(t), NAb(t), NaB(t), and Nab(t), are
needed. For a multilocus haplotype model, these values correspond to
the population frequencies of haplotypes at time t. In studies of fine-
scale disease mapping, these allele frequencies were assumed to be
constant over time and identical to the observed frequencies in the
current population (Rannala and Reeve 2001). When there is selec-
tion, the allele frequencies of nonrecombined haplotypes change over
time, and their expectations have to be derived using a deterministic
model. These expectations will be used as an estimate of the true
haplotype frequencies at any time t. The details of the equations for
the haplotype frequencies at time t can be seen in Appendix A.

Multiple “migrations” of ancestral haplotype fragments between
selected and neutral haplotypes are ignored: In the ancestral process
of a two-locus haplotype model, there is a probability that a lineage of the
neutral marker experiences two recombination events during the sweep
process. In other words, the ancestral haplotype crosses over twice with
a background haplotype at the marker position and the segment of the

ancestral haplotype “migrates” to and then back from the group of
neutral haplotypes. The probability for such events are small during
a selective sweep, and thus are ignored (on order O

�
1

logðaÞ2
�
, where

a = 2N s, see Etheridge et al. 2006).
Because of the assumptions (1)2(4), the state space of the ances-

tral process can be reduced by considering the unique pattern of
ancestral haplotype lengths in combination with the occurrence of
mutation since selection began. Because we have assumed that the
ancestral states of SNPs along the chromosomes are known, for every
haplotype, we can determine the break points of the ancestral haplo-
type caused by the recombination events nearest to the mutant, in
addition to the locations where mutations occurred within each an-
cestral haplotype region. With this information known, the ancestral
haplotype on each side of the mutant can be coded as follows: for
every selected haplotype, we record the SNPs to the left and to the
right sides that delimit the ancestral haplotype; if there are mutations
within the ancestral haplotype regions, the positions of the mutants
are also recorded and listed as “mutation coordinates” behind the two
“recombination coordinates.” In Table 3, we give an example of 10
selected haplotypes consisting of 25 SNPs, among which the ancestral
haplotype regions are highlighted. The selected mutant is located at
position 18 (shown in boldface type). The left end of the ancestral
haplotype for the first haplotype is 7 to the left of the mutant, and the
right end is 6 to the right, such that the first haplotype is recorded as
(7, 6). For haplotype 3, the full code is (12, 7, 21) with a mutation
occurring in position 21. By this coding rule, the configuration of the
sample listed in Column 3 of Table 3 is summarized in Column 3.

For a recoded haplotype type h = (R1, R2,M1, . . .,Mk), the first two
entries, corresponding to the left and right break points of the ances-
tral haplotypes, are the “recombination coordinates” and the other
entries are the “mutation coordinates.” In this model, the transition
among different haplotypes is caused by recombination and mutation.
For the coded haplotypes consisting of only recombination coordi-
nates, the transition among different haplotype types can occur only
through recombination. If there are mL loci to the left of the mutant
and mR loci to the right of the mutant, the total number of possible
allele types is (mL + 1) · (mR + 1). The number of possible states is
greatly reduced compared to a direct extension of the two-locus
model, whose state space grows exponentially with number of SNPs.

In Table 4, we present a partial list of transition rates caused by
recombination for a 4-locus haplotype model. Assume that the hap-
lotype has 4 SNP loci, with the alleles on the ancestral haplotype being
A, B, C, and D. A is the selected mutant, and the order of the four loci
along the chromosome is the same as their alphabetical order. We use
the notation [ABCD] to denote the intact segment of ancestral hap-
lotype. And similarly [AB 2 d] indicates that the first two loci have
the inherited ancestral haplotype of A and B, the allele of the third
locus is arbitrary, and the fourth locus is a background haplotype.
Examples in Table 4 show some of the one-step transition rates start-
ing from state [ABcd]. For example, for haplotype [ABcd] to jump
to [ABCD], one of the [ABcd] haplotypes should be chosen and re-
combination has to occur between allele B and c, in such a way
that the chosen haplotype crosses over with haplotypes [ABCD],
[AbCD] and [a 2 CD]. The one-step transition probability is:
rBCfP½ABCD�ðtÞ � Xt þ P½AbCD�ðtÞ � Xt þ P½a2CD�ðtÞ � ð12XtÞg, with Xt

being the population allele frequency of allele A at time t, and P[.](t)
being the frequency of the haplotype in square parenthesis among
either the selected haplotype or the background haplotype group,
depending on the allele type carried by the particular haplotype at
the selected mutant locus. Because of assumption (4) we made pre-
viously (also made by Durrett and Schweinsberg (2004)), the second

Figure 3 A realization of the genealogies for a sample of four
haplotypes (lineages 124) to illustrate possible events in the geneal-
ogies. Black denotes the ancestral haplotype region (see the main text
for the definition of “ancestral haplotypes”), and white denotes back-
ground haplotypes. A star denotes a neutral mutant arising on the an-
cestral haplotype. The present time, t = 0, is on the bottom. When going
back in time, the events are coalescent (lineages 2 and 3 coalesce to the
ancestral lineage 5), recombination (lineage 6 / lineage 4), coalescent
(lineages 5 and 6 coalesce to the ancestral lineage 7), recombination
(lineage 8 / lineage 7), mutation (on lineage 9), coalescent (lineages 8
and 9 coalesce to lineage 10) in sequence.
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and the third terms are small and can be ignored. With this simpli-
fication, the transition rate in Table 4 becomes rBC � P[ABCD](t) � Xt.
Similarly, we can simplify the other transition rates shown in Table 4.

A mutation coordinate records the SNP position at which the
haplotype has an allele mutated from the ancestral haplotype. We
assume an infinitely-many-sites model for mutations on the haplo-
types. According to Griffiths and Tavaré (1995), the set of nonrecom-
bining haplotypes carrying these mutations is identical to a rooted

gene tree, and the sequence of mutations corresponds to the path from
the haplotype to the common ancestor [the root of the gene tree, see
Griffiths and Tavaré (1995) for a detailed discussion]. We use the
same notation scheme for mutations as Griffiths and Tavaré (1995).
Because the haplotypes we investigate are from recombining regions,
an additional constraint is added to reflect the effect of recombi-
nations: the sequence of mutations we recorded as mutation coordi-
nates includes only those located between the two recombination

n Table 1 Definitions of notations used in this article

Notation Meaning

nsample Total number of haplotypes in the sample
n Number of selected haplotypes
m Number of SNPs of a sample
mL and mR Number of SNPs on the left and right sides of the mutant
Di,j = 0 or 1 The jth SNP of the ith haplotype
Nt Population size at time t
T Allele age, or the time when the mutant arose in the population
s The selection coefficient
r Recombination fraction of the haplotype
m Mutation rate of the haplotype
u = 4Nm The scaled mutation rate of the haplotype
r = 4Nr The scaled recombination rate of the haplotype
bj The proportion of ancestral haplotype region as a fraction of the length of

the jth haplotype
H = {IT, IT21, . . ., I1, I0} The allele frequency trajectory
It The number of the selected allele in the whole population at time t
Xt = It/(2Nt) The frequency of the selected allele at time t
h1 = (R1, R2, M1, . . ., Mk) A recoded haplotype which includes two recombination

Coordinates and k mutation coordinates
T = {h1, . . ., hd} The d different haplotypes of a sample
n = {n1, . . ., nd} The number of haplotypes for each haplotype group in T
(T , n)t The sample configuration at time t
q((T , n)t) Sampling probability of the sample configuration (T , n) at time t
ej = (0, 0,. . .,1,. . .,0) The jth unit vector

gðv;nÞ ¼
�
n
2

�
ðlvXvÞ21 þ nu=2þ nr=2 The total rate for events at time v

lt = Nt/N0 The ratio of population size at t to that at the present
Shk S denotes a shift operator, and Shk denotes deleting the first mutation

coordinate of the kth haplotype
Chk C denotes a coordinate change operator, and Chk denotes changing one

of the two recombination coordinates of the kth haplotype and elimi-
nating all mutation coordinates outside the ancestral regions delimited
by the new recombination coordinates

RkT The deleting operator that deletes hk haplotype from T
L(s) Likelihood function of the data
G(m) The mth genealogical history, which consists of multiple steps of events,

including recombination, mutation and coalescences
ℚ(H) Proposal distribution for H in the importance sampling algorithm
ℚ(G|H) Proposal distribution for G conditional on a H in the importance sampling

algorithm

n Table 2 Possible transitions from (q1, q2; q3, q4) and the rates for the two-locus haplotype model

Transition Rate

(q1, q2; q3, q4)/(q1 2 1, q2; q3, q4) q1ð12 rÞ ðq1 21Þ
NABðtÞ

(q1, q2; q3, q4)/(q1 2 1, q2 + 1; q3, q4) q1r
NAbðtÞ þNabðtÞ2q2 2q4

2Nt

(q1, q2; q3, q4)/(q1 21, q2; q3 + 1, q4) q1r
NABðtÞ þNaBðtÞ2q3

2Nt

(q1, q2; q3, q4)/(q1 21, q2; q3, q4 + 1) q1r
NAbðtÞ þNabðtÞ2q2 2q4

2Nt
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coordinates, that is, the subset of mutations on the retained ancestral
haplotype region. For haplotype data from nonrecombining regions,
the recombination coordinates are identical for all haplotypes (the left
and right ends of the whole haplotype), and the mutation coordinates
define a gene tree with the rooted genealogy, meaning that the state of
the common ancestor of the sample is known (Griffiths and Tavaré,
1994b). This is the type of data analyzed by the approach of Coop and
Griffiths (2004). Thus their method can be viewed as a special case of
our method with no recombination.

Sampling probability of a multilocus
haplotype configuration
In the section A simplified multilocus model for haplotype structure, we
described a novel simplified multilocus model that can dramatically
reduce the state space of the haplotype ancestral process, and illus-
trated how to obtain the transition probabilities between different
states. We now consider the computation of the probability of a sample
of multilocus haplotypes.

A sample of selected haplotypes can be coded and summarized by
the rules introduced in the section A simplified multi-locus model for
haplotype structure and grouped into d distinct groups T = {h1, . . .,
hd} with the corresponding multiplicities n = {n1, . . ., nd}. We define
the sampling probability, q((T , n)t), to be the probability of observing
the sample configuration (T , n) at t generations before the current
generation. The entire history of the sample configuration {(T , n)t, t.
0} can be described by a Markov process that starts at time t = 0 and
continues until reaching the absorbing state (T , e1) at a random
time t, where ej denotes the unit vector ej = (0,0, . . ., 1, . . ., 0) with
only the jth entry being 1. When t = 0, q((T , n)0) is the partial
likelihood of the data which is sufficient for the inference of se-
lection intensity and allele age. The sampling probability at time t
can be obtained by recursively summing over all possible state
paths in the backward Markov process. The recursive formula
can be written as

q
�
ðT ; nÞt

�
¼

Z N

t

X
ðT 9;n9Þ

p
�
ðT ; nÞt

��ðT 9; n9Þv
�
q
�
ðT 9;n9Þv

�
gðvjn; tÞdv;

(2)

where pððT ; nÞtjðT 9; n9ÞvÞ is the transition probability of jumping
from state (T 9, n9) at time v to state (T , n) at time t, and g(v|n, t) is
the density function of the inter-arrival time to the next event given
an event at time t.

As the Markovian ancestral process is restricted to the selected
haplotypes, the process behaves as if in a population with temporally
varying size {It, t = 0.1, . . ., T}. If time is measured in a scale of 2N0

generations, the coalescent rate is
� n
2

�
ðltXtÞ21, with Xt = It/2Nt and

lt = Nt/N0 being the population size ratio. With the same scaling,

the mutation rate for the ith haplotype is ui = 4N0mbi = u bi, and
the recombination rate is ri = 4N0cbi = rbi. u = 4N0m and r = 4N0c
are the scaled mutation rate and recombination rate for the whole
haplotype, and bi denotes the proportion of the retained ancestral
haplotype region, or the inter-region between two recombination
coordinates, out of the entire length of the ith haplotype. Note
that bi changes over time with the change of recombination
coordinates of the ith haplotype. The inter-arrival time to the
next event, v, given that the last event happened at time t has
a non-homogeneous exponential distribution, with the density
function in the form of

gðvjn; tÞ ¼ gðv; nÞ exp
�
2

Z v

t
gðu; nÞdu

�
; (3)

t , v , N, where at time v, gðv; nÞ ¼
� n
2

�
ðltXvÞ21 þPn

i¼1ui=2þ
Pn

i¼1ri=2 is the rate for the any events. As the allele
frequency trajectory {Xt, 0 # t # T} is a discrete-time random
process following the Wright-Fisher model, we adopt the geometric
distribution for discrete time instead of using the continuous ap-
proximation in Equation 3:

gðvjn; tÞ ¼ gðv; nÞ ·
Yv2 1

u¼tþ1

�
12 gðu; nÞ

�
: (4)

Conditional on an event happening at time v, the probabilities
for the event being a mutation, recombination or coalescent are
respectively

Pn
i¼1ui=2
gðv; nÞ ;

Pn
i¼1ri=2
gðv; nÞ and

�
n
2

�
1

lvXv

gðv; nÞ : (5)

If a mutation occurs, one of the lineages in the sample is chosen to
mutate into other types according to the mutation model, and the
mutation coordinate of that haplotype is modified correspond-
ingly; if a coalescence event occurs within the jth haplotype group,
two of the existing lineages with haplotype hj are chosen at ran-
dom to coalesce, and the number of lineages in the jth haplotype
group, nj, is decreased by 1; otherwise, a position along the hap-
lotype is chosen for the recombination event to occur with the
consequence that one of the recombination coordinates is changed
to record the recombination at that position (see Figure 3 for
a realization of the genealogical history for a sample of four
haplotypes).

We now present the detailed recursion equation (Equation 6),
expressed as a sum over the above three types of events in a way
corresponding to Equation 2 for our model. Under the infinitely-
many-sites mutation model (Watterson 1975) and the proposed mul-
tilocus haplotype model for the extent of ancestral haplotypes, sum-
ming over possible one-step configuration changes at time v leads to
the following equation:

n Table 3 An example of haplotype configuration to demonstrate
the coding rules used to denote the haplotype structure

Haplotype Type Count Number Code

There are 10 haplotypes with 25 single-nucleotide polymorphisms in four
distinct groups in the sample. The mutant is located in position 18 and shown in
boldface type. The ancestral region for each haplotype is highlighted. The
codes for the four haplotype groups are listed in the third column

n Table 4 The transition probabilities for some states of the
multilocus haplotype model

Transition Rate

[ABcd]/[ABCD] rBCfP½ABCD�ðtÞ � Xt þ P½AbCD�ðtÞ � Xt þ P½a2CD�ðtÞ � ð12Xt Þg
[ABcd]/[ABCd] rBCfP½ABCd�ðtÞ � Xt þ P½AbCd�ðtÞ � Xt þ P½a2Cd�ðtÞ � ð12Xt ÞÞg
[ABcd]/[Abcd] rABfP½Abcd�ðtÞ � Xt þ P½aBcd�ðtÞ � ð12Xt Þg
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ℓq
�
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�
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k:nk $ 2

nðnk 2 1Þ 1
lvXv

2gðv; nÞ q
�
ðT ;n2 ekÞv

�

þ
P

k:nk¼1;hk   distinct;

S hk 6¼hj   for  all  j

ubk

2gðv; nÞ q
�
ðS kT ; nÞv

�

þ
P
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P
j:S hk¼hj

u
�
nj þ 1

�
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2gðv; nÞ

3 q
��

R kT ;R k
�
nþ ej

��
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�

þ
P
i

P
j:C hi¼hj;nj $ 0;i6¼j

bjr

2gðv; nÞ
�
nj þ 1

�
phj;hi

3 q
��

C hiT ;n2 ei þ ej
�
v

�
:

(6)

The notation in Equation 6 has the following meaning: ek is the kth
unit vector, representing a multiplicity of the kth distinct haplo-
type; bl is the length of ancestral haplotype region divided by
length of the lth haplotype. We follow the notation of Griffiths
and Tavaré (1995) and use several operators to denote the changes
of sample configuration: S is the shift operator that can be oper-
ated on a specific haplotype hk or the entire haplotype set T .
Specifically, Shk represents the haplotype obtained by deleting
the first mutation coordinate of haplotype hk. Similarly, SkT rep-
resents the new set of distinct haplotypes obtained by deleting the
first mutation coordinate of the kth distinct haplotype, hk, in T .
Another operator that operates on the entire haplotype isRk which
removes the kth distinct haplotype hk from the set T . The third
coordinate change operator C is defined in this manuscript to
denote the coordinate changes caused by recombinations: Chi
changes one of the two recombination coordinates of haplotype
i, Rhi ¼ fRhi ;1;Rhi;2g, and eliminates all mutation coordinates out-
side the regions delimited by Rhj;1 and Rhj ;2.

Next we explain how we derive the recursive formula in Equation
6. Starting from time v back from the present, there are four possible
paths to arrive at the sample configuration (T , n) at time v: (1) a co-
alescent event occurred at time v, and a possible sample configuration
prior to time v was (T , n 2 ek); (2) a mutation occurred on a haplo-
type hk that had only single multiplicity, or nk = 1, at time v, and a new
mutation coordinate was added to hk; (3) a mutation occurred on
a haplotype hj that had multiplicity greater than 1, or nj . 1, at time
v, and a new haplotype hk with nk = 1 was generated by adding the
new mutation coordinate to hj; (4) a recombination event occurred,
and altered one of the recombination coordinates of hj by that of hi.
Note that a recombination event not only changes the recombination
coordinate, it also changes the mutation coordinates: after the recom-
bination coordinates are changed by a recombination event, all the
mutation coordinates of that haplotype are checked, and only those
located within the interregion between the two new recombination
coordinates are kept. The four terms on the RHS of Equation 6
correspond to the above four paths respectively, and the derivation
of the first three terms follows Griffiths and Tavaré (1994a, 1995).
In the first path, the sample configuration at time v compatible
with the occurrence of coalescence is (T , n 2 nk), the probability

that the event occurred at time v is a coalescent event is

� n

2

�
lvXvgðv;nÞ.

And whenstarting from the configuration (T , n 2 nk) and going
forward in time, the probability that one of the nk 2 1 haplotype ek
is chosen to duplicate is nk 2 1

n2 1 (Griffiths and Tavaré, 1994a). The
one-step transition probability of p((T , n)v|(T , n 2 ek)v) is then

nk 2 1
n2 1

� n

2

�
lvXvgðv;nÞ. Note that a restriction for haplotype group hk is that

there must be more than one lineage in group hk at time v. Sum-
ming over all possible haplotype groups that have multiplicity nk $
2 at time v, and are compatible for coalescent events to occur, we
obtain the first term of Equation 6. The second and the third path
correspond to the cases when the event occurring at time v is
a mutation. Under the assumption of the infinitely many-sites
model, if a mutation event occurs, it can result only in one of
the single-multiplicity haplotype groups at time v (nk = 1) and
the mutation coordinate must be a singleton in the sample config-
uration at time v. In both the second and the third paths, the

chance that a mutation occurred at time v is
Pn

l¼1
ul

2gðv;nÞ . The configu-

ration at time v compatible with the occurrence of second path is
(SkT , n), and the probability for the mutation to happen to hap-

lotype hk is
bkPn

l¼1
bl
. Summing over all haplotypes satisfying nk = 1

and Sh 6¼ hj for all j yields the second term in Equation 6. In the
third path, the probability for the mutation to happen to haplotype

hk is
P

j:S hk¼hj

ðnjþ1ÞbjPn

l¼1
bl

with the sample configuration prior to the

event being ðR kT ;R kðnþ ejÞÞ for all k with nk = 1 at time v. In
the fourth path, recombination occurs with a probability ofPn

l¼1
blr=2

gðv;nÞ . If recombination causes a haplotype hj to become hi,

the haplotype configuration prior to the event is (ChiT , (n 2
ei + ej)) and the probability for a haplotype hj changing into hi is
bjðnjþ1ÞPn

l¼1
bl
phj ;hi , with nj $ 0. The transition probability phj;hi between

different haplotypes follows the multilocus haplotype model pre-
sented in the section A simplified multi-locus model for haplotype
structure, where hi and hj correspond to one of the distinct hap-
lotypes defined by the “recombination coordinates”. Combining
these possibilities and averaging over the time to the first event
more ancient than t, the sampling distribution of haplotype con-
figuration, (T , n), is analogous to Equation 2:

q
�
ðT ;nÞt

�
¼

Z N

t
ℓq
�
ðT ; nÞv

�
g
�
ðT ;nÞv

�
exp

�
2

Z v

t
g
�
ðT ;nÞu

�
du

�
dv

(7)

Although we have reduced the state numbers defined by
recombinations from 2ðmLþmRþ1Þ to (mL + 1) · (mR + 1) for the
simplified multilocus haplotype model, it is still difficult to numer-
ically solve the distribution function induced by the Markov process.
Therefore ,we still need to use the importance sampling algorithms
to estimate the sampling probability, as will be shown in following
sections.

IMPORTANCE SAMPLING AND PROPOSAL
DISTRIBUTIONS

Likelihood and importance sampling
Importance sampling algorithms are used to efficiently sample from
the probability spaces of frequency trajectories and intra-allelic
genealogies in order to approximate the integral in the likelihood
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function (see Equation 1). The likelihood function in Equation 1 can
be expressed as

LðsÞ ¼
ZZ

ℙðDjGÞ ℙðGjHÞ
ℚðGjHÞℚðGjHÞ ℙðHjs;GÞ

ℚðHjs;GÞℚðHjs;GÞdGdH;

(8)

where ℚ(G|H) and ℚ(H|s, G) are the proposal distributions that
have non-zero weight only on genealogies and trajectories compat-
ible with the data D (that is, ℙ(D| G) = 1). Suppose that M random
frequency trajectories and L genealogical histories for each of the
trajectories are sampled, then the approximation to Equation 8
becomes

LðsÞ� 1
M

1
K

XM
m¼1

XK
k¼1

ℙ
�
HðmÞ

���s;G�

ℚ
�
HðmÞ

���s;G�
ℙ
�
GðkÞ

���HðmÞ
�

ℚ
�
GðkÞ

���HðmÞ
�; (9)

where H(m) and G(k) are the mth and kth independent samples
from the proposal distributions. The ratio ℙð�Þ

ℚð�Þ is called the importance
weight. The importance sampling algorithm for the genealogies will be
presented in the section A proposal distribution for sampling genea-
logical histories conditional on a trajectory and the algorithm for the
allele frequency trajectories in the section The proposal distribution for
sampling allele frequency trajectories of the selected allele in a popula-
tion of time-varying size. We illustrate the proposal distributions and
the calculation of importance weights in those two sections.

Allele age, T, is not explicitly expressed as a variable in the likeli-
hood function. It is the end point of the frequency trajectory, and thus
depends on s through ℙ(H|s). Once the maximum likelihood estimate
ŝ is found, the posterior distribution of T can be obtained from the
repeated samples of H given s ¼ ŝ. This method for estimating allele
age has been used by Coop and Griffiths (2004), Saunders et al. (2005)
and Wood et al. (2005), while it is different from the Bayesian ap-
proach of Slatkin (2008), who assumed a prior for allele age and
jointly inferred both selection intensity and allele age.

A proposal distribution for sampling genealogical
histories conditional on a trajectory
The recursion of the genealogical histories given in Equation 6 for the
likelihood of the data cannot be computed exactly for large data sets
since there are too many compatible sets of ancestral states. We adopt
an importance sampling algorithm to approximate the likelihood by
Monte Carlo methods. There are many ways of constructing the
proposal distributions for the importance sampling algorithm (Grif-
fiths and Tavaré, 1994b; Stephens et al. 2001; Paul et al. 2011). Here
we follow the scheme developed by Griffiths and Tavaré (1994b). As
described in previous sections, the infinitely-many-sites model for
mutations in conjunction with the simplified multi-locus haplotype
model is assumed.

In the algorithm, a Markov process starting from the configuration
in the current generation (T , n)0, conditional on a randomly sampled
historical frequency trajectory {Xt, t = 0, . . ., T}, is constructed and
simulated backward in time until reaching the absorbing state (T , e1)t
at time t. The algorithm is summarized as follows:

1. Generate time to the next event, v, by the density function given
in Equation 4;

2. Choose one of the three possible events (recombination, mutation
or coalescence) from the proposal distribution. We first define the
total rate that any event occurs at time v as

Z
�
ðT ; nÞv

�
¼

X
k;nk $ 2

nðnk 2 1Þ 1
lvXv

þ
X
i

X
j:C hi¼hj

nj $ 0;i 6¼j

bjr
�
nj þ 1

�
phj ;hi þ um;

(10)

where

m ¼
X

k;nk¼1;hk   distinct;S hk 6¼hj for all j

bk þ
X

k:nk¼1;hk distinct

X
j:S hk¼hj

�
nj þ 1

�
� bj:

(11)

The proposal distribution is designed in such a way that a possible
event at time v is chosen with probability in proportion to the size of
each term in Z((T , n)v):

p
�
ðT 9;n9Þv

��ðT ; nÞv
�
¼

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

nðnk 2 1Þ 1
lvXv
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ubk
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ubj
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�
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bjr
�
nj þ 1

�
phj ;hi

Z
�
ðT ; nÞv

� ; ðT 9; n9Þ ¼
�
C hiT ;n2 ei þ ej

�
:

(12)

3. Update the configuration to reflect the chosen event. Let Gj, j $
0 denote the jth event during the genealogical history, and G0 =
(T , n)0. ℚ(Gj |Gj21) is the transition probability of the backward
Markov process determined by the proposal distribution (Equa-
tion 12). Similarly, ℙ(Gj21 |Gj) is the transition probability of the
forward Markov process. The sequential importance weight for

the jth step change
ℙðGj2 1jGjÞ
ℚðGjjGj2 1Þ

is estimated. Here we illustrate the

calculation of the importance weight for the case in which the
chosen event is Gk = (T , n 2 ek). As shown in the section
Sampling probability of a multilocus haplotype configuration,

ℙðGj2 1jGjÞ ¼

� n

2

�
ðnk 2 1Þ

lvXvgðv;nÞðn2 1Þ, and from Equation 12 we have

ℚðGjjGj2 1Þ ¼
nðnk 2 1Þ 1

lvXv
ZððT ;nÞvÞ

. Taking the ratio of the two terms, we

obtain the importance weight for the jth step: ZððT ;nÞvÞ
2gðv;nÞ . Table 5

provides more details of importance weights for other events.
4. Repeat steps 123 to continue generating the historical events in

the genealogy backward in time.
5. Stop when the absorbing state is reached, that is, a single lineage

remains in the sample configuration, (T , e1), or if the proposed
time for next event is beyond the end of the frequency
trajectories;

6. Assume that there are I steps until the Markov chain reaches the
absorbing states, the ratio of the forward/backward paths is the
product of sequential importance weights:

ℙ
�
GðkÞ

���H�

ℚ
�
GðkÞ

���H� ¼
Yl
j¼1

	
ℙ
�
Gj2 1

��Gj
�

ℚ
�
Gj
��Gj2 1

�


� q
�
ðT ; e1Þt

�
; (13)
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and is used in the likelihood function. For those paths with time
beyond the end of the given frequency trajectories, {Xt}, the ratio is set
to zero, which means the sample is rejected.

The proposal distribution for sampling allele frequency
trajectories of the selected allele in a population of
time-varying size
We use the backward Wright-Fisher model under selection to sample the
allele frequency trajectories. The importance sampling algorithm for
sampling frequency trajectories of the selected allele is described as follows.
A detailed explanation can be found in the original paper (Slatkin 2001).

1. Given a selection intensity s and parameter set G, a sample path is
simulated from t = 0 (current generation) with I0 copies of A, and
then proceeds backward from generation to generation assuming
the following binomial distribution:

ℙðIt jIt2 1Þ¼
�
2Nt

It

�
Yt219It ð12Yt219

�2Nt2It
; (14)

where Yt2 19 satisfies: Yt2 19 1þs1Yt2 19 þs2ð12Yt2 19 Þ
1þs1Yt2 192 þ2s2Yt2 19 ð12Yt2 19 Þ ¼ Yt2 1, and

Yt21 = It21/(2Nt21). The backward process is stopped at time T when
the allele is lost. The probability of the backward process is calculated
as: ℙBðHðmÞÞ ¼

QT
t¼1ℙðIt jIt2 1Þ:

2. For a frequency trajectory H(m) simulated in Step 1, the proba-
bility it is generated by the forward process is computed. In the
Wright-Fisher model with selection, the number of allele A from
generation t to generation t 2 1 follows a binomial distribution:

ℙðIt2 1jItÞ¼
�
2Nt2 1

It2 1

�
Xt9

It2 1

�
12Xt9

�2Nt212It21

; (15)

with

X9
t ¼ Xt

1þ s1Xt þ s2ð12XtÞ
1þ s1X2

t þ 2s2Xtð12XtÞ
; (16)

which is the allele frequency of A after selection in generation t. In
Equation 16, Xt = It/(2Nt) is the frequency of allele A before selection
in generation t. The probability of the sample path H(m) is

ℙF
�
HðmÞ

�
¼

Y1
t¼T

ℙðIt2 1jItÞ; (17)

where ℙ(IT21|IT) = 1 if IT21 = 1 and 0 otherwise. And the subscript F
indicates that the process is “forward” in time.

3. The importance weight is calculated as (Slatkin 2001):

ℙ
�
HðmÞ

�

ℚ
�
HðmÞ

� ¼
ℙF

�
HðmÞ

�

ℙB
�
HðmÞ

� _N; (18)

where _N is the population size at the first generation after the allele is
lost in the backward process. The multiplication of _N is needed in
Equation 18, since the rate of influx of new mutations is proportional
to the population size of that generation.

APPLICATIONS

Simulation
Using the coalescent simulator SelSim (Spencer and Coop 2004), data
are generated for two sets of parameters corresponding to medium
and strong selection respectively: u = 4Nm = 500, r = 4Nr = 500, Ns =
50, and u = 4Nm = 500, r = 4Nr = 500, Ns = 500, where u, r, and Ns
represent the mutation rate, recombination rate and selection coeffi-
cient scaled by the effective population size. The frequencies of the
selected alleles at the present are chosen to be 0.60. Since the Moran
model is used in SelSim, whereas the Wright-Fisher model is used in
our method, the effective population size in the simulations is scaled
to match that of a Wright-Fisher model by multiplying by a factor of 2
(Watterson 1975). We estimate the log-likelihood of s for a range of
selection coefficients with the other parameters in G known, assuming
that the population has a constant size of 10,000. The curves of the
log-likelihood over the grid of s values are smoothed by a local poly-
nomial smoother. This smoother fits a linear function to a subset of
data points within a local window of the target point where the log-
likelihood is to be estimated. The fitting is carried out by the weighted
least square regression, which gives more weight to points close to the
target point and less weight to distant points. The log-likelihood is
thus estimated as the fitted value at the target point. The size of the
local window or the bandwidth is chosen by eye for each curve. The
log-likelihood curves are plotted in Figure 4 and Figure 5.

To evaluate the performance of the importance sampling approx-
imation, we perform eight independent simulations for every
parameter combination. One million iterations in the importance
sampling algorithm are required to ensure good estimates, and the
likelihood curves are presented together in Figure 4 and Figure 5. For

n Table 5 The proposal distribution and importance weights for the importance sampling algorithm presented in the section A proposal
distribution for sampling genealogical histories conditional on a trajectory

Gj ℚ(Gj|Gj21) ℙ(Gj21|Gj) Importance Weight

(T , n 2 ek) nðnk 2 1Þ
lvXvZððT ;nÞvÞ

�
n
2

�
ðnk 21Þ

lvXvgðv;nÞðn21Þ

ZððT ;nÞvÞ
2gðv; nÞ

(SkT , n) ubk

ZððT ;nÞvÞ
Pn

l¼1blu=2
gðv; nÞ

bkPn
l¼1bl

ZððT ;nÞvÞ
2gðv; nÞ

(RkT , Rk(n + ej))
uðnj þ 1Þbj

ZððT ;nÞvÞ

Pn
l¼1blu=2
gðv;nÞ

ðnj þ 1ÞbjPn
l¼1bl

ZððT ;nÞvÞ
2gðv; nÞ

(ChiT , n 2 ei + ej)
bjrðnj þ 1Þphj ;hi

ZððT ;nÞvÞ
bjrðnj þ 1Þphj ;hi

gðv;nÞ
ZððT ;nÞvÞ
2gðv; nÞ

{G} denotes four possible events of the genealogical history. ℙ(Gj21|Gj) and ℚ(Gj|Gj21) are the one-step transition probability of the forward and backward Markov
process constructed for simulating the genealogical history. The importance weight is estimated by ℙðGj21 jGj Þ

ℚðGj jGj21Þ
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the data set simulated with s = 0.005, the MLE ranges from 0.0041 to
0.0073. For the data set with s = 0.05, the MLE ranges from 0.032 to
0.0543.

Glucose-6-phosphate dehydrogenase (G6PD)

The G6PD gene is located on the X-chromosome. Some alleles are
known to confer the resistance to malaria (Ruwende et al. 1995). Case-
control studies have demonstrated that a common variant, G6PD-
202A, reduces the risk of malaria by approximately 50% (Ruwende
et al. 1995). This allele is at low frequency in most populations but has
an intermediate frequency in sub-Saharan Africa. Several population
genetic studies have investigated the effect of a recent selective sweep
in this region (Tishkoff et al. 2001; Sabeti et al. 2002). Here we use the
data in Sabeti et al. (2002), which consists of 252 males from there
African populations in a 440-Kb region covering the G6PD gene. We
analyze only the 60 haplotypes from the Beni population. There are 10
haplotypes containing the 202-A allele in the sample. We assume that
the frequency of the selected allele in the Beni population is the same
as that estimated from the sample which is 0.1667. The recombination
fractions among SNPs are obtained by interpolation with the Oxford
fine-scale recombination map (Myers et al. 2005). The recombination
rate in the G6PD gene region is heterogeneous with two recombina-
tion hot-spots, and the overall averaged recombination rate for the
region is 1.4410 cM/Mb. We determine the end points of ancestral
haplotypes and mutations by running the hidden Markov model
(Chen 2007). The data configuration is coded by the rules presented
in the section A simplified multilocus model for haplotype structure as
shown in Table 6.

Because the hidden Markov model analysis indicates there are no
mutations in the ancestral haplotype regions, we set u to 0.0. We
assume an effective population size of N = 10,000, which is constant

over time. Because G6PD is X-linked, Ne is 3/4 of the autosomal size.
We assume an additive model for selection, which means the fitness’s
of the three genotypes aa, Aa, and AA are 1, 1 + 1/2s, and 1 + s,
respectively. The likelihood of the selection coefficient is estimated by
our method from 1 million iterations of the importance sampling
algorithm. The log-likelihood curve is plotted in Figure 6. The selec-
tion coefficient is estimated to be 0.0456 (95% confidence interval of
0.014420.0769). From the estimated selection coefficient, the age of
the 202-A allele can be estimated. As shown in Figure 7, given the
selection coefficients estimated, the corresponding posterior distribu-
tion of allele age is plotted.

DISCUSSION
We have developed a likelihood method for estimating selection
intensity and allele age from haplotype structure of multilocus SNPs
closely linked to a selected mutant. The likelihood is based on the
proposed simplified multilocus haplotype model, which describes
the ancestral process of haplotype extent under the joint effects of
selection, recombination and mutation. In this model, the state space
of the ancestral process is determined by the extent of intact ancestral
haplotypes in the vicinity of the selected mutant and the new

Figure 4 The relative likelihood curve for the simulated data with the
selection coefficient s = 0.05 and a constant population size N =
10,000. The comparison of eight estimates of the likelihood curves is
presented. Each estimate is an independent run of our method on
different simulated data. The results are from 1 million iterations.

Figure 5 The relative likelihood curve for the simulated data with the
selection coefficient s = 0.005 and a constant population size N =
10,000. The comparison of eight estimates of the likelihood curves is
presented. Each estimate is an independent run of our method on
different simulated data. The results are from 1 million iterations.

n Table 6 The sample configuration of the G6PD data according
to coding rules in the section A simplified multilocus model for
haplotype structure

Haplotype Type Count Number

(11, 7) 5
(4, 7) 1
(12, 7) 1
(17, 7) 3
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mutations arising on the ancestral haplotypes during the selective
process. Our method adopts importance sampling algorithms to
efficiently explore the genealogical history of the sample for
evaluation of the sampling probability. By applying the method to
both simulated and real data, we demonstrate that the extent of the
haplotype structure is informative for the inference of selection intensity
of a recent positive selection.

Our method has two merits. First, by exploiting the extent of
haplotype structure and focusing only on subprocesses of the ARG
related to the retained ancestral segments on the selected haplotypes,
we dramatically reduce the computational burden such that data sets
from genomic regions of mega-base magnitude can be analyzed.
Second, our method can allow for changes in population size. This is
especially important for samples from human populations outside
Africa, because population growth can affect the pattern of linkage
disequilibrium and haplotype structure, and thus lead to an incorrect
estimation of the selection intensity if the effect of demographic
history is not explicitly modeled. In our analysis of simulated data, we
found that the estimated selection coefficient is accurate but is
sensitive to the recombination rates assumed. Since the variability of
recombination rates is high over human genome (Myers et al. 2005),
good estimates of local rates are necessary to obtain accurate estimates
of selection coefficients.

Another factor that may affect the estimates of selection intensity
and allele age is the SNP marker density in the data. Because mutants
that have experienced positive selections are typically young, new
mutations at nearby loci accumulate at a relatively slow rate compared
to the rate of recombination that breaks down linkage disequilibrium.
Therefore, we expect fewer segregating sites observed in regions under
recent positive selection. In the low-density SNP data, these segregating
sites are likely not typed. In the two data sets of the G6PD region we

analyzed, Sabeti et al. (2002)’s and Verrelli et al. (2002)’s data, no new
mutations at closely linked loci were detected. Because their G6PD data
were not generated by resequencing, a proportion of mutations may
not have been identified or included in the data. We expect that
resequencing data from the target gene regions will be more infor-
mative for identifying the occurrence of recombinations and muta-
tions during the selective process. The method developed in this
paper is for identifying ongoing positive selection. If the selected
allele has been fixed in the population, mutations accumulated since
its fixation become informative and important for inferring the fix-
ation time, for which the allele frequency spectrum after a selective
sweep is a better choice (Chen 2012).

The importance sampling algorithm for the genealogies adopted in
this paper was developed by Griffiths and Tavaré (1994b). In their
proposal distribution, at each step any possible event that could lead to
the current configuration is considered and sampled in proportion to
their rate of occurrence (Felsenstein et al. 1999). More efficient pro-
posal distributions have been developed (Stephens et al. 2001; Slatkin
2002; De Lorio and Griffiths 2004; Paul et al. 2011) and can be
adopted to improve the computational efficiency of our method.
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APPENDIX A

The probability distribution for the extent of an intact
ancestral haplotype under selection
We show how to derive the distribution for the extent of an intact
ancestral haplotype at time t during a selective process. We investigate
a selective sweep that starts from a single copy of the selected allele.
Here we denote the time when the new selected mutant arises by 0,
and look forward in time. Let Xt be frequency of the selected allele at
time t. If we ignore the initial randomness of allele frequency trajec-
tories, which is usually modeled using a supercritical branching pro-
cess, Xt can be well approximated using the deterministic logistic
equation (Ohta and Kimura, 1975):

Xt ¼
X0

X0 þ ð12X0Þe2st ; (19)

where X0 can be set to 1/2N (Kaplan et al. 1989; Stephan et al. 1992).
Assume the selected locus has two alleles A and a, with A being the
advantageous allele. We are modeling a continuous segment between
the selected mutant and the neutral marker, which has two alleles B
and b. We use upper case letters to denote that the position is
descended from the ancestral haplotype, and lower case letters to
denote the position descended from the background haplotypes.
Note here the two “alleles” are defined according to whether they
are descended from the ancestral haplotype or not, instead of the
true observed nucleotide types at that locus. We use [AB] to denote
a segment of ancestral haplotype with loci A and B being the end
points. Let P[AB](t) be the relative population frequency of such
fragments among all haplotypes carrying the selected allele A at time
t. Furthermore, we use [A2] to denote an ancestral haplotype with A
being from the ancestral haplotype, while the state of the other end
point of the fragment is not determined.

For a random ancestral haplotype [AB] or [Ab], if it recombines
with any [A2] haplotype during the interval [0, t], it does not change
P[AB](t). The only possible change is caused by “effective” recombina-
tions, that is, recombination with an [ab], or [aB] haplotype from the
neutral haplotype “sub-population”. The expected number of effective

recombination events for a [AB] recombining with any [a2] haplo-
type during the interval [0, t] is

C ¼ r
R t
u¼0ð12XðuÞÞdu

¼ rt2
r
s
ln
�
12X0 þ estX0

� (20)

It is not hard to see that the number of effective events on an [AB]
ancestral haplotype during the time interval [0, t] follows a Poisson
distribution. P[AB](t) is then identical to the probability of no effective
recombination between [AB] for an ancestral haplotype:

P½AB�ðtÞ ¼ e2rtþr
s lnð12X0þestX0Þ

¼ e2rtð12ð12estÞX0Þr=s:
ð21Þ

Similarly, for an ancestral haplotype [ABC], the probability of
being intact during the interval (0, t) follows the Equation 21, except
that the recombination fraction is replaced by r[AC].

Note that in Equation 21, when st is small, which means either the
selective process is at an early stage or the selection is weak, the term
(1 2 (1 2 est) X0)r/s � 1, and thus similar to the neutral case.
However, if st gets larger, the term cannot be ignored. For example,
if r = 0.001, s = 0.01, X0 = 0.001 and t = 1000, the relative bias can be
as large as ~27%.

Also note that in the aforementioned derivation for the distribu-
tion of ancestral haplotypes, we ignore the randomness of the
frequency trajectory of the selected allele at the very early stage of
the selective process, and approximate the trajectory with a determin-
istic equation. Ignoring the randomness of the allele frequency
trajectory at the early stage can bias the inference of parameters
related to the sweep process, but as pointed out in previous studies
(Kaplan et al. 1989; Braverman et al. 1995; Barton, 1998; Durrett and
Schweinsberg, 2004; Etheridge et al. 2006), when the selection inten-
sity is sufficiently strong, the bias is small. For this reason, our method
is more suitable to analyze genes under strong selections.
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