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Abstract 

Background:  Compound kushen injection (CKI), a Chinese patent drug, is widely used in the treatment of various 
cancers, especially neoplasms of the digestive system. However, the underlying mechanism of CKI in pancreatic can‑
cer (PC) treatment has not been totally elucidated.

Methods:  Here, to overcome the limitation of conventional network pharmacology methods with a weak combina‑
tion with clinical information, this study proposes a network pharmacology approach of integrated bioinformatics 
that applies a weighted gene co-expression network analysis (WGCNA) to conventional network pharmacology, and 
then integrates molecular docking technology and biological experiments to verify the results of this network phar‑
macology analysis.

Results:  The WGCNA analysis revealed 2 gene modules closely associated with classification, staging and survival 
status of PC. Further CytoHubba analysis revealed 10 hub genes (NCAPG, BUB1, CDK1, TPX2, DLGAP5, INAVA, MST1R, 
TMPRSS4, TMEM92 and SFN) associated with the development of PC, and survival analysis found 5 genes (TSPOAP1, 
ADGRG6, GPR87, FAM111B and MMP28) associated with the prognosis and survival of PC. By integrating these results 
into the conventional network pharmacology study of CKI treating PC, we found that the mechanism of CKI for PC 
treatment was related to cell cycle, JAK-STAT, ErbB, PI3K-Akt and mTOR signalling pathways. Finally, we found that 
CDK1, JAK1, EGFR, MAPK1 and MAPK3 served as core genes regulated by CKI in PC treatment, and were further verified 
by molecular docking, cell proliferation assay, RT-qPCR and western blot analysis.

Conclusions:  Overall, this study suggests that the optimized network pharmacology approach is suitable to explore 
the molecular mechanism of CKI in the treatment of PC, which provides a reference for further investigating biomark‑
ers for diagnosis and prognosis of PC and even the clinical rational application of CKI.
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Introduction
Pancreatic cancer (PC) is a common malignant tumour 
of the digestive tract characterized by concealed onset, 
high malignancy, and rapid development, and the major-
ity of PC cases have locally advanced or metastatic at the 
time of diagnosis [1–3]. According to Global Cancer Sta-
tistics, approximately 466,000 deaths (4.7% of total cases) 
worldwide in 2020 are attributable to PC, which ranks 
seventh in cancer-related mortality [4]. In countries with 
a high human development index, such as Europe and 
North America, the incidence of PC is three to four times 
higher, and the number of deaths from PC in the United 
States is expected to increase significantly by 2030, which 
PC will become the second leading cause of cancer death 
[4, 5]. PC is one of the worst prognostic tumours among 
all malignant tumours. Tumour metastasis occurs in 
about 60% of PC patients when diagnosed. The median 
survival time of patients is only 6–15  months, and the 
five-year survival rate is lower than 6%. Human health 
and life are under severe constant threat of PC [6].

Compound kushen injection (CKI), is made of Kushen 
(Radix Sophorae flavescentis) and Baituling (Rhizoma 
Smilacisglabrae) by modern technology [7], has been 
approved by China Food and Drug Administration 
(CFDA) in 1995 as an adjuvant drug for cancer treat-
ment, which can relieve pain, activate innate immune 
response and reduce side effects in cancer treatment [8, 
9]. Moreover, CKI has been found to inhibit the tumour 
cell growth, proliferation, metastasis and invasion, induce 
tumour cell apoptosis, and have the functions of anti-
multidrug resistance and protection of human immune 
function [10]. The combination of CKI and chemo(radio)
therapy improves the therapeutic effect and quality of 
life in PC patients. In addition, CKI has been reported 
a direct inhibitory effect on human PC cells SW1990 
in vitro [11, 12]. However, the anti-PC effect of CKI has 
been confirmed while the underlying molecular mecha-
nism is still a mystery.

Network pharmacology has become an effective tool to 
elucidate the complex overall mechanism of traditional 
Chinese medicine (TCM) and provides a new perspec-
tive for analyzing drug effects [13]. In accordance with 
the TCM characteristics of multi-component, multi-
target, multi-pathway synergy, network pharmacology 
transforms the "one target, one drug" model into a new 
"multi-target, multi-component" model and clarifies 
the complex interactions among genes, proteins, and 

metabolites related to diseases and drugs from a network 
perspective [14, 15]. But, the limitations such as the clini-
cal information deficiency restrict the value and applica-
tion of network pharmacology. Zhang and Horvath first 
developed weighted gene co‐expression network analysis 
(WGCNA) in 2005, which has become a standard algo-
rithm used for gene co-expression network construction 
[16, 17]. Currently, WGCNA is used in several studies of 
complex human diseases [18–20], especially in cancers, 
such as lung cancer [21], breast cancer [22], cholangio-
carcinoma [23], etc. Benefiting from it is special function, 
which can discover modules of highly correlated genes 
and correlate with modules and external sample charac-
teristics (i.e., associated key genes with clinical features), 
WGCNA is generalized to various research areas [24]. It 
conferred more clinical significance to its findings. Coin-
cidentally, this also exactly compensates for the shortage 
of clinical information loss in network pharmacology.

In the present study, we aim to apply WGCNA to opti-
mize network pharmacology methods. Firstly, WGCNA 
was used to construct a gene co-expression network, 
find clusters (modules) of highly related genes, modules 
and correlate with external sample traits. And then, we 
screened the relevant modules to obtain biomarkers that 
were closely related to PC development. Survival analy-
ses were employed to identify hub genes affecting the 
pathogenesis and prognosis of PC patients. In addition, 
we constructed a “compound-putative target network”, 
“CKI-PC The protein–protein interaction (PPI) network”, 
“drug-compound-PPI target-pathway network” through 
the network pharmacology method to explore the mech-
anism of CKI in the treatment of PC. This study aimed 
to reveal the complex mechanism of multi-component, 
multi-target, and multi-pathway of CKI in the treatment 
of PC at a system level, and provide a better basis for the 
diagnosis, treatment and prognosis of PC. Figure 1 shows 
a flowchart of the network pharmacology approach used 
in this study.

Materials and methods
Data collection and preprocessing
RNA sequencing data of pancreatic adenocarcinoma, 
containing a total of 182 samples, were obtained from 
The Cancer Genome Atlas (TCGA) database [25]. After 
removing non-cancerous samples and metastatic tumour 
samples, 177 primary tumour samples were obtained for 
further analysis. The “goodSamplesGenes” function in 
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Fig. 1  The flowchart of network pharmacology approach used in this study for exploring the molecular mechanism of CKI treating PC
(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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the WGCNA package was utilized to delete the samples 
that had too many missing values [24]. Also, the “hclust” 
function was used to perform hierarchical cluster analy-
sis, and the outliers were all deleted. Finally, we selected 
the top 5000 genes that are most important for differ-
ential expression for the following WGCNA analysis. 
Meanwhile, the clinical metadata of 177 samples was also 
downloaded from the TCGA database and filtered for 
useful information (such as race, age, vital status, grade, 
stage and so on).

Construction of co‑expression network
The WGCNA package was used to construct the gene 
co-expression networks. To ensure that the connections 
between genes match the scale-free network distribution, 
the WGCNA algorithm selects the results that best fit the 
scale-free network distribution by choosing the weight-
ing parameters. The soft threshold power β selected by 
the “pickSoftThreshold” function was used to achieve 
scale-free topology. The soft threshold power β refers to 
the correlation coefficient between the logarithmic value 
of the node with a connection degree k (log(k)) and the 
logarithmic value of the probability of a node with a con-
nection degree k (log(p(k))).

Identify gene modules and correlate clinical information
In this study, the topological overlap matrix was recon-
structed by computing topological overlap meas-
ure (TOM), which is a robust measure of network 

interconnectedness. According to the dissimilarity 
matrix, which represents the connection relationship 
of genes, cluster analysis of genes by dissimilarity was 
performed to construct a hierarchical cluster tree [26]. 
The dynamic tree-cut algorithm method was adopted 
to identify the module of gene co-expression with val-
ues maxBlockSize = 6000, minModuleSize = 30 and 
mergeCutHeight = 0.2. Module eigengene (ME) refers to 
the first principal component of each gene module, and 
the expression of ME is considered to represent all genes 
in a module. The most important module can be found 
by calculating the correlation coefficient between ME 
and the clinical traits of interest. Gene significance (GS) 
indicates the degree of correlation between individual 
genes and clinical information. For each module, module 
membership (MM) is defined as the correlation between 
a single gene and ME, used to measure the importance of 
this gene in the module. According to ME, GS and MM, 
we can associate modules with clinical traits, not only to 
calculate the correlation between ME and clinical traits, 
but also to analyze clinically important modules.

Identify hub genes and external validation
CytoHubba [27], a plug-in of Cytoscape software [28], is 
available for exploring important nodes of biological net-
works. In this study, Cytoscape was employed to visualize 
the module network, and CytoHubba was used to ana-
lyze the network. The maximal clique centrality (MCC) 
algorithm was then selected to determine the top 5 genes 
with the highest scores among the important modules as 
hub genes.

Then, we selected the data in the GEO database as the 
external validation dataset. We searched the GEO data-
base using the term “pancreatic cancer” and the criteria 
for inclusion of PC chip datasets were to meet the fol-
lowing: ① Patients newly diagnosed with pancreatic 
cancer and not receiving any treatment; ② Datasets with 
total samples greater than 50. We performed differential 
expression analysis after normalizing and homogenizing 
raw data using the limma package in R, followed by Ben-
jamini & Hochberg (false discovery rate) correction of 
p-values.

Survival analysis
In this study, a univariate Cox proportional hazards 
regression analysis was performed for the genes in the 
selected modules using the survival package to identify 

Table 1  qPCR primer sequence

Gene 5’ to 3’

AKT1 Forward TCT​ATG​GCG​CTG​AGA​TTG​TG

Reverse CTT​AAT​GTG​CCC​GTC​CTT​GT

CDK1 Forward TAG​GCG​GGA​TCT​ACC​ATA​CCC​

Reverse TCA​TGG​CTA​CCA​CTT​GAC​CTG​

EGFR Forward TGT​GCC​CAC​TAC​ATT​GAC​GG

Reverse TAG​GCC​CAT​TCG​TTG​GAC​AG

JAK1 Forward AGG​GGA​TGG​ACT​ATT​TGG​GTT​CTC​

Reverse CCT​TAT​CGG​TTT​CAA​TTG​CTT​TGG​

MAPK1 Forward GGA​ACT​ATT​TGC​TTT​CTC​TTCC​

Reverse CTA​CTT​CAA​TCC​TCT​TGT​GTGG​

MAPK3 Forward ATC​AAC​ACC​ACC​TGC​GAC​CTTA​

Reverse TAC​CAG​CGC​GTA​GCC​ACA​TACT​

(See figure on next page.)
Fig. 2  Construction of co-expression module. A Soft-thresholding powers analysis. R2 = 0.85. B Cluster diagram of gene modules. Different colors 
represent different gene modules, and gray modules are composed of genes that do not belong to any module. C Network TOM heatmap plot. 
TOM plot was made up by randomly selected 400 genes. Each row and column represented a module and the genes of the module. This diagram 
showed the degree of correlation within the module. D Module–trait relationship. Each row corresponds to a ME, and each column corresponds to 
a clinical trait. Each cell contains a corresponding correlation and P-value of modules with various clinical traits
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Fig. 2  (See legend on previous page.)
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candidate genes strongly correlated with survival. Sub-
sequently, candidate genes that screened according to 
P-value were entered into the multivariate Cox propor-
tional hazards regression analysis. Based on the selected 
gene expression profile, a survival-related linear risk 
assessment model was constructed. The formula for cal-
culating the prognostic risk score is:

Using the median prognostic risk score as a cut-off 
value, samples were divided into high- and low-risk 
groups. Furthermore, the correlation between gene 
expression and survival time was confirmed by calculat-
ing the hazard ratio (HR) and 95% confidence interval 
(CI). The Kaplan–Meier and Log-rank test methods were 
used to evaluate the differences in overall survival rates 
between the high- and low-risk groups. The survivalROC 
package analyzed a time-dependent receiver operating 
characteristic curve (ROC curve) to evaluate the pre-
diction accuracy of the prognostic signature for time-
dependent cancer death. Moreover, the predictive ability 
of the gene signature for clinical outcomes was measured 
by calculating the area under the curve (AUC).

Identification of CKI compounds and targets
CKI (batch number: 20200329) was supplied by Zhen-
dong Pharmaceutical Co. Ltd (Shanxi, China). Shi-
madzu Nexera LC-40-QE-Orbitrap-MS Separation was 
performed on an analytical column of Hypersil BDS 
(150  mm × 4. 6  mm, 5  μm). The oven was set at 25 ℃; 
The injection volume was 5 μL; The flow rate was set at 
0.5  mL min−1; The mobile phase was consisted of 0.1% 
ammonia in water (A) and carbinol (B). The eluting pro-
gram was: 5–20% B for 0–1 min, 20–80% B for 1–30 min, 
80–60% B for 30–60  min. The ion source was electro-
spray ionization (ESI); MS was operated in positive/
negative mode; The scan mode was Full scan/ddMS2; 
The scan range was 100–1200 Da; The capillary tempera-
ture was 350 ℃; The spray voltage in negative mode was 
3800 V; The spray voltage in positive mode was 3200 V; 
The sheath gas was 35 arb; the aux gas was 15 arb; Three 
collision energies of low, medium and high were used for 
MS2. The positive ion mode was 30 eV, 40 eV, 50 eV, and 
the negative ion mode was 30 eV, 50 eV, 70 eV. The reso-
lution of the Full scan was 70,000 FWHM, and the reso-
lution of MS2 was 17,500 FWHM. The reference marker 

risk score =

n
∑

i=1

(

expi × coefi
)

compounds present in the sample were identified based 
on retention time, MS fragmentation and UV spectra.

Then, the structural information of the CKI compounds 
was retrieved from the PubChem database [29] (https://​
pubch​em.​ncbi.​nlm.​nih.​gov/). The simplified molecular 
input line entry specification (SMILES) of these com-
pounds were imported into four databases, Search Tool 
for Interactions of Chemicals (STITCH) [30], SuperPred 
[31], SwissTargetPrediction [32], and Traditional Chinese 
Medicine System Pharmacology Database and Analysis 
Platform (TCMSP) [33], to collect the known and pre-
dicted human targets of these compounds.

Collection of PC targets
The human genes associated with PC were obtained from 
three resources: (1) 10 hub genes related to the occur-
rence and development of PC and 5 potential biomarkers 
closely related to prognosis obtained from WGCNA; (2) 
Therapeutic Target Database (TTD) database [34]. The 
TTD database was searched using the key word "pancre-
atic cancer"; (3) TCGA database. RNA sequencing data 
of pancreatic adenocarcinoma were obtained from the 
TCGA database.

Data were normalized and analyzed by the edgeR 
package [35]. Differential expression genes (DEGs) were 
then screened out using | log2FC |> 1 and adjust P < 0.05. 
The PPI data were extracted from the Search Tool for 
the Retrieval of Interacting Genes (STRING, https://​
strin​gdb.​org/) database [36]. The PPI data with the spe-
cies limited to “Homo sapiens”, and the confidence score 
greater than 0.7 (high confidence) were selected for fur-
ther investigation.

Network construction
In this study, we constructed three networks: (1) com-
pound-putative target network was built by connecting 
CKI compounds and their related targets; (2) CKI-PC 
PPI network was constructed by connecting the intersec-
tions of the compound targets and PC-related targets and 
other human proteins interacting with them; (3) drug-
compound-PPI target-pathway network was constructed 
by connecting CKI, compounds, PPI targets, and related 
pathways. The above networks were visualized using 
Cytoscape and the topological features of the interac-
tion networks were evaluated by calculating three indices 
(degree, betweenness, closeness) using the NetworkAn-
alyzer plug-in.

Fig. 3  Modular gene network and Cox regression analysis. A The top 100 genes network in the black module. B The top 100 genes network in the 
blue module. C 5 hub genes selected by the black module. D 5 hub genes selected by the blue module. The redder the color, the higher the MCC 
score. E Forest plot of multivariate Cox regression analysis

(See figure on next page.)

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://stringdb.org/
https://stringdb.org/
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Fig. 3  (See legend on previous page.)
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Module analysis and enrichment analysis
To identify the core clustering module in the CKI-PC 
PPI network, the plug-in Molecular Complex Detection 
(MCODE) in Cytoscape was used for module analy-
sis. DAVID (https://​david.​ncifc​rf.​gov/, version 6.8) [37] 
was employed to perform Gene Ontology (GO) func-
tion enrichment and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis for the 
selected modules. The significance threshold was set 
at P < 0.05 and the false discovery rate (FDR) was set 
at < 0.05.

Molecular docking
The three-dimensional crystal structures of the core 
target were extracted from the Research Collaboratory 
for Structural Bioinformatics (RCSB) Protein Database 
[38] (PDB, https://​www.​RCSB.​org/). Then, the protein 

structures were processed by AutoDock Tools (ADT) 
[39], including removal of ligands and water molecules, 
calculation of Gasteiger charge, addition of polar hydro-
gen, and combination of non-polar hydrogen. ADT was 
also utilized to prepare corresponding compounds. Sub-
sequently, molecular docking was carried out via Auto-
Dock Vina [40]. Finally, the receptor-ligand complex was 
imported into Ligplus software to analyze the hydrogen 
bonding and hydrophobic interaction between the recep-
tor and ligand.

Cell lines and cell proliferation assays
Human PC cell lines Panc-1 was purchased from Pro-
cell Life Science &Technology Co., Ltd. (Wuhan, China), 
and cultured in Dulbecco’s modified Eagle’s medium 
(DMEM, Corning, USA) containing 10% fetal bovine 

(See figure on next page.)
Fig. 4  A five-gene prognostic signature for PC. A Patient characteristics are ranked according to the risk score. From the top to bottom, they are 
the risk score of the samples in the high and low risk groups, the distribution of survival status, and the heat map of the five genes. The dotted line 
indicates the patients in the high and low risk groups divided by the median risk score of 1.273. The left side of the dotted line is low risk, the right 
side is high risk, and the risk value of patients from left to right increases in turn. B Kaplan–Meier survival curve of samples from high and low risk 
groups. C Time-dependent ROC curve for the survival of PC patients predicted by risk score. D Expression of the five genes in high- and low-risk 
groups

Table 2  Preliminary screening of single-factor Cox proportional hazard model

Gene Coef Exp (coef) z P value Lower. 95 Upper. 95

MET 0.600 1.822 5.595 2.200E−08 1.476 2.247

ARNTL2 0.569 1.766 5.402 6.580E−08 1.437 2.171

TLE2 − 0.698 0.498 − 5.176 2.270E−07 0.382 0.648

FAM83A 0.202 1.224 5.041 4.630E−07 1.132 1.325

KIF23 0.564 1.758 4.960 7.040E−07 1.407 2.196

ANLN 0.458 1.580 4.919 8.680E−07 1.317 1.896

LAMA3 0.412 1.510 4.877 1.080E−06 1.279 1.781

NUSAP1 0.671 1.957 4.805 1.550E−06 1.488 2.573

TSPOAP1 − 0.400 0.670 − 4.784 1.720E−06 0.569 0.790

ECT2 0.590 1.805 4.775 1.800E−06 1.416 2.300

FAM111B 0.617 1.854 4.763 1.910E−06 1.438 2.390

ANO1 0.520 1.682 4.740 2.130E−06 1.357 2.086

CKAP2L 0.525 1.690 4.739 2.150E−06 1.360 2.100

CEP55 0.517 1.677 4.690 2.730E−06 1.351 2.081

ADGRG6 0.437 1.548 4.686 2.780E−06 1.289 1.858

CA12 0.278 1.321 4.683 2.830E−06 1.176 1.484

DLGAP5 0.507 1.660 4.665 3.090E−06 1.342 2.054

DEPDC1 0.423 1.527 4.614 3.940E−06 1.276 1.828

EREG 0.205 1.227 4.610 4.030E−06 1.125 1.339

MMP28 0.397 1.488 4.601 4.210E−06 1.256 1.762

TPX2 0.457 1.580 4.587 4.500E−06 1.299 1.920

CENPE 0.600 1.822 4.585 4.540E−06 1.410 2.355

INPP4B 0.543 1.722 4.566 4.970E−06 1.363 2.174

GPR87 0.188 1.207 4.566 4.980E−06 1.113 1.309

https://david.ncifcrf.gov/
https://www.RCSB.org/
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serum (Corning, USA) and 1% penicillin/streptomycin 
(Gibco, USA) in a saturated humidity environment at 
37  °C and 5% CO2. For CKI incubation [41], CKI (total 
alkaloid concentration of 25 mg mL−1) was diluted with 
DMEM (CKI concentrations: 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 
8.0, 16.0 mg mL−1, using the doubling dilution method, 
based on the total alkaloid concentration in CKI).

The proliferation of Panc-1 cells was detected by Cell 
Counting Kit-8 (CCK-8, Dojindo, Japan) assay and 5‐
ethynyl‐20-deoxyuridine (EdU) proliferation assay. In 
brief, after routine digestion, cells were blown into a sin-
gle-cell suspension (2.0 × 105 cells mL−1) and seeded into 
96-well plates (100 μL·well−1), and cultured for 24 h, rou-
tinely. The cells were then cultured with a drug-contain-
ing medium for 24, 48 and 72 h respectively. After drug 
treatment, the CCK-8 solution was added into 96-well 
plates (10 μL·well−1) and incubated for 4 h at 37 °C. Opti-
cal density (OD) was detected at 450 nm using a micro-
plate reader (Molecular Devices, USA). EdU proliferation 
assay was performed by BeyoClick™ EdU Cell Prolif-
eration Kit with Alexa Fluor 488 (Beyotime, China) and 
strictly followed the manufacturer’s protocol.

Reverse transcription quantitative polymerase chain 
reaction (RT‑qPCR) analysis
RNA Easy Fast Cell Kit (Tiangen, China) was applied 
for total RNA isolation according to the manufacturer’s 
instruction. The quality of total RNA was accredited by 
SpectraMax Quick Drop readers (Molecular Devices, 
USA). Of the total RNA, 1  μg was used for cDNA syn-
thesis following the ReverTra Ace qPCR RT Kit (Toyobo, 
Japan) instruction. RT-qPCR was performed to meas-
ure the relative expression of mRNA, using SYBR Green 
Realtime PCR Master Mix (Toyobo, Japan). GAPDH was 
used as a control and the 2−ΔΔCt method was conducted 
for the data analysis. The primer sequence of target genes 
was synthesized by Sangon Biotech Co., Ltd (Shanghai, 
China, Table 1).

Enzyme‑linked immunosorbent assay (ELISA)
Human AKT1 ELISA Kit, Human CDK1 ELISA Kit, 
Human JAK1 ELISA Kit, Human EGFR ELISA Kit, 
Human MAPK1 ELISA Kit and Human MAPK3 ELISA 
Kit (Sinobestbio, China) were used to detect the protein 
expression of 6 core targets following the manufacturer’s 
instructions.

Western blot assay
Panc-1 cells were collected in RIPA lysis buffer and cen-
trifuged at 13,000  rpm and 4 ℃ for 10  min. The super-
natants were preserved and used for western blot assay. 
Total protein concentration was gauged by BCA Protein 
Assay Kit (Solarbio, China). 20  µg of total protein was 
mixed with 5 × sample buffer, boiled at 99 ℃ for 5  min 
and loaded onto 10% SDS-PAGE gels. Then the protein 
bands were transferred onto NC membranes and blocked 
with 5% non-fat milk or 5% bovine serum albumin (BSA) 
for 2  h at room temperature. The NC membranes with 
proteins were incubated with diluted primary antibodies 
(Affinity or Proteintech, China) at 4 ℃ overnight, includ-
ing anti-AKT1 (1:500), anti-phospho-AKT1 (p-AKT1, 
1:500), anti-CDK1 (1:500), anti-phospho-CDK1 
(p-CDK1, 1:1000), anti-JAK1 (1:500), anti-phospho-JAK1 
(p-JAK1, 1:500), anti-EGFR (1:500), anti-phospho-EGFR 
(p-EGFR, 1:500), anti-MAPK3/MAPK1 (1:500), anti-
phospho-MAPK3/MAPK1 (p-MAPK3/1, 1:500) and 
anti-β-Tubulin (1:2000) antibodies. Then, membranes 
were incubated with relative sources of secondary anti-
bodies (1:5000) at room temperature for 1.5 h. At last, the 
specific protein bands were recognized with immobilon 
western chemiluminescent HRP substrate (Millipore-
Sigma, USA). Image J software was used for image analy-
sis and the signals of specific proteins were normalized to 
β-Tubulin.

Statistical analysis
Data were presented as mean ± SD and statistical analy-
sis was performed with the two-tailed unpaired Student’s 
t-test using GraphPad Prism 9.0 software. In all statistical 
analyses, statistical significance was indicated by a single 
asterisk (*: P < 0.05), two asterisks (**: P < 0.01).

Results
WGCNA module construction
In this study, a total of 177 samples and 5000 genes were 
screened for WGCNA analysis. All samples were retained 
as no outliers were found in the cluster analysis of the 
samples. In this study, a power value of β = 9 (R2 = 0.85) 
was selected according to the scale-free criterion to con-
struct the gene co-expression network (Fig. 2A). Then, a 
hierarchical clustering tree was built, and gene modules 
were identified using the dynamic tree cut method. The 
minimum number of genes in each module was set to 30. 
Similar expression modules were merged and 11 modules 

Fig. 5  The Kaplan–Meier survival curves for TSPOAP1, ADGRG6, GPR87, FAM111B and MMP28 in the low- and high- risk groups. These 5 genes can 
significantly differentiate the survival time of PC patients (Log-rank test P < 0.0001)

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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were obtained (Fig. 2B). In addition, the TOM was visu-
alized with a heatmap that could depict adjacencies or 
topological overlaps (Fig. 2C).

Correlation analysis between modules and clinical traits
The results and discussion may be presented separately 
or in a combined section and can optionally be divided 
into headed subsections. In this study, we calculated 
the correlation between gene modules and clinical traits 
such as race, age, new tumour event, vital status, grade, 
and stage of patients with PC. The Pearson correlation 
coefficient of ME and the corresponding variables was 
employed to represent the correlation between modules 
and the corresponding clinical information. As shown 
in Fig.  2D, the correlation between the black module 
and grade was greater than other modules, and the cor-
relation between the blue module and stage was greater 
than other modules. Therefore, these two modules were 
selected for further investigation.

Hub genes screening
When screening the network of black and blue gene 
modules with the weight of Cutoff = 0.1 as the threshold, 
the black module consisted of 6173 gene linkages and 
132 genes, and the blue module consisted of 4145 gene 
linkages and genes. Cytoscape was used to visualize the 
top 100 genes in the black and blue modules respectively 
(Fig. 3A, B). In addition, CytoHubba was used to analyze 
the network to determine the top 5 genes of the MCC 
score as hub genes (Fig.  3C, D). The hub genes of the 
black module are: non-SMC condensin I complex subu-
nit G (NCAPG), mitotic checkpoint serine/threonine-
protein kinase BUB1 (BUB1), cyclin-dependent kinase 

1 (CDK1), targeting protein for Xklp2 (TPX2) and disks 
large-associated protein 5 (DLGAP5). The hub genes 
of the blue module are: innate immunity activator pro-
tein (INAVA), macrophage-stimulating protein receptor 
(MST1R), transmembrane protease serine 4 (TMPRSS4), 
transmembrane protein 92 (TMEM92) and 14-3-3 pro-
tein sigma (SFN).

Survival analysis
The univariate Cox proportional hazards regression anal-
ysis was used to study the correlation between mRNAs 
selected in the black and blue modules and survival 
time. Twenty-four genes related to survival time were 
selected based on P < 5E−06. The results of the univari-
ate Cox proportional hazards regression are shown in 
Table 2. In addition, the results of multivariate Cox pro-
portional hazards regression analysis showed that one 
gene (TSPOAP1) with HR < 1 was identified as a protec-
tive prognostic gene (positively correlated with the sur-
vival time of the patient); four genes (ADGRG6, GPR87, 
FAM111B, MMP28) with HR > 1 were identified as risky 
prognostic genes (inversely associated with the survival 
time of patients, Fig.  3E). The regression coefficients of 
the multivariate Cox proportional hazards regression 
analysis of the 5 genes were extracted to construct a 
prognostic risk scoring model:

Risk score = (−0.292× TSPOAP1 expression)

+ (0.242× ADGRG6 expression)

+ (0.107× GPR87 expression)

+ (0.376× FAM111B expression)

+ (0.169×MMP28 expression)

Fig. 6  The HPLC–MS of CKI and standard substances. The red and the blue represents CKI and standard substances respectively. 10 compounds 
were identified by HPLC–MS, including oxysophocarpine, matrine, sophocarpine, sophoridine, oxynamatrine, N-methylcytisine, sophoranol, 
liriodendrin, trifolirhizin and macrozamin
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Table 3  Major compounds in CKI identified by HPLC–MS

No. Theoretical value PPM Time (min) MS/MS ions Structure Rresumption

1 218.10577 − 4.06 6.007 152.01067, 123.00785, 108.02056, 85.02821, 
151.03957

  

N-methylcytisine

2 246.17360 2.94 2.135 163.07516, 134.09622, 59.04988

  

Sophocarpine

3 248.18896 − 3.67 2.351 179.05530,161.04527,89.02322

  

Sophoridine

4 248.18910 − 3.17 1.834 176.3145, 148.2457, 112.2569

  

Matrine

5 262.16841 − 3.65 2.592 181.05049,119.03400,89.02325

  

Oxysophocarpine

6 264.18394 − 0.52 24.975 247.2548, 205.7581, 148.2567

  

Oxymatrine

7 264.18395 − 3.19 50.755 211.06097, 167.07062, 149.05995, 123.04412, 
71.01385

  

Sophoranol

8 384.22630 4.13 3.381 110.0603, 96.04457, 94.06555, 92.04989, 67.05498

  

Macrozamin

9 446.12215 − 2.50 2.976 263.07761,221.06653,179.05548,161.04482

  

Trifolirhizin

10 764.25163 0.84 17.229 152.01073, 123.04407, 108.0206,  
 

Liriodendrin
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Eighty-eight patients with a risk score higher than the 
median risk score (1.273) were assigned to the high-risk 
group, while the remaining 89 patients were assigned 
to the low-risk group (Fig.  4A). The Kaplan–Meier sur-
vival analysis showed a highly significant difference in 
OS was detected between the high- and low-risk groups 

(Log-rank test P < 0.0001), suggesting that the expres-
sion of these 5 genes can be effectively distinguished 
the high- and low-risk of these PC patients (Fig. 4B and 
Fig. 5). Similarly, the hub targets of PC had a very strong 
correlation with the survival time of PC patients (Addi-
tional file 1: Fig. S1). The area under the time-dependent 

Fig. 7  Network analysis related to CKI. A Compound-putative target network. The red rectangles represent the compounds of CKI, and the 
yellow octagons represent corresponding targets. B CKI-PC PPI network. C Module 1 (score = 18.444). D Module 2 (score = 9.273). E Module 3 
(score = 4.800). The yellow nodes represent the intersections of compound targets and PC targets, and the red nodes represent other human 
proteins

(See figure on next page.)
Fig. 8  GO and KEGG enrichment analysis of the key modules. A GO enrichment analysis. The y-axis represents GO terms, and the x-axis represents 
three key modules. The circle represents BP, the triangle represents CC, and the rectangle represents MF. B KEGG pathway enrichment analysis. The 
y-axis represents the KEGG pathways, and the x-axis represents the three key modules. Rich factor refers to the ratio of the number of genes in the 
GO function or KEGG pathway to the number of all the annotated genes enriched in the GO functional or KEGG pathway
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Fig. 8  (See legend on previous page.)
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ROC curve of the 1-year, 3-year and 5-year survival rates 
of the patients were 0.751, 0.811 and 0.872, respectively, 
indicating that the prognostic gene model had good pre-
diction accuracy (Fig. 4C). Figure 4D shows the distribu-
tion of the expression levels of the five genes in high- and 
low-risk groups. Then, we used the GSE15471 (GPL570) 
dataset from the GEO database as the external validation 
dataset of WGCNA results. Its pairs of normal and tumor 
tissue samples were obtained at the time of surgery from 
resected pancreas of 36 pancreatic cancer patients. Con-
sistent with the WGCNA results, in the GSE15471 data-
set, the TSPOAP1 in the tumor group was significantly 
lower expressed, while the ADGRG6, GPR87, FAM111B 
and MMP28 were significantly higher expressed com-
pared with the normal group (Additional file 2: Fig. S2).

Compound‑ putative target network
In our study, 10 marker ingredients of CKI were identi-
fied by HPLC–MS (Fig.  6; Table  3). Concurrently, we 
also supplemented the chemical ingredients by literature 
research [10, 42]. Collectively, a total of 16 active ingre-
dients in CKI were selected for the next in-depth study, 
which included 9α-hydroxymatrine, adenine, baptifoline, 
isomatrine, lamprolobine, piscidic acid and the 10 com-
pounds detected by HPLC–MS. The 16 chemical compo-
nents of CKI are shown in the Additional file 3: Table S1. 
The compound- putative target network includes 301 
nodes (16 compound nodes and 285 target nodes) and 
636 edges (Fig. 7A).  

Genes associated with PC
After analysis of the RNA sequencing data, 623 DEGs 
were identified. In addition, 71 PC-related genes were 
obtained from the TTD database. Furthermore, 10 hub 
genes and 5 prognosis-related genes were integrated with 
the above genes. After deleting duplicate genes, a total of 
702 genes were obtained (Additional file 4: Table S2).

CKI‑PC PPI network and core targets identification
PPI networks have been proven to be conducive to 
explaining complex interactions between multiple pro-
teins in some complex diseases (including cancer) [43]. In 
order to gain an in-depth understanding of the complex 
interactions between the intersection targets and further 
explore the potential mechanism of CKI in the treatment 
of PC, we construct a CKI-PC PPI network. As shown in 
Fig. 7A, the network consists of 64 nodes (24 intersection 
targets of compound targets and PC targets, and 40 other 
human proteins) and 480 edges. The network analysis 
showed that the average values of "degree", "between-
ness" and "closeness" of the nodes were 15, 0.018331626 
and 0.497056362, respectively. In this study, the nodes 
whose "degree", "betweenness" and " closeness" were 
all greater than the corresponding average value were 
selected as key nodes of the network. Finally, a total of 
15 potential key targets were obtained, namely AKT1, 
MAPK1, CCNB1, MAPK3, EGFR STAT3, PPP2CA, 
CDC25C, EGF, PTPN1, CCNA2, AURKA, BIRC5, CDK1 
and JAK1 (Additional file 5: Table S3). The network mod-
ule is defined as a set of highly interconnected nodes that 
help to discover and reveal hidden biological information 
in the network [44]. In this study, a CKI-PC PPI network 
was divided into 4 modules, and finally, the first 3 mod-
ules with scores greater than 4.5 were selected as the key 
modules (Fig. 7B–E). Among all the 15 potential key tar-
gets, 6 targets were clustered in these 3 modules and were 
directly related to the compound, which were confirmed 
to be the core targets. The six core targets are RAC-alpha 
serine/ threonine-protein kinase (AKT1), mitogen-acti-
vated protein kinase 1 (MAPK1), Mitogen-activated pro-
tein kinase 3 (MAPK3), epidermal growth factor receptor 
(EGFR), cyclin-dependent kinases 1 (CDK1) and protein 
tyrosine kinase (janus kinase 1, JAK1).

Fig. 9  Multipathway mechanism of CKI treating PC. A Important pathways in the 3 key modules. The red letters represent the core genes enriched 
in these pathways. B Drug-Compound-PPI Target-Pathway network. Blue octagon represents CKI, green triangles represent compound related 
to intersection targets, yellow rectangles represent intersection targets of compound targets and PC targets, the red rectangles represent other 
human proteins, and the purple diamonds represent the relevant pathways enriched by the three modules

(See figure on next page.)

Table 4  Docking results of 6 core targets and related 
compounds

Targets PDB ID Compound Affinity 
(kcal·mol−1)

AKT1 6CCY​ Adenine − 5.0

MAPK1 5NHH Adenine − 4.9

MAPK3 4QTB Adenine − 5.4

EGFR 1XKK Adenine − 5.4

N-methylcytisine − 7.9

CDK1 5LQF Adenine − 5.1

Lamprolobine − 8.6

JAK1 3EYH 9α-Hydroxymatrine − 7.8

Sophoranol − 7.6
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Fig. 9  (See legend on previous page.)
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GO and KEGG enrichment analysis
In the current study, the biological processes (BP), 
molecular functions (MF), cellular components (CC) 
and signalling pathways involved in the three key mod-
ules were further explored through GO enrichment and 
KEGG pathway enrichment analysis. The GO enrichment 
analysis showed that module 1 was closely related to the 
cell cycle and cell proliferation; module 2 was closely 
related to JAK-STAT, MAPK cascade, phosphatidylin-
ositol-mediated signalling, phosphorylation, and nega-
tive regulation of the apoptotic process; and module 3 
was closely related to protein tyrosine kinase activity and 
MAPK cascade (Fig.  8A). The KEGG pathway enrich-
ment analysis showed that module 1 was mainly associ-
ated with the cell cycle; module 2 was mainly associated 
with cancer pathway, ErbB signalling pathway, PI3K-Akt 
signalling pathway, mTOR signalling pathway; and mod-
ule 3 was associated with PI3K-Akt signalling pathway 
(Fig.  8B). Figure  9A shows the important pathways in 
the three modules. To wholly and systematically explain 
the mechanism of CKI treating PC, Cytoscape software 
was utilized to construct a Drug-Compound-PPI Tar-
get -Pathway network. As shown in Fig. 9B, the network 
consists of 102 nodes (1 node of CKI, 12 nodes of com-
pounds related to intersection targets, 64 nodes of PPI 
targets, 25 nodes of pathways enriched by three modules) 
and 723 edges.

Molecular docking
To explore the binding methods between core targets and 
related CKI compounds, the 6 targets, including AKT1, 
MAPK1, MAPK3, EGFR, CDK1 and JAK1 were used for 
molecular docking verification. The crystal structures 
of the 6 targets were retrieved from the PDB database 
and the 3D structures of the 5 compounds (adenine, 
N-methylcytisine, lamprolobine, 9α-hydroxymatrine 
and sophoranol) were downloaded from the PubChem 
database. The docking operation (the docking results are 
shown in Table 4) was performed by AutoDock Vina. Fig-
ure 10 shows the binding methods between compounds 
and targets. Adenine mainly forms 2 hydrogen bonds 
with residues Ala230 and Glu228 on AKT1 protein, and 
a total of 5 residues are bound to the protein by hydro-
phobic interaction. Adenine mainly forms 3 hydro-
gen bonds with residues Lys54 and Gln105 on MAPK1 

protein, and a total of 2 residues bind to the protein by 
hydrophobic interaction. Adenine mainly forms 3 hydro-
gen bonds with residues Tyr81 and Thr85 on MAPK3 
protein, and a total of 2 residues bind to the protein by 
hydrophobic interaction. Adenine mainly forms a hydro-
gen bond with Phe856 residues on EGFR protein, and 
a total of 3 residues bind to the protein by hydrophobic 
interaction. N-methylcytisine mainly forms a hydrogen 
bond with Phe856 residue on EGFR protein, and a total 
of 10 residues are bound to the protein by hydrophobic 
interaction. Adenine mainly forms 3 hydrogen bonds 
with Asp86 and Gln132 residues on CDK1 protein, and 
a total of 2 residues bind to the protein by hydropho-
bic interaction. Lamprolobine mainly forms a hydrogen 
bond with the Gly13 residue on the CDK1 protein, and 
a total of 8 residues are bound to the protein by hydro-
phobic interaction. 9α-hydroxymatrine mainly forms 2 
hydrogen bonds with Gly1020 and Asp1021 residues on 
JAK1 protein, and a total of 4 residues bind to the protein 
by hydrophobic interaction. Sophoranol mainly forms a 
hydrogen bond with the Arg1007 residue on the JAK1 
protein, and a total of 4 residues are bound to the protein 
by hydrophobic interaction.

Anti‑PC effect of CKI and core targets verification
Panc-1 cells were used to observe the anti-proliferation 
effect of CKI in PC treatment. Figure  11A exhibited 
that CKI had similar inhibitory proliferation effects at 
24 h, 48 h and 72 h incubation time. Specifically, it was 
found that the half-maximal inhibitory concentration 
(IC50) values of CKI on panc-1 cells at 24  h was found 
to be 3.38 ± 1.40  mg mL−1. And after 48  h and 72  h, 
the IC50 values of CKI were 2.20 ± 0.54  mg mL−1 and 
1.84 ± 0.38 mg mL−1 respectively. Based on the IC50 val-
ues and cellular state, 48  h incubated time was chosen 
for the EdU incorporation assay. The EdU incorpora-
tion assay showed that (Fig.  11B, C), EdU positive cells 
were significantly reduced (P < 0.05 or P < 0.01) in all CKI 
groups compared with the control group. It confirmed 
that CKI could restrain the strong proliferation of PC 
cells.

In addition, we also used RT-qPCR assay to analyse the 
regulatory effects of CKI on core genes (AKT1, CDK1, 
JAK1, EGFR, MAPK1 and MAPK3) to evaluate the mech-
anism of CKI in PC treatment. As shown in Fig. 11D, CKI 

(See figure on next page.)
Fig. 10  Molecular docking of the core targets with its corresponding compound. Schematic diagram of the combination of A AKT1 and adenine; B 
MAPK1 and adenine; C MAPK3 and adenine; D EGFR and adenine; E EGFR and N-methylcytisine; F CDK1 and adenine; G CDK1 and lamprolobine; H 
JAK1 and 9α-hydroxymatrine; I JAK1 and sophoranol
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Fig. 10  (See legend on previous page.)
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significantly inhibited the expression of CDK1, JAK1, 
EGFR, MAPK1 and MAPK3 (all P < 0.05). However, AKT1 
results showed no significant difference in all CKI groups 
compared with the control group (P > 0.05). We followed 
up with validation experiments on the protein expression 
levels of the core targets. ELISA results showed that there 
was no significant difference in total protein content of 
AKT1, CDK1, JAK1, EGFR, MAPK1 and MAPK3 in the 
cytoplasm after CKI intervention (all P > 0.05, Fig. 12A). 
Considering that the phosphorylation levels of these pro-
teins were the markers of their own activation or medi-
ated activation of related pathways, we examined the 
expression levels of their phosphorylated proteins by 
western blot. Interestingly, after CKI intervention, the 
expression levels of phosphorylated CDK1, JAK1, EGFR, 
MAPK1 and MAPK3 were significantly reduced com-
pared with the control cells (all P < 0.05, Fig. 12B, C). This 
was consistent with the results of mRNA expression.

Discussion
Currently, pancreatic cancer, with high metastasis and a 
5-year survival rate of less than 8% of malignant tumours, 
is responsible for about the same number of deaths due 
to its poor prognosis [1, 4]. Understanding the patho-
genic mechanisms of PC, especially the key survival-
related targets associated with clinical information, can 
be useful in identifying biomarkers for early diagnosis 
and prognosis [45]. It is reported that FAM111B muta-
tion may be associated with PC predisposition based on 
clinical and molecular evidence [46]. Cancer stem cells 
are of crucial importance in drug resistance and tumour 
relapse. Moreover, patients with high GPR87 showed a 
poorer prognosis. Further studies assumed that GPR87 
promotes the proliferation of PC stem cells, thus enhanc-
ing the malignancy of tumour [47]. Recently, ncRNAs 
have played a distinctive role in cancer development and 
immune regulation [48]. As regulatory targets of some 
ncRNAs, TSPOAP1, ADGRG6, MMP28 and other genes 
are particularly important in the initiation, progression 
of various cancers such as PC. Moreover, their muta-
tions are closely related to immune infiltration and sur-
vival rate [49–51]. Therefore, we can speculate that these 
5 genes, which may play important roles in PC carcino-
genesis, progression and prognosis, could become the PC 
candidate biomarkers.

Although network pharmacology features high-
throughput, systematic and holistic research, it also has 
many limitations, such as the lack of clinical information 
[52]. Here, WGCNA analysis is a novel systems biology 
approach to classify highly co-expressed genes and con-
nect them in the network [17]. And the sub-network 
regions, are called modules, can be associated with clini-
cal parameters such as cancer status or patient survival 
[53]. Within our study, the WGCNA results showed that 
the black and blue modules had the highest correlation 
with tumour grade and tumour stage, respectively, and 
both were also strongly associated with patient survival 
status. Further multivariate Cox proportional hazards 
regression analysis revealed that among the 5 survival 
time-related genes, TSPOAP1 was the protective gene; 
in contrast, ADGRG6, GPR87, FAM111B and MMP28 
were the risk genes. Remarkably, GPR87-mediated acti-
vation of the JAK/STAT signalling pathway promoted the 
expansion of PC stem cells, contributing to the chemo-
therapy resistance of PC cells [47]. To extend, GPR87 
trans-activated EGFR to promote scattering and exten-
sion of tumour cells [17]. Based on the analysis of tumour 
and para-tumour tissues of clinical samples with RNA 
sequencing, it was found that GPR87 and MAPKs were 
significantly differentially expressed genes [54]. Simi-
larly, a comprehensive whole-genome, transcriptome and 
clinical dataset called the POG570 cohort, had revealed 
that alterations in EGFR, ADGRG6, and other genes were 
involved in tumour drug resistance and sensitivity, as 
well as recurrent noncoding events [50]. ADGRG6 can 
also form carcinogenic fusion variants with ROS1 to pro-
mote the development of EGFR-tyrosine kinase inhibitor 
resistance in cancer patients with EGFR mutation [55]. 
ADGRG6 also promoted tumour-stromal angiogen-
esis and hypoxia-induced retinal angiogenesis through 
the GATA2/STAT5/ VEGF/MAPKs signalling path-
way. More than that, activated VEGF can further acti-
vate STAT5 through phosphorylated JAK2, enhancing 
the STAT5/VEGF/MAPKs signalling pathway response 
[56]. Conversely, knockdown of ADGRG6 results in low 
expression of HDAC2 and GLI2, and inhibits prolifera-
tion and arrests cell cycle in cancer cells [57]. On the like-
ness, FAM111B, as a degradative enzyme, degrades p16 
so that could regulate cyclin D1-CDK4-dependent cell 
cycle progression leading to poor outcomes [58]. Moreo-
ver, the high expression of CDK1 and MMP28 are jointly 

Fig. 11  Anti-PC effect of CKI and core targets verification in panc-1 cells. A Dose-inhibition curves of CKI at 24 h, 48 h and 72 h. 
IC50 = 3.38 ± 1.40 mg mL−1 (24 h); IC50 = 2.20 ± 0.54 mg mL−1 (48 h); IC50 = 1.84 ± 0.38 mg mL−1 (72 h). B, C The proliferation of panc-1 cells was 
detected by EdU incorporation assay, and observed by confocal microscopy. 10 μM EdU concentration. 2 h labelling time. D The relative mRNA 
expression of core targets was measured by RT-qPCR after CKI intervention. Data were presented as mean ± SD. n = 3. *P < 0.05; **P < 0.01

(See figure on next page.)
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Fig. 11  (See legend on previous page.)
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regulated by the upstream RACGAP1, which is involved 
in the pathogenesis, cell cycle progression, migration 
and invasion of PC cells [49]. MAPK signalling path-
way activated by nicotinic cholinergic receptors (NCRs) 
can enhance tumour cell proliferation, accompanied by 
increased expression of MMP2 and MMP28 genes [59]. 
Therefore, these genes (CDKs, JAKs, STATs, MAPKs and 
EGFR) deserve further exploration in PC pathogenesis in 
addition to the 5 survival-dependent genes described.

Interestingly, in this study, the 5 core genes CDK1, 
JAK1, EGFR, MAPK1, and MAPK3 targeted by CKI 
were investigated by WGCNA and network pharmacol-
ogy analysis and then verified by in  vitro experiments. 
MAPKs, a class of serine/threonine protein kinases that 
has four different types (ERKs, P38, JNK, and ERK5) in 
mammals [60]. MAPK1 is significantly upregulated in 
multiple types of cancer. Overexpression of MAPK1 
induces EMT and is associated with tumour cell pro-
liferation, apoptosis, invasion, and metastasis [61–63]. 
MAPK1 has been proved to be strongly associated with 
invasion of pancreatic ductal adenocarcinoma cells [64]. 
In addition, a bioinformatics study showed that MAPK1 
is overexpressed in PC and is associated with poor 
prognosis in PC patients [65]. Aberrant expression of 
MAPK3 is related to invasion, metastasis and drug resist-
ance of various tumour cells [66]. Bioinformatics stud-
ies revealed that MAPK3 is a core gene associated with 
PC [67]. In addition, it has been reported that activated 
MAPK3/1 (ERK1/2) overexpression in PC, and the activ-
ity of ERK1/2 can protect PC cells from chemotherapy-
induced apoptosis [68]. Other studies have shown that 
phosphorylation of ERK1/2 promotes proliferation, 
migration and invasion of pancreatic ductal adenocar-
cinoma cells [69]. Fortunately, matrine and oxymatrine, 
both of which are the main ingredients of CKI, have 
been shown to inhibit the phosphorylation of ERK1/2 
[70, 71]. EGFR (ErbB1) belongs to the epidermal growth 
factor receptor (ErbB) family and is widely distributed 
on the cell surface of mammalian epithelial cells, glial 
cells and fibroblasts [72]. ErbB2, ErbB3 and ErbB4 also 
belongs to the ErbB family. When combined with the 
ligands AR, TGF, and EGF, the combined products acti-
vate downstream genes such as MAPKs to regulate cell 
survival, proliferation, differentiation and migration [73]. 

EGFR is highly expressed in a variety of tumours, and 
is associated with tumour occurrence and development 
and poor prognosis [74, 75]. It has been reported that 
EGFR overexpression can be detected in up to 90% of PC 
tumour tissues, and that overexpressed EGFR is closely 
involved in the progression of PC and the poor prog-
nosis of PC patients [76, 77]. It was also confirmed that 
EGFR is an effective target for PC prevention and treat-
ment [78]. In addition, oxymatrine was found to effec-
tively inhibits EGFR phosphorylation and EGFR-related 
signalling pathways, thereby inhibiting gastric cell pro-
liferation and invasion [79]. Not only that, matrine and 
oxymatrine are EGFR-targeted components and can act 
on EGFR similarly as a control drug gefitinib [80]. CDK1 
is closely related to the cell cycle [81]. At the same time, 
overexpressed CDK1 is associated with PC development 
and poor prognosis of patients [82]. Besides, CKI has 
been proven to have an inhibitory effect on CDK1 [83]. 
Matrine arrests the cell cycle and induces apoptosis in 
several cancer cell lines, and the mechanism is down-
regulated cell cycle-related proteins CDK1, Cyclin B1 and 
Cyclin D1 [84]. Oxymatrine has a similar mechanism as 
described above to arrest the cell cycle in glioblastoma 
cells. In detail, it inhibits phosphorylation of EGFR and 
STAT3, thereby inhibiting the expression of downstream 
cell cycle-related proteins (CDK1, CDK4 and CDK6) [85]. 
Coincidentally, it has been reported that Oxymatrine can 
simultaneously inhibit both EGFR/MAPK3/1 and EGFR/
CDK1 pathways to arrest the cycle in multiple cancer cell 
lines [86]. Matrine, Oxymatrine, and Sophoridine can 
exert biological effects on multiple proteins in the cell 
cycle pathway of colorectal cancer cells, thereby arrest-
ing cell cycle pathway activation in a full range [87]. JAK 
is a non-transmembrane tyrosine kinase that can activate 
the STAT protein under the action of growth factors and 
cytokines [88]. JAK/STAT signalling pathway is continu-
ously activated in tumour cells, and its inhibition would 
induce apoptosis of PC cells and their proliferation inhi-
bition [89]. JAK1 is a member of the JAK protein family, 
which is closely related to the progression of various can-
cers [90]. Ruxolitinib, a JAK1/JAK2 inhibitor, can inhibit 
endothelial cell-mediated proliferation of PC cells [91]. 
It can also treat patients with pancreatic ductal adeno-
carcinoma who have the characteristics of angiogenesis 

(See figure on next page.)
Fig. 12  The verification of core targets at protein level with panc-1 cells. A AKT1, CDK1, JAK1, EGFR, MAPK1 and MAPK3 protein expression levels 
were quantified by ELISA after CKI intervention. B, C p-AKT1, p-CDK1, p-JAK1, p-EGFR, p-MAPK1 and p-MAPK3 protein expression levels were 
measured by western blot after CKI intervention. Data were presented as mean ± SD. n = 3. *P < 0.05
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genes by targeting JAK1 and TGF-β [92]. Matrine can 
also inhibit cell growth by inhibiting activation of the 
JAK1/STAT3 signalling pathway [93]. Oxymatrine plays 
a significant role in regulating cell proliferation and sur-
vival in tumor cells by inhibiting the activation of JAK1 
and JAK2, thereby inhibiting the phosphorylation and 
nuclear translocation of STAT5 [94]. Consistent with 
these reports, our results illustrated that CKI can inhibit 
the proliferation of pancreatic cancer cells, arrest cell 
cycle and downregulate the expression levels of p-CDK1, 
p-JAK1, p-EGFR and pMAPK3/1.

Taken together, we can speculate that the molecular 
mechanisms of CKI in PC treatment are as follows: (1) 
CKI inhibits proliferation of PC cells via inhibition of 
the EGFR transactivation, and downregulation of the 
NCR-mediated MAPK pathway; (2) CKI inhibits expan-
sion of PC stem cells via inactivation of the GPR87/JAK/
STAT pathway; (3) CKI arrests cell cycle progression of 
PC cells via inhibition of the FAM111B/p16/CDK path-
way; (4) CKI inhibits migration and invasion of PC cells 
via downregulation of the NCR-mediated MAPK/MMP 
pathway; (5) CKI reverses chemoresistance of PC cells 
via inhibition of the ROS1-ADGRG6/EGFR pathway; (6) 
CKI inhibits tumour angiogenesis of PC via inhibition of 
the ADGRG6/GATA2/STAT5/VEGF/MAPK pathway. 
However, these speculations should be supported by fur-
ther basic and clinical experimental data.

Conclusions
In summary, this study demonstrated a strategy to opti-
mize conventional network pharmacology, and then 
explained that the molecular mechanism of CKI treating 
PC was closely associated with 5 core genes (including 
CDK1, JAK1, EGFR, MAPK1 and MAPK3), which were 
related to important signalling pathways (including cell 
cycle, JAK/STAT and ErbB pathway) and survival-cor-
related genes (including TSPOAP1, ADGRG6, GPR87, 
FAM111B and MMP28). These findings may be useful for 
clinical decision-making and guidance for rational clini-
cal use of CKI in PC treatment.

Abbreviations
CKI: Compound kushen injection; PC: Pancreatic cancer; WGCNA: Weighted 
gene co-expression network analysis; TCM: Traditional Chinese medicine; 
TCGA​: The cancer genome atlas; TOM: Topological overlap measure; ME: Mod‑
ule eigengene; MM: Module membership; GS: Gene significance; MCC: Maxi‑
mal clique centrality; HR: Hazard ratio; CI: Confidence interval; ROC: Receiver 
operating characteristic; AUC​: Area under curve; TCMSP: Traditional Chinese 
medicine systems pharmacology database and analysis platform; STITCH: 
Search tool for interactions of chemicals; STRING: Search tool for the retrieval 
of interacting genes/proteins; PPI: Protein–protein interaction; MCODE: 
Molecular complex detection; GO: Gene ontology; KEGG: Kyoto encyclope‑
dia of genes and genomes; SD: Standard deviation; PDB: Protein data bank; 
TTD: Therapeutic target database; CDK1: Cyclin-dependent kinase 1; MAPK1: 
Mitogen-activated protein kinase 1; MAPK3: Mitogen-activated protein kinase 
3; EGFR: Epidermal growth factor receptor; JAK1: Janus kinase 1.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13020-​021-​00534-y.

 Additional file 1: Figure S1. The Kaplan–Meier survival curves for 10 hub 
targets. 

Additional file 2: Figure S2. The external validation for the results of 
WGCNA. 

Additional file 3: Table S1. Information about the 16 compounds of CKI. 

Additional file 4: Table S2. Genes associated with PC. 

Additional file 5: Table S3. Information of potential key targets in CKI-PC 
PPI network.

Acknowledgements
Not applicable.

Authors’ contributions
CW and ZHH contributed equally to this work. CW, ZHH, ZQM and JRW 
designed the experiment and wrote the manuscript. CW, ZHH, ZQM, YYT and 
ZSW collected and analysed the bioinformatics data. CW, ZHH, SL, XTF and 
JQH performed most of the experiments. LMY, JYZ, XKL and XMZ interpreted 
the data and visualized the results. AS, PZY and WZ substantively revised the 
manuscript. All authors read and approved the final manuscript.

Funding
The design of the study and the collection, analysis, and interpretation of data 
were supported by the National Nature Science Foundation of China [Grant 
Number 82074284], and the Young Scientists Training Program of Beijing 
University of Chinese Medicine [Grant Number BUCM-QNLJ 2019001].

 Availability of data and materials
The data used to support the current study are available from the correspond‑
ing author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
All authors declare that the research was conducted in the absence of any 
commercial or financial relationships that could be construed as a potential 
conflict of interests.

Author details
1 School of Chinese Materia Medica, Beijing University of Chinese Medicine, 
Beijing 102488, China. 2 School of Life Science, Beijing University of Chinese 
Medicine, Beijing 102488, China. 3 State Key Laboratory of Subtropical Silvicul‑
ture, Department of Traditional Chinese Medicine, Zhejiang A&F University, 
Hangzhou 311300, China. 4 National Cancer Center/National Clinical Research 
Center for Cancer/Chinese Medicine Department of the Caner Hospital, Chi‑
nese Academy of Medical Sciences and Peking Union Medical College, Beijing, 
China. 5 China-Japan Friendship Hospital, Beijing 100029, China. 

Received: 4 August 2021   Accepted: 9 November 2021

https://doi.org/10.1186/s13020-021-00534-y
https://doi.org/10.1186/s13020-021-00534-y


Page 25 of 27Wu et al. Chinese Medicine          (2021) 16:121 	

References
	1.	 Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global 

trends, etiology and risk factors. World J Oncol. 2019;10:10–27.
	2.	 Dang Z, Xu WH, Lu P, Wu N, Liu J, Ruan B, et al. MicroRNA-135a inhibits cell 

proliferation by targeting Bmi1 in pancreatic ductal adenocarcinoma. Int 
J Biol Sci. 2014;10:733–45.

	3.	 Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic 
cancer. Lancet. 2011;378:607–20.

	4.	 Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. 
Global cancer statistics 2020: GLOBOCAN estimates of incidence and 
mortality worldwide for 36 cancers in 185 countries. CA-Cancer J Clin. 
2021;71:209–49.

	5.	 Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian 
LM. Projecting cancer incidence and deaths to 2030: the unexpected 
burden of thyroid, liver, and pancreas cancers in the United States. Cancer 
Res. 2014;74:2913–21.

	6.	 Zhang D, Wu J, Liu S, Zhang X, Zhang B. Network meta-analysis of 
Chinese herbal injections combined with the chemotherapy for the 
treatment of pancreatic cancer. Medicine. 2017;96:e7005.

	7.	 Zhao Z, Fan H, Higgins T, Qi J, Haines D, Trivett A, et al. Fufang Kushen 
injection inhibits sarcoma growth and tumor-induced hyperalgesia via 
TRPV1 signaling pathways. Cancer Lett. 2014;355:232–41.

	8.	 Ma X, Li R, Wang J, Huang Y, Li P, Wang J, et al. The therapeutic efficacy 
and safety of compound kushen injection combined with transarte‑
rial chemoembolization in unresectable hepatocellular carcinoma: an 
update systematic review and meta-analysis. Front Pharmacol. 2016;7:70.

	9.	 Shen H, Qu Z, Harata-Lee Y, Aung TN, Cui J, Wang W, et al. Understanding 
the mechanistic contribution of herbal extracts in compound kushen 
injection with transcriptome analysis. Front Oncol. 2019;9:632.

	10.	 Wang W, You RL, Qin WJ, Hai LN, Fang MJ, Huang GH, et al. Anti-tumor 
activities of active ingredients in compound kushen injection. Acta 
Pharmacol Sin. 2015;36:676–9.

	11.	 Wang L, Li L, Wang X, Guo G, Liu R, Zhang S, et al. Clinical study on 
compound Sophora flavescentis radix (kushen) injection combined with 
gamma knife for treatment of locally advanced pancreatic carcinoma. 
Chin J Inf Tradit Chin Med. 2015;22:21–4 (Chinese).

	12.	 Yang X, Zhang H. Inhibitory effect of compound matrine injection com‑
bined with chemotherapy on human pancreatic cancer. Zhong Guo Yi 
Yuan Yong Yao Ping Jia Yu Fen Xi. 2012;12:50–2 (Chinese).

	13.	 Chen Y, Wei J, Zhang Y, Sun W, Li Z, Wang Q, et al. Anti-endometriosis 
mechanism of Jiawei Foshou san based on network pharmacology. Front 
Pharmacol. 2018;9:811.

	14.	 Zhang Y, Mao X, Su J, Geng Y, Guo R, Tang S, et al. A network pharmacol‑
ogy-based strategy deciphers the underlying molecular mechanisms 
of Qixuehe capsule in the treatment of menstrual disorders. Chin Med. 
2017;12:23.

	15.	 Zhang S, Shan L, Li Q, Wang X, Li S, Zhang Y, et al. Systematic analysis of 
the multiple bioactivities of green tea through a network pharmacology 
approach. Evid Based Complement Alternat Med. 2014;2014:512081.

	16.	 Song C, Ping L, Wang T. Gene co-expression network analysis based on 
WGCNA algorithm-theory and implementation in R Software. Genomics 
Appl Biol. 2013;1:135–41.

	17.	 Zhang B, Horvath S. A general framework for weighted gene co-expres‑
sion network analysis. Stat Appl Genet Mol. 2005. https://​doi.​org/​10.​
2202/​1544-​6115.​1128.

	18.	 Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, et al. Transcrip‑
tomic analysis of autistic brain reveals convergent molecular pathology. 
Nature. 2011;474:380–4.

	19.	 Miller JA, Horvath S, Geschwind DH. Divergence of human and mouse 
brain transcriptome highlights Alzheimer disease pathways. Proc Natl 
Acad Sci USA. 2010;107:12698–703.

	20.	 Farber CR. Identification of a gene module associated with BMD through 
the integration of network analysis and genome-wide association data. J 
Bone Miner Res. 2010;25:2359–67.

	21.	 Niemira M, Collin F, Szalkowska A, Bielska A, Chwialkowska K, Reszec J, 
et al. Molecular signature of subtypes of non-small-cell lung cancer by 
large-scale transcriptional profiling: identification of key modules and 
genes by weighted gene co-expression network analysis (WGCNA). 
Cancers. 2020;12:37.

	22.	 Bao C, Lu Y, Chen J, Chen D, Lou W, Ding B, et al. Exploring specific 
prognostic biomarkers in triple-negative breast cancer. Cell Death Dis. 
2019;10:807.

	23.	 Long J, Huang S, Bai Y, Mao J, Wang A, Lin Y, et al. Transcriptional land‑
scape of cholangiocarcinoma revealed by weighted gene coexpression 
network analysis. Brief Bioinform. 2021;22:bbaa224.

	24.	 Langfelder P, Horvath S. WGCNA: an R package for weighted correlation 
network analysis. BMC Bioinform. 2008;9:559.

	25.	 Wang Z, Jensen MA, Zenklusen JC. A practical guide to the cancer 
genome atlas (TCGA). Methods Mol Biol. 2016;1418:111–41.

	26.	 Miao X, Luo Q, Zhao H, Qin X. Co-expression analysis and identification 
of fecundity-related long non-coding RNAs in sheep ovaries. Sci Rep. 
2016;6:39398.

	27.	 Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying 
hub objects and sub-networks from complex interactome. BMC Syst Biol. 
2014;8(Suppl 4):S11.

	28.	 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 
Cytoscape: a software environment for integrated models of biomolecu‑
lar interaction networks. Genome Res. 2003;13:2498–504.

	29.	 Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. 
PubChem substance and compound databases. Nucleic Acids Res. 
2016;44:D1202–13.

	30.	 Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 
5: augmenting protein-chemical interaction networks with tissue and 
affinity data. Nucleic Acids Res. 2016;44:D380–4.

	31.	 Nickel J, Gohlke BO, Erehman J, Banerjee P, Rong WW, Goede A, et al. 
SuperPred: update on drug classification and target prediction. Nucleic 
Acids Res. 2014;42:W26-31.

	32.	 Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. Swis‑
sTargetPrediction: a web server for target prediction of bioactive small 
molecules. Nucleic Acids Res. 2014;42:W32–8.

	33.	 Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al. TCMSP: a database of 
systems pharmacology for drug discovery from herbal medicines. J 
Cheminform. 2014;6:13.

	34.	 Wang Y, Zhang S, Li F, Zhou Y, Zhang Y, Wang Z, et al. Therapeutic target 
database 2020: enriched resource for facilitating research and early devel‑
opment of targeted therapeutics. Nucleic Acids Res. 2020;48:D1031–41.

	35.	 Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package 
for differential expression analysis of digital gene expression data. Bioin‑
formatics. 2010;26:139–40.

	36.	 Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The 
STRING database in 2017: quality-controlled protein-protein association 
networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–8.

	37.	 Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis 
of large gene lists using DAVID bioinformatics resources. Nat Protoc. 
2009;4:44–57.

	38.	 Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The 
protein data bank. Nucleic Acids Res. 2000;28:235–42.

	39.	 Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. 
AutoDock4 and AutoDockTools4: automated docking with selective 
receptor flexibility. J Comput Chem. 2009;30:2785–91.

	40.	 Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of 
docking with a new scoring function, efficient optimization, and multi‑
threading. J Comput Chem. 2010;31:455–61.

	41.	 Yang Y, Sun M, Yao W, Wang F, Li X, Wang W, et al. Compound kushen 
injection relieves tumor-associated macrophage-mediated immuno‑
suppression through TNFR1 and sensitizes hepatocellular carcinoma to 
sorafenib. J Immunother Cancer. 2020;8:e000317.

	42.	 Ma Y, Gao H, Liu J, Chen L, Zhang Q, Wang Z. Identification and determi‑
nation of the chemical constituents in a herbal preparation, compound 
kushen injection, by HPLC and LC-DAD-MS/MS. J Liq Chromatogr R T. 
2013;37:207–20.

	43.	 Song W, Ni S, Fu Y, Wang Y. Uncovering the mechanism of Maxing Ganshi 
Decoction on asthma from a systematic perspective: a network pharma‑
cology study. Sci Rep. 2018;8:17362.

	44.	 Zuo H, Zhang Q, Su S, Chen Q, Yang F, Hu Y. A network pharmacology-
based approach to analyse potential targets of traditional herbal formu‑
las: an example of Yu Ping Feng decoction. Sci Rep. 2018;8:11418.

https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.2202/1544-6115.1128


Page 26 of 27Wu et al. Chinese Medicine          (2021) 16:121 

	45.	 Walsh N, Zhang H, Hyland PL, Yang Q, Mocci E, Zhang M, et al. Agnostic 
pathway/gene set analysis of genome-wide association data identifies 
associations for pancreatic cancer. Jnci-J Natl Cancer. 2019;I(111):557–67.

	46.	 Mercier S, Küry S, Nahon S, Salort-Campana E, Barbarot S, Bézieau S. 
FAM111B mutation is associated with pancreatic cancer predisposition. 
Pancreas. 2019;48:e41–2.

	47.	 Jiang J, Yu C, Guo X, Zhang H, Tian S, Cai K, et al. G protein-coupled recep‑
tor GPR87 promotes the expansion of PDA stem cells through activating 
JAK2/STAT3. Mol Ther Oncolytics. 2020;17:384–93.

	48.	 Liu Z, Pan H, Xin L, Zhang Y, Zhang W, Cao P, et al. Circ-ZNF609 promotes 
carcinogenesis of gastric cancer cells by inhibiting miRNA-145-5p expres‑
sion. Eur Rev Med Pharmacol Sci. 2019;23:9411.

	49.	 Khalid M, Idichi T, Seki N, Wada M, Yamada Y, Fukuhisa H, et al. Gene 
regulation by antitumor miR-204-5p in pancreatic ductal adenocarci‑
noma: the clinical significance of direct RACGAP1 regulation. Cancers. 
2019;11:327.

	50.	 Pleasance E, Titmuss E, Williamson L, Kwan H, Culibrk L, Zhao EY, et al. 
Pan-cancer analysis of advanced patient tumors reveals interactions 
between therapy and genomic landscapes. Nat Cancer. 2020;1:452–68.

	51.	 Tang X, Zhang M, Sun L, Xu F, Peng X, Zhang Y, et al. The biological 
function delineated across pan-cancer levels through lncRNA-based 
prognostic risk assessment factors for pancreatic cancer. Front Cell Dev 
Biol. 2021;9:694652.

	52.	 Song Y, Wang H, Pan Y, Liu T. Investigating the multi-target pharmaco‑
logical mechanism of Hedyotis diffusa willd acting on prostate cancer: a 
network pharmacology approach. Biomolecules. 2019;9:591.

	53.	 Wu C, Zhou F, Ren J, Li X, Jiang Y, Ma S. A selective review of multi-level 
omics data integration using variable selection. High Throughput. 
2019;8:4.

	54.	 Wang J, Xu C, Cheng Q, Zhao J, Wu S, Li W, et al. RNA sequencing revealed 
signals of evolution from gallbladder stone to gallbladder carcinoma. 
Front Oncol. 2020;10:823.

	55.	 Xu S, Wang W, Xu C, Li X, Ye J, Zhu Y, et al. ROS1-ADGRG6: a case report of 
a novel ROS1 oncogenic fusion variant in lung adenocarcinoma and the 
response to crizotinib. BMC Cancer. 2019;19:769.

	56.	 Cui H, Wang Y, Huang H, Yu W, Bai M, Zhang L, et al. GPR126 protein regu‑
lates developmental and pathological angiogenesis through modulation 
of VEGFR2 receptor signaling. J Biol Chem. 2014;289:34871–85.

	57.	 Cui H, Yu W, Yu M, Luo Y, Yang M, Cong R, et al. GPR126 regulates colorec‑
tal cancer cell proliferation by mediating HDAC2 and GLI2 expression. 
Cancer Sci. 2021;112:1798–810.

	58.	 Kawasaki K, Nojima S, Hijiki S, Tahara S, Ohshima K, Matsui T, et al. 
FAM111B enhances proliferation ofKRAS-driven lung adenocarcinoma by 
degrading p16. Cancer Sci. 2020;111:2635–46.

	59.	 Manuela R, Mario M, Vincenzo R, Filippo R. Nicotine stimulation increases 
proliferation and matrix metalloproteinases-2 and -28 expression in 
human dental pulp cells. Life Sci. 2015;135:49–54.

	60.	 Pramanik K, Chun CZ, Garnaas MK, Samant GV, Li K, Horswill MA, et al. 
Dusp-5 and Snrk-1 coordinately function during vascular development 
and disease. Blood. 2009;113:1184–91.

	61.	 Wu J, Zhang C, Chen L. MiR-511 mimic transfection inhibits the prolifera‑
tion, invasion of osteosarcoma cells and reduces metastatic osteosar‑
coma tumor burden in nude mice via targeting MAPK1. Cancer Biomark. 
2019;26:343–51.

	62.	 Xu M, Zhou K, Wu Y, Wang L, Lu S. Linc00161 regulated the drug resist‑
ance of ovarian cancer by sponging microRNA-128 and modulating 
MAPK1. Mol Carcinog. 2019;58:577–87.

	63.	 Li W, Liang J, Zhang Z, Lou H, Zhao L, Xu Y, et al. MicroRNA-329-3p targets 
MAPK1 to suppress cell proliferation, migration and invasion in cervical 
cancer. Oncol Rep. 2017;37:2743–50.

	64.	 Botta GP, Reginato MJ, Reichert M, Rustgi AK, Lelkes PI. Constitutive 
K-RasG12D activation of ERK2 specifically regulates 3D invasion of human 
pancreatic cancer cells via MMP-1. Mol Cancer Res. 2012;10:183–96.

	65.	 Zhou CY, Gong LY, Liao R, Weng NN, Feng YY, Dong YP, et al. Evaluation of 
the target genes of arsenic trioxide in pancreatic cancer by bioinformat‑
ics analysis. Oncol Lett. 2019;18:5163–72.

	66.	 Cao HY, Xiao CH, Lu HJ, Yu HZ, Hong H, Guo CY, et al. MiR-129 reduces 
CDDP resistance in gastric cancer cells by inhibiting MAPK3. Eur Rev Med 
Pharmacol Sci. 2020;24:11468.

	67.	 Hu B, Shi C, Jiang HX, Qin SY. Identification of novel therapeutic target 
genes and pathway in pancreatic cancer by integrative analysis. Medi‑
cine. 2017;96:e8261.

	68.	 Zheng C, Jiao X, Jiang Y, Sun S. ERK1/2 activity contributes to gemcitabine 
resistance in pancreatic cancer cells. J Int Med Res. 2013;41:300–6.

	69.	 Zhou C, Sun H, Zheng C, Gao J, Fu Q, Hu N, et al. Oncogenic HSP60 regu‑
lates mitochondrial oxidative phosphorylation to support Erk1/2 activa‑
tion during pancreatic cancer cell growth. Cell Death Dis. 2018;9:161.

	70.	 Huang XY, Chen CX. Effect of oxymatrine, the active component from 
Radix Sophorae flavescentis (Kushen), on ventricular remodeling in 
spontaneously hypertensive rats. Phytomedicine. 2013;20:202–12.

	71.	 Xing Y, Yan F, Liu Y, Liu Y, Zhao Y. Matrine inhibits 3T3-L1 preadipocyte 
differentiation associated with suppression of ERK1/2 phosphorylation. 
Biochem Biophys Res Commun. 2010;396:691–5.

	72.	 Liu Y, Fei T, Zheng X, Brown M, Zhang P, Liu XS, et al. An integrative phar‑
macogenomic approach identifies two-drug combination therapies for 
personalized cancer medicine. Sci Rep. 2016;6:22120.

	73.	 Bublil EM, Yarden Y. The EGF receptor family: spearheading a merger of 
signaling and therapeutics. Curr Opin Cell Biol. 2007;19:124–34.

	74.	 Lv XX, Zheng XY, Yu JJ, Ma HR, Hua C, Gao RT. EGFR enhances the 
stemness and progression of oral cancer through inhibiting autophagic 
degradation of SOX2. Cancer Med. 2020;9:1131–40.

	75.	 Pietraszek-Gremplewicz K, Simiczyjew A, Dratkiewicz E, Podgorska 
M, Styczen I, Matkowski R, et al. Expression level of EGFR and MET 
receptors regulates invasiveness of melanoma cells. J Cell Mol Med. 
2019;23:8453–63.

	76.	 Grapa CM, Mocan T, Gonciar D, Zdrehus C, Mosteanu O, Pop T, et al. Epi‑
dermal growth factor receptor and its role in pancreatic cancer treatment 
mediated by nanoparticles. Int J Nanomedicine. 2019;14:9693–706.

	77.	 Fagman JB, Ljungman D, Falk P, Iresjo BM, Engstrom C, Naredi P, et al. 
EGFR, but not COX-2, protein in resected pancreatic ductal adenocarci‑
noma is associated with poor survival. Oncol Lett. 2019;17:5361–8.

	78.	 Ye J, Yuen SM, Murphy G, Xie R, Kwok HF. Anti-tumor effects of a “human 
& mouse cross-reactive” anti-ADAM17 antibody in a pancreatic cancer 
model in vivo. Eur J Pharm Sci. 2017;110:62–9.

	79.	 Guo B, Zhang T, Su J, Wang K, Li X. Oxymatrine targets EGFR(p-Tyr845) 
and inhibits EGFR-related signaling pathways to suppress the prolif‑
eration and invasion of gastric cancer cells. Cancer Chemoth Pharm. 
2015;75:353–63.

	80.	 Wang S, Sun M, Zhang Y, Du H, He L. A new A431/cell membrane 
chromatography and online high performance liquid chromatography/
mass spectrometry method for screening epidermal growth factor 
receptor antagonists from Radix sophorae flavescentis. J Chromatogr A. 
2010;1217:5246–52.

	81.	 Wu CX, Wang XQ, Chok SH, Man K, Tsang S, Chan A, et al. Blocking CDK1/
PDK1/beta-Catenin signaling by CDK1 inhibitor RO3306 increased the 
efficacy of sorafenib treatment by targeting cancer stem cells in a preclin‑
ical model of hepatocellular carcinoma. Theranostics. 2018;8:3737–50.

	82.	 Dong S, Huang F, Zhang H, Chen Q. Overexpression of BUB1B, CCNA2, 
CDC20, and CDK1 in tumor tissues predicts poor survival in pancreatic 
ductal adenocarcinoma. Biosci Rep. 2019;39:BSR20182306.

	83.	 Cui J, Qu Z, Harata-Lee Y, Nwe AT, Shen H, Wang W, et al. Cell cycle, energy 
metabolism and DNA repair pathways in cancer cells are suppressed by 
compound kushen injection. BMC Cancer. 2019;19:103.

	84.	 Chang J, Hu S, Wang W, Li Y, Zhi W, Lu S, et al. Matrine inhibits prostate 
cancer via activation of the unfolded protein response/endoplasmic 
reticulum stress signaling and reversal of epithelial to mesenchymal 
transition. Mol Med Rep. 2018;18(1):945–57.

	85.	 Dai Z, Wang L, Wang X, Zhao B, Zhao W, Bhardwaj S, et al. Oxymatrine 
induces cell cycle arrest and apoptosis and suppresses the invasion of 
human glioblastoma cells through the EGFR/PI3K/Akt/mTOR signaling 
pathway and STAT3. Oncol Rep. 2018;40(2):867–76.

	86.	 Halim CE, Xinjing SL, Fan L, Bailey Vitarbo J, Arfuso F, Tan CH, et al. Anti-
cancer effects of oxymatrine are mediated through multiple molecular 
mechanism(s) in tumor models. Pharmacol Res. 2019;147:104327.

	87.	 Chen M, Gu Y, Zhang AL, Sze DM, Mo S, May BH. Biological effects and 
mechanisms of matrine and other constituents of Sophora flavescens in 
colorectal cancer. Pharmacol Res. 2021;171:105778.

	88.	 Sabino J, Verstockt B, Vermeire S, Ferrante M. New biologics and small 
molecules in inflammatory bowel disease: an update. Therap Adv Gastro‑
enterol. 2019;12:321925224.



Page 27 of 27Wu et al. Chinese Medicine          (2021) 16:121 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	89.	 Yang L, Wei WC, Meng XN, Gao J, Guo N, Wu FT, et al. Significance of 
IL28RA in diagnosis of early pancreatic cancer and its regulation to pan‑
creatic cancer cells by JAK/STAT signaling pathway - effects of IL28RA on 
pancreatic cancer. Eur Rev Med Pharmacol Sci. 2019;23:9863–70.

	90.	 Bi CL, Zhang YQ, Li B, Guo M, Fu YL. MicroRNA-520a-3p suppresses epithe‑
lial-mesenchymal transition, invasion, and migration of papillary thyroid 
carcinoma cells via the JAK1-mediated JAK/STAT signaling pathway. J Cell 
Physiol. 2019;234:4054–67.

	91.	 Gore J, Craven KE, Wilson JL, Cote GA, Cheng M, Nguyen HV, et al. TCGA 
data and patient-derived orthotopic xenografts highlight pancreatic 
cancer-associated angiogenesis. Oncotarget. 2015;6:7504–21.

	92.	 Craven KE, Gore J, Wilson JL, Korc M. Angiogenic gene signature in 
human pancreatic cancer correlates with TGF-beta and inflammatory 
transcriptomes. Oncotarget. 2016;7:323–41.

	93.	 Chen SF, Zhang ZY, Zhang JL. Matrine increases the inhibitory effects of 
afatinib on H1975 cells via the IL6/JAK1/STAT3 signaling pathway. Mol 
Med Rep. 2017;16:2733–9.

	94.	 Jung YY, Shanmugam MK, Narula AS, Kim C, Lee JH, Namjoshi OA, et al. 
Oxymatrine attenuates tumor growth and deactivates STAT5 signaling in 
a lung cancer xenograft model. Cancers. 2019;11:49.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	A network pharmacology approach to reveal the pharmacological targets and biological mechanism of compound kushen injection for treating pancreatic cancer based on WGCNA and in vitro experiment validation
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Materials and methods
	Data collection and preprocessing
	Construction of co-expression network
	Identify gene modules and correlate clinical information
	Identify hub genes and external validation
	Survival analysis
	Identification of CKI compounds and targets
	Collection of PC targets
	Network construction
	Module analysis and enrichment analysis
	Molecular docking
	Cell lines and cell proliferation assays
	Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis
	Enzyme-linked immunosorbent assay (ELISA)
	Western blot assay
	Statistical analysis

	Results
	WGCNA module construction
	Correlation analysis between modules and clinical traits
	Hub genes screening
	Survival analysis
	Compound- putative target network
	Genes associated with PC
	CKI-PC PPI network and core targets identification
	GO and KEGG enrichment analysis
	Molecular docking
	Anti-PC effect of CKI and core targets verification

	Discussion
	Conclusions
	Acknowledgements
	References




