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Eye degeneration is one of the most obvious characteristics of organisms restricted to
subterranean habitats. In cavefish, eye degeneration has evolved independently
numerous times and each process is associated with different genetic mechanisms. To
gain a better understanding of these mechanisms, we compared the eyes of adult
individuals of the cave loach Triplophysa rosa and surface loach Triplophysa bleekeri.
Compared with the normal eyes of the surface loach, those of the cave loach were found
to possess a small abnormal lens and a defective retina containing photoreceptor cells
that lack outer segments. Sequencing of the transcriptomes of both species to identify
differentially expressed genes (DEGs) and genes under positive selection revealed 4,802
DEGs and 50 genes under positive selection (dN/dS > 1, FDR < 0.1). For cave loaches, we
identified one Gene Ontology category related to vision that was significantly enriched in
downregulated genes. Specifically, we found that many of the downregulated genes,
including pitx3, lim2, crx, gnat2, rx1, rho, prph2, and b|g-crystallin are associated with
lens/retinal development and maintenance. However, compared with those in the surface
loach, the lower dS rates but higher dN rates of the protein-coding sequences in T. rosa
indicate that changes in amino acid sequences might be involved in the adaptation and
visual degeneration of cave loaches. We also found that genes associated with light
perception and light-stimulated vision have evolved at higher rates (some genes dN/dS >
1 but FDR > 0.1). Collectively, the findings of this study indicate that the degradation of
cavefish vision is probably associated with both gene expression and amino acid changes
and provide new insights into the mechanisms underlying the degeneration of
cavefish eyes.
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INTRODUCTION

Cavefish have been the focus of numerous studies owing to their
species diversity and common convergent phenotypic
characteristics. There are many underground caves in the
world that are dark, filled with fresh water, and devoid of
photosynthetic activity (Rétaux and Casane, 2013). However,
even in these ostensibly barren nutrient-poor environments, an
array of organisms, notably ray-finned fishes, manage to survive,
and are indeed restricted to these habitats (Culver and Pipan,
2009; Rétaux and Casane, 2013). The cavefish, which are found
in all continents except Antarctica, are the most successful
troglodytes, exhibiting diversified phylogenetic structure and
geographical distribution, and spanning 10 orders and 22
families (Bichuette, 2007; Trajano et al., 2010; Soares and
Niemiller, 2013; Behrmann-Godel et al., 2017). This wide
distribution suggests multiple instances of independent
evolution that have resulted in common troglomorphic
characteristics, most notably small, sunken, or entirely absent
eyes. However, previous studies have indicated that there are
different molecular mechanisms underlying the evolution of the
degenerate eyes of these fish.

Among ray-finned fish, species of Astyanax are considered
valuable cavefish models for comparative research, as they also
have surface-dwelling forms (Jeffery, 2001). During early
embryonic development, the lens of the subterranean Astyanax
mexicanus begins to regress before any other eye tissue,
suggesting that it might play a regulatory role in eye loss
(Jeffery and Martasian, 1998; Strickler et al., 2007a; Jeffery,
2009; Strickler and Jeffery, 2009). Indeed, transplantation
experiments using Astyanax have provided substantial
evidence of the role played by the lens in eye development
(Yamamoto and Jeffery, 2000), as has research on the cavefish
Sinocyclocheilus anshuiensis (Yang et al., 2016). In contrast,
Sinocyclocheilus anophthalmus appears to possess a different
lens-dependent mechanism of eye degeneration (Meng et al.,
2013). Despite mechanistic differences, these three species (A.
mexicanus, S. anshuiensis, and S. anophthalmus) share many
retina-related genes with similar expression patterns. For
instance, the eye degeneration-linked cone-rod homeobox (crx)
and its downstream transcription factors, such as neural retina
leucine zipper (nrl), orthodenticle homeobox 2 (otx2),
orthodenticle homeobox 5 (otx5), nuclear receptor subfamily 2
group E member 3 (nr2e3), G protein subunit alpha transducin 1
(gnat1), gnat2, and RAR-related orphan receptor B (rorb), are
downregulated in two or all three of these species (Strickler and
Jeffery, 2009; Gross et al., 2013; Meng et al., 2013; Mcgaugh et al.,
2014; Yang et al., 2016). However, although such research
findings have enabled us to gain an understanding of the
mechanisms underlying of cavefish eyes degeneration from the
perspective of development and have provided insights regarding
the similarities and differences in gene expression regulation,
studies to date on Mexican tetra suggest that amino acid
sequence changes might also be involved in eye degeneration
(Hinaux et al., 2013; Mcgaugh et al., 2014; Casane and Rétaux,
2016; Yang et al., 2016). Therefore, comparative research on
another cavefish would be meaningful to better characterize the
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different evolutionary mechanisms, such as the regulation of
gene expression and protein evolution, associated with
eye degeneration.

Southwest China, which is noted for its diverse and complex
cave and karst habitats, not surprisingly has a rich cavefish fauna
(including species of Sinocyclocheilus and Triplophysa) (Zhao
et al., 2011). More than 100 species (of the 197 species
worldwide) of Triplophysa (Teleostei, Cypriniformes,
Nemacheilidae) are present in China, including many surface-
dwellers and at least 27 troglodytes that vary in their degree of
eye degeneration. Triplophysa rosa, which is indigenous to
Chongqing, is a typical member of the latter group (Chen and
Yang, 2005). Previous studies on T. rosa have focused on
morphology (Huang, 2012), molecular markers (Zhao et al.,
2014), mitogenome sequencing (Wang et al., 2012), karyotype
analysis (Niu et al., 2016), and metabolism (Shi et al., 2018).
However, there have to date been no studies that have focused on
the molecular mechanisms underlying eye degeneration in T.
rosa. Therefore, in this study, based on a combination of
histological and transcriptome analyses, we performed a
comparative investigation of T. rosa and the closely related
surface-dwelling species Triplophysa bleekeri, with a view to
clarifying the degree of eye degeneration and the genes
involved. Our results stand to make a substantial contribution
to gaining a more comprehensive understanding of the processes
that are under selection during the evolution of cavefish
eye regression.
MATERIALS AND METHODS

Samples
T. rosa specimens were collected from Wulong County (Figures
1A, C) and surface-dwelling T. bleekeri were collected from
Daling River, Wuxi County (Figures 1B, D), both of which are
in Chongqing, China). In order to replicate conditions in the
native habitats as closely as possible, T. rosa and T. bleekeri
specimens were maintained in two separate tanks (140 cm × 160
cm × 80 cm) located in a dark and natural daylight environment,
respectively, for 1 week. Water temperature was controlled at
18~20 C using a water cooling device (CW-1000A; Risheng CO.,
Ltd, Guangdong, China) regulated by a temperature controller
(PY-SM5; Pinyi CO., Ltd, Zhejiang, China), and the oxygen
concentration was maintained above 7 mg L-1 by continuously
pumping air using an air pump (HG-750W; Sensen Yuting CO.,
Ltd, Zhejiang, China). All zoological experiments conducted
under approval of the Animal Care and Use Committee of
Southwest University.

Histological and Immunohistochemical
Analyses
Adult T. rosa and T. bleekeri (six individuals each) were
euthanized prior to removing their eyes, which were
enucleated, cleaned of adipose tissue, and fixed in Bouin's fluid
for histological analysis. After 24 h, serial paraffin sections were
prepared, and slides were stained with hematoxylin and eosin
(H&E), following standard procedures (Li et al., 2014).
January 2020 | Volume 10 | Article 1334
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Cryosectioning and immunostaining of fixed fish eyes (four
individuals each) were performed as previously described
(Meng et al., 2013). We used monoclonal antibodies against
Zpr-1 (ab174435: 1:200; Abcam, Shanghai, China) and 4D2
[fluorescein isothiocyanate (FITC), ab183399: 1:200; Abcam,
Shanghai, China] to label red-green cones and rod
photoreceptors, respectively. Immunoreactivity was visualized
using an Alexa Fluor 488-conjugated anti-mouse IgG secondary
antibody (A11017: 1:200; Life Technologies, Eugene, Oregon),
except for when staining for 4D2. Slides were premixed with the
nuclear stain ToPro3 (T3605: 1:1,000; Life Technologies, Eugene,
Oregon) and examined under a NIKON 80i microscope.
Fluorescent images were processed using Adobe Photoshop 7.0.

Library Construction and
Illumina Sequencings
Equal proportions of the same tissues (eyes, brain, skin, and gill)
of eight individuals of each of the two Triplophysa species were
initially pooled to provide compound samples, from which total
RNA was subsequently extracted using TRIzol Reagent
(Invitrogen, Carlsbad, CA). RNA degradation was monitored
using 1% agarose gels. The purity and concentration of the
extracted RNA were respectively measured using a
NanoPhotometer® spectrophotometer (IMPLEN, CA) and a
Qubit® RNA Assay Kit in conjunction with a Qubit®2.0
Fluorometer (Life Technologies, CA). RNA integrity was
assessed using the RNA Nano 6000 assay kit of the Agilent
Bioanalyzer 2100 system (Agilent Technologies, CA).

For each pooled sample, aliquots of 3 mg RNA were used as
the input material for sample preparations. Sequencing libraries
were generated using an NEBNext®Ultra™ RNA Library Prep
Kit for Illumina® (NEB, Ipswich, MA), following the
manufacturer's protocol. Library quality was assessed using the
Agilent Bioanalyzer 2100 system. Finally, the four tissue-specific
cDNA libraries of each species were clustered and sequenced
Frontiers in Genetics | www.frontiersin.org 3
using the Illumina Hiseq 2500 platform and paired-end reads
were generated.

De Novo Transcriptome Assembly
and Annotation
Raw data were processed using in-house Perl scripts to remove
adapter sequences, reads with ambiguous bases N > 10%, and
low-quality reads (> 50% Q ≤ 5 base) (Zhang et al., 2017). Clean
reads were de novo assembled using Trinity (Grabherr et al.,
2011; Haas et al., 2013) with default parameters. Only contigs
>200 bp were used for further analysis. For each species, de novo
reference transcripts were assembled by pooling all four tissue-
specific libraries. TGICL-2.1 (Pertea et al., 2003) software was
used to reduce the redundancy of the assembled transcripts with
an identity threshold of 0.94. Subsequently, the coding region of
transcripts was predicted using TransDecoder pipeline (https://
transdecoder.github.io), with parameters of -m 100 and
-single_best_orf. To provide comprehensive descriptions of the
final transcript sets, we employed the Swissprot/Uniprot
(Bairoch et al., 2009) and KEGG (Kyoto Encyclopedia of
Genes and Genomes) (Kanehisa et al., 2004) public databases,
as well as several protein-coding gene sets from the genomes of
Cypriniformes species, including those of Danio rerio (version
GRCz11), Ctenopharyngodon idella (version 1), Sinocyclocheilus
grahami (version 1.1), and Cyprinus carpio, to annotate
these transcripts.

Cross-species contamination in the resulting transcripts was
detected and filtered using CroCo (Simion et al., 2018) with
default parameters, and only clean transcripts were used for
further analysis. Thereafter, we used CEGMA (Parra et al., 2007)
to evaluate the integrity of transcript assembly. The GO
annotations were processed using Blast2GO (Götz et al., 2008)
for GO database searches based on e-values < 1e-6. To generate a
comparative diagram of GO annotation information obtained
from the two Triplophysa species, we employed OmicShare web
FIGURE 1 | Triplophysa rosa, Triplophysa bleekeri, and their habitat. (A) T. rosa (cave loach), (B) T. bleekeri (surface loach), and their respective habitats: (C) a karst
cave in Wulong County and (D) open rivers system in Wuxi County (Taken by Yabing Niu).
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https://transdecoder.github.io
https://transdecoder.github.io
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Zhao et al. Comparative Transcriptome of Two Loaches
software (http://www.omicshare.com/tools) to visualize,
compare, and plot the GO annotation results.

Analysis of Gene Expression and DEGs
Gene expression levels for each sample were estimated using
RSEM (Li and Dewey, 2011). The clean reads from the four
selected tissues of each species were mapped back onto the
species-specific transcripts using Bowtie2 software (Langmead
and Salzberg, 2012). Raw read counts per gene were then
obtained from the mapping results using RSEM. To compare
transcriptional levels between T. rosa and T. bleekeri, differential
expression analysis was narrowed down to only those assembled
transcripts that were orthologously presented in the two loaches,
as previously described (Jiang et al., 2019; Shu et al., 2019). We
used reciprocal best hits (RBH) BLAST (Moreno-Hagelsieb and
Latimer, 2008) to identify orthologous genes between the two
constitutive transcriptomes. For bidirectional alignment between
T. rosa and T. bleekeri, we used blastn with an e-value 1e-10, and
thereafter, transcript pairs with optimal bidirectional alignment
and a bit score threshold of ≥300 were identified as orthologous
transcripts (Zhang et al., 2015). A scaling normalized factor was
used to adjust read counts for each library and differential
expression analysis was performed in edgeR (Robinson et al.,
2010). The genes corresponding to the transcripts were
considered differentially expressed if p-value < 0.01 and |
log2FC| > 1. After functional annotation, GO and KEGG
pathway enrichment analyses were implemented using the
OmicShare web software, both with an FDR < 0.1.

Identification of Positively Selected Genes
(PSGs) and Rapidly Evolving Genes
Sequence sets from six species [T. rosa and T. bleekeri, the
transcriptomes of three loaches or closely related species
(Catostomus commersonii, Cobitis taenia, and Misgurnus
anguillicaudatus), and one genome gene set of D. rerio] were
used for analyses of orthologous genes and nonsynonymous
(dN)/synonymous (dS) substitution rates (dN/dS), for which
data were downloaded from NCBI. Among these, owing to
distant multi-species sequencing in C. commersonii (Hahn
et al., 2016), we detected cross-species contamination and a
filter was applied as described. In this study, the term surface
loach is used specifically to refer to T. bleekeri.

To perform scans on a transcriptome-wide scale for genes
under positive selection and obtain dN/dS values for all genes, we
first fed the coding sequences of the aforementioned species set
along with those of the cave loach branches we wished to
examine into the PosiGene pipeline (Sahm et al., 2017). D.
rerio was used as the PosiGene anchor species. Orthology was
determined using PosiGene with RBH BLAST searches
(Moreno-Hagelsieb and Latimer, 2008) against the gene set of
D. rerio (the parameter: -nhs). The dN/dS values and the positive
selection genes of T. rosa were calculated or detected by codeml
(Yang, 2007) in PosiGene. Next, dN/dS values for the surface
loach were also calculated by using PosiGene pipeline. Since the
PosiGene pipeline only provides final evaluated dN/dS values, to
obtain the dN and dS values for all species, it was necessary to
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recalculate the dN and dS values for each species in order to
determine the trends in dN and dS for T. rosa. We obtained the
final multi-sequence alignment file with genes containing three
or more species sequences from the PosiGene pipeline, and
subsequently used these orthologs to calculate dN and dS
substitution rates using paml-codeml (Yang, 2007) with the
same parameter as used for the PosiGene pipeline.

We initially excluded geneswith aKs value greater than two in
any branch, due to the possibility of false alignment or
pseudogenes (Wang et al., 2019), and performed a comparison
of the dN and dS rates among species. To assess potential
functional trends dependent on evolutionary rates, we divided
our proteins from T. rosa (7,275 proteins, as described in
Schumacher and Herlyn, 2018) into three equally sized bins of
2,425 proteins according to their dN/dS values as follows: bin 1
(“low rate”; dN/dS ≤ 0.1303); bin 2 (“medium rate”; dN/dS
0.1304–0.3273); and bin 3 (“high rate”; dN/dS ≥ 0.3273). For
each bin, we performed an enrichment analysis based onGO and
KEGG annotation using OmicShare web software. Further, in
order to determine changes in the evolutional trends of vision-
related genes dependent on evolutionary rates, we obtained the
dN/dS values of all genes involved in each vision-related GO
category for comparative analysis between T. rosa and
T. bleekeri.

Identification of Premature Stop Codons
and Frame-Shift Mutations
One-to-one orthologous transcript pairs were derived from the
aforementioned results of RBH BLAST between the cave and
surface loaches. On the basis of these gene pairs (proteins from
the surface loach and transcripts from the cave loach), we then
used genewise (Birney et al., 2004) to identify the premature stop
codons and frame-shift mutations in the transcripts of the cave
loach. The results of candidate pseudogenes were further
confirmed using the read alignment results obtained with IGV
(Thorvaldsdóttir et al., 2013). Thereafter, we filled the missing
bases of the transcripts with frame-shift mutations and re-
aligned the reads to these using Bowtie2 (Langmead and
Salzberg, 2012). The reads around indels were realigned via
GATK 3.6 (DePristo et al., 2011) using default parameters.
Finally, the sequencing depth of each base was calculated using
samtools (http://www.htslib.org/) with parameters -q 20 and
-Q 20.

Quantitative Real-Time PCR Validation of
RNA-Seq Data
Given that the eyes of T. rosa eyes are very small, to facilitate
RNA extraction, tissues from three individual specimens were
pooled to form a single sample, whereas only single-individual
samples were necessary for T. bleekeri. RNA was extracted from
three biological replicates (per species) using an RNeasy® plus
universal mini kit (QIAGEN, Leipzig, German). Complementary
DNA was synthesized using a PrimeScriptTM reverse
transcription (RT) reagent kit with gDNA eraser (TaKaRa,
Peking, China). Real-time PCR was conducted using SYBR®

Premix Ex TaqTM II (TaKaRa, Peking, China). The Tu
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translation elongation factor, mitochondrial (tufm) was used an
internal control. Primers were designed based on the relevant
genes in both species, derived using AlleleID 6 (Apte and Singh,
2007) from our transcriptome, with synthesis being performed
by Invitrogen (see Table S1 for a list of the primers used). Real-
time PCR was conducted using SYBR® Premix Ex TaqTM II
(TaKaRa, Peking, China) and an ABI StepOne™ real-time PCR
system thermal cycling block.
RESULTS

Morphological Differences Between the
Eyes of T. rosa and T. bleekeri
The recessed eyes of T. rosawere smaller than the external eyes of
T. bleekeri (eyeball diameter: T. rosa and T. bleekeri, 0.50 ± 0.07
and 2.41 ± 0.20 mm, respectively, n = 15 each, Figures 1A, B).
Consistent with this finding, T. rosa also possesses smaller optic
tecta than those of T. bleekeri (Huang, 2012). H&E-stained
sections of whole eyes revealed that T. rosa has retained the
basic vertebrate eye structure, with process lens, cornea, iris, and
neural retina. The most distinctive difference between the eyes of
the two loaches was that the lens of T. rosa has a loose and
irregular central portion, whereas the retina exhibits optic nerve
atrophy (Figures 2A, B). Staining revealed that whereas the
neural retina of T. rosa has retained a layered cellular
organization, all three nuclear layers are characterized by
pyknotic nuclei, with a larger number of these nuclei clustered
in the inner layer. Additionally, the outer nuclear layer was
observed to be disordered, indicating that the photoreceptors
show greater morphological changes than the inner retinal
neurons (Figures 2C, D).

To further examine differences in the photoreceptor
morphology of T. rosa and T. bleekeri eyes, we labeled the
outer segments of the cones and rods with the monoclonal
antibodies Zpr-1 and 4D2, respectively, whereas the nuclei
were stained with ToPro3. We accordingly observed that the
outer segments in T. rosa were defective and only present around
the photoreceptor nuclei (rod length: T. rosa and T. bleekeri,
11.96 ± 3.04 and 55.89 ± 8.63 µm, respectively, n = 4 individuals
each; cone length: T. rosa and T. bleekeri, 6.58 ± 3.37 and 39.50 ±
8.03 µm, respectively, n = 4 individuals each). To summarize, T.
rosa eye degeneration is characterized by an abnormal lens, a
retina containing pyknotic nuclei, and substantial morphological
abnormalities in photoreceptor structure, along with outer
segment deletion (Figure 3).

RNA-Sequencing, Assembly, and
Functional Annotation
We generated 275 million raw paired-end reads and 263 million
high-quality reads (125 bp). Same assembly methods (Table 1)
were used to guarantee the acquisition of appropriate transcripts
for the two loach species. Total transcript numbers of 105,280
and 92,437 (> 300 bp) were assembled for T. rosa and T. bleekeri,
respectively. On the basis of TransDecoder prediction using
several public databases and gene sets, we obtained the final
Frontiers in Genetics | www.frontiersin.org 5
assemblies with 27,922 and 24,454 protein-coding transcripts for
T. rosa and T. bleekeri, respectively (Table 1). After filtering with
CroCo, we finally obtained 27,316 and 23,255 cleaned protein-
coding transcripts for T. rosa and T. bleekeri, respectively (Figure
S1). To assess the completeness of the assemblies, we evaluated
the two final transcript sets using CGEMA, which revealed that
the majority of the 248 eukaryote core genes had been
successfully recovered in the two assemblies (Table S2). These
data thus indicate that the transcripts of the two loaches were
well assembled.

On the basis of GO and KEGG database annotations of the
two transcript sets (Table 1), we obtained a total of 21,476
(78.6%) transcripts mapped to 139,591 GO categories, and
19,083 (82.0%) transcripts mapped to 123,387 GO categories
for T. rosa and T. bleekeri, respectively. The classification of GO
categories shows the detailed proportions of individual
assemblies, indicating that most categories within molecular
function, biological processes, and cellular components were
well represented. We also observed a high similarity of GO
distribution (r > 0.99, Pearson correlation coefficient) between
these two loach species (Figure 4).

Identification and Annotation of DEGs
Between T. rosa and T. bleekeri
To compare differences between the two species at the
transcriptional level, we identified 16,325 putative orthologous
transcripts between T. rosa and T. bleekeri based on the RBH
method with an e-value cutoff of 1e-10. Furthermore, we
identified 4,802 DEGs in the gills (1,244), skin (1,568), brain
(1,195), and eyes (3,108). More genes (1,740 upregulated, 1,368
downregulated) were identified as DEGs in the eyes than in other
organs, and 2,049 DEGs were specific to the eyes (Figure S2).

The 1740 upregulated genes were found to be significantly
enriched in 21 GO categories (FDR < 0.1), with the dominant
categories being “extracellular region” (187, 10.18%) and
“immune system process” (63, 12.55%) (Table S3). Cluster
analysis of the 1,368 downregulated genes yielded 68
significantly enriched GO categories (Table S4), many of
which were related to ion channel activity, material transport,
and nerve function. Given that vision mainly depends on the
formation, transmission, and processing of neural signals, the
downregulated expression of ion channels and genes related to
neural functions could indicate that cave loach might have lost
the necessary material and structural support for vision.
Specifically, the GO categories “structural constituent of eye
lens” was significantly enriched with the lowest FDR (3.4E-4)
in molecular function (Table 2). The downregulated expression
of genes related to the lens would predictably lead to the
abnormal structure of the lens of the cave loach, which is
consistent with the aforementioned morphological results.

To identify potential differences in eye development and
maintenance in adult cavefish, we focused attention on those
genes that are already known to be involved in the development
and maintenance of fish eyes. During T. rosa lens development
and maintenance, we observed downregulation of the
transcription factor Paired like homeodomain 3 (pitx3; with
January 2020 | Volume 10 | Article 1334
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log2FC = -4.28), several crystallin genes (e.g. b-|g-crystallin), and
lens intrinsic membrane protein 2 (lim2; with log2FC = -7.42).
However, we found aA-crystallin to be absent from both T. rosa
and S. anophthalmus, possibly because the gene is only expressed
during early development (Strickler et al., 2007a; Meng
et al., 2013).

Eye degeneration is generally associated with a vestigial
retina, and in this regard, our screening of DEGs involved in
retinal cell development revealed four transcription factors (crx,
gnat2, nr2e3, and rx1), three photoreceptor genes [rho, rgrb, and
prph2 (associated with outer-segment disks)], and pde6g
(associated with visual signal transduction) that were
downregulated in T. rosa, with degrees of downregulation
(expressed as log2FC) of -1.68, -1.59, -2.44, -2.81, -5.12, -1.26,
-3.38, and -2.51, respectively (qPCR validated, Figure 5). In
contrast, we found that the T. rosa rx2 and rx3 genes did not
show differential expression.
Frontiers in Genetics | www.frontiersin.org 6
Analysis of dN, dS, and PSGs
The 10,564 genes expressed by three or more species extracted
from the PosiGene pipeline were used for further analysis. Of
these, 7,282 genes that are present in cave loach were used to
identify genes that have evolved under positive selection via the
PosiGene pipeline. We obtained 52 PSGs [50 genes: dN/dS > 1;
two genes dN/dS < 1, FDR < 0.1 (hold positive selection sites),
Table S5]; however, the functions of none of these genes is
related to vision or light sensitivity. Calculation of the dN and dS
values of all species revealed that the dS values of the cave loach
were significantly lower than those of its close relative the surface
loach (Figures 6A, B). Cave loaches also had the lowest dS values
relative to those of other species. However, despite the low dS
mutation rates for the cave loach (dS, Figure 6B), its protein
sequences appeared to have a higher evolutional rate (dN rate,
Figure 6C). Further, a heat scattering plot showed that whereas
the dS values for the cave loach were significantly lower than
FIGURE 2 | Phenotypes and eye degeneration of cave loach (Triplophysa rosa) versus surface loach (Triplophysa bleekeri). Stained [hematoxylin and eosin (H&E)]
sections of adult T. rosa (A) eyes and (C) retinas, and T. bleekeri (B) eyes and (D) retinas. RE, retina; ON, optic nerve; GCL, ganglion cell layer; INL, inner nuclear
layer; ONL, outer nuclear layer; ROS and COS, rod and cone outer segment.
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those for the surface loach (Figures 6A, B). the dN values of the
two loaches were more similar, such that the cave loach showed
significantly greater dN/dS values than the surface loach (Figures
6D–F).

To characterize the evolution of genes associated with the
eyes, we assessed potential functional trends in dependence of
evolutionary rates. For this, we divided cave loach proteins into
three bins based on the dN/dS values and performed GO
functional enrichment analysis. To determine the evolutionary
trends of vision-related genes, we screened all GO categories
related to vision based on the results of GO enrichment, and
Frontiers in Genetics | www.frontiersin.org 7
accordingly found that the GO terms directly related to
photosensitivity had a larger number of genes distributed in
the high rate bin (Table S6). Although some of these GO terms
were enriched with a P-value < 0.05, none of the GO categories
had an FDR < 0.1. However, genes related to visual development
were mainly distributed in the low rate bin. Moreover, we
identified two GO categories, “camera-type eye development”
and “eye development” that were significantly enriched in the
low rate bin with an FDR < 0.1 (Table S6).

Further comparison and analysis revealed that in both
species of loach, the four GO terms directly related to vision
FIGURE 3 | Photoreceptor degeneration in Triplophysa rosa and Triplophysa bleekeri. Representative double-labeling in retina of (A–F) T. rosa and (G–L) T. bleekeri;
cell nuclei are labeled red with To-Pro3; outer segments are labeled green. Rod (4D2) and cone (Zpr1) morphology differed between (A, D) T. rosa and
(G, J) T. bleekeri. (C, F, and I, L) Overlay image showed that the outer segment was only present around the nuclei. RE, retina; ON, optic nerve; GCL, ganglion cell
layer; INL, inner nuclear layer; ONL, outer nuclear layer; ROS and COS, rod and cone outer segment.
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(“sensory perception”, “response to light stimulus”, “visual
perception”, and “sensory perception of light stimulus”) had a
higher dN/dS value (mean dN/dS value: 0.259, 0.552, 0.287, and
Frontiers in Genetics | www.frontiersin.org 8
0.287 for T. rosa; 0.221, 0.204, 0.196, and 0.196 for T. bleekeri) than
the medium rate (0.216 for T. rosa and 0.171 for T. bleekeri).
Moreover, the cave loach had higher dN/dS values than the surface
FIGURE 4 | The GO classification of Triplophysa rosa (cave loach) and Triplophysa bleekeri (surface loach).
TABLE 1 | Overview of the de novo assembly and annotation of the Triplophysa rosa (cave loach) and Triplophysa bleekeri (surface loach).

T. rosa T. bleekeri

Brain Skin Gill Eye Brain Skin Gill Eye

Total clean reads 85.5M 88.1M 62.2M 47.5M 51.3M 54.9M 48.1M 88.5M
Total clean nucleotides (nt) 10.68G 11.00G 7.98G 5.94G 6.40G 6.86G 6.02G 11.06G
Numbers of transcripts 105,280 92437
Mean length (bp) 1054 1132
N50 length (bp) 1920 2200
The prediction of CDS 27,922 24,454
Cleaned transcripts 27,316 23,255
Annotated in GO 21,476 19,083
Annotated in KEGG 21,221 18,986
January 2020 |
 Volume 10 | Artic
TABLE 2 | Photosensitively related GO categories with low P-value in GO enrichment analysis from down-regulated genes in cave loach.

GO ID Description GeneRatio BgRatio pvalue fdr category

GO:0005212 Structural constituent of eye lens 7 11 3.80E-07 0.00034 Molecular function
GO:0003913 DNA photolyase activity 3 13 0.0305 0.32 Molecular function
GO:0050953 Sensory perception of light stimulus 8 48 0.00376 0.28 Biological process
GO:0048583 Regulation of response to stimulus 55 722 0.00579 0.37 Biological process
GO:0007601 Visual perception 7 46 0.0109 0.50 Biological process
GO:0007423 Sensory organ development 28 332 0.0126 0.56 Biological process
GO:0002088 Lens development in camera-type eye 4 21 0.0239 0.70 Biological process
GO:0002089 Lens morphogenesis in camera-type eye 2 7 0.0507 0.70 Biological process
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loach. In addition, we identified two GO terms, “photoreceptor cell
differentiation” (0.213 forT. rosa and 0.103 forT. bleekeri) and “eye
photoreceptor cell differentiation” (0.214 forT. rosa and0.142 forT.
bleekeri), for which the dN/dS value of the cave loach was higher
Frontiers in Genetics | www.frontiersin.org 9
than that of the surface loach, although these did not differ
significantly from the medium rate bin values (Figure 7). These
molecular results are consistent with the abnormal photoreceptor
cell structure of the cave loach and suggest that during the process of
FIGURE 5 | Quantitative polymerase chain reaction (qPCR) validation of selected gene expression in eye tissues. The tufm gene was the internal control for
expression analyses. Genes hprt1 and rps2 were stably expressed and did not significantly differ.
FIGURE 6 | Evolutionary analysis of the cave loach. (A) The phylogeny topology of the six Cypriniformes species was reconstructed with posigene pipeline based
on orthologues. Comparison of mutation rates in the six fish species based on dS (B) and dN (C) values. Two-dimension kernel density distribution of dN (D), dS (E)
and dN/dS (F). The cave loach has much lower Ks values but higher dN values, and so has a much greater dN/dS ratio.
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dark adaptation in cavefish, vision-specific genesmight be involved
in visual degeneration and subjected to relaxed selection.
Furthermore, we found that some vision-related genes had a
higher evolutionary rate with respect to protein sequences (dN/dS
Frontiers in Genetics | www.frontiersin.org 10
>1,FDR>0.1,Table3). Finally,we reasoned that it isnotmerely the
dark environment that might promote the adaptive evolution of
vision and that other light-dependent functional genes could also be
involved. Moreover, we also identified several GO terms such as
FIGURE 7 | The dN/dS estimates in eye related gene-based GO functional categories. The analysis included all of the eye related GO categories of more than 10
genes. The genes of cave loach in the four directly visual related GO categories have higher dN/dS values. Specially, the GO categories of photoreceptor
differentiation, cavefish have higher dN/dS than surface loach (¬P < 0.05; ¬¬P < 0.01; calculated by Two-tailed T test).
TABLE 3 | The vision-related genes which have a higher evolutional rate of protein sequence (high dN/dS rate).

Gene Symbol Gene description dN dS dN/dS

rbp4l Retinol binding protein 4, like 0.004345 0.000004 1086.25
cntfr Ciliary neurotrophic factor receptor 0.006323 0.000006 1053.833
crybb1 Crystallin beta b1 0.005243 0.000005 1048.6
rhol Rhodopsin, like 0.017892 0.000018 994
rho* Rhodopsin 0.003919 0.000004 979.75
vsx2 Visual system homeobox 2 0.005651 0.000006 941.8333
nyx Nyctalopin 0.016646 0.000023 723.7391
rx3 Retinal homeobox gene 3 0.00207 0.000004 517.5
grifin Galectin-related inter-fiber protein 0.009701 0.002692 3.60364
rlbp1b Retinaldehyde binding protein 1b 0.009507 0.005155 1.844229
opn7d Opsin 7, group member d 0.011402 0.008463 1.347276
pde6c Phosphodiesterase 6c 0.008918 0.006839 1.303992
rdh8a Retinol dehydrogenase 8a 0.004002 0.003144 1.272901
January 2020 | Volume 10 | A
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“photoperiodism”, “rhythmic process”, “response to UV”, and
“DNA photolyase activity” that contained more genes in the high
rate bin (Table S6).

Analysis of the relationship between gene expression and dN/
dS revealed that the average gene expression level was negatively
correlated with the dN/dS rate (slope: -0.0645; p: 7.585e-8;
Figure S3). However, we found that the dN/dS values of
upregulated genes in T. rosa eyes did not differ significantly
from those of downregulated genes (Figure S4). Furthermore, we
found that a differentially expressed vision-related gene (rho) had
a higher evolutionary rate (dN/dS > 1, FDR > 0.1, Table 3). We
did, however, identify six positively selected genes (Table S5)
that were differentially expressed, although their function was
not closely related to processes of interest in the present study.

Premature Stop Codons and Frame-Shift
Mutations in Vision-Related Genes
We used genewise to predict the possible premature stop codons
and frame-shift mutations in transcripts, and accordingly
identified two genes related to light perception and vision. We
detected a frame-shift mutation in opn4xa in cave loach, a light-
sensitive protein associated with periodic rhythms, in which a
base deletion had occurred at position 725 of the coding
sequence (total length 1,401 bp), leading to the frame-shift in
the middle section of the sequence. This mutation is assumed to
have severely disrupted that the structure and function of the
gene (Figure 8). On verifying the results obtained from the
Bowtie alignments, we found that the gene was assembled
correctly, which was consistent with the IGV result.
Replacement of the missing base of opn4xa and subsequent
Bowtie alignment confirmed that a base deletion had occurred
in opn4xa. Given that we analyzed samples comprising the
pooled genetic material of eight individuals, we are reasonably
confident that this mutation might be present in most
Frontiers in Genetics | www.frontiersin.org 11
individuals of cave loaches. In addition, we identified another
gene, crybb3, encoding an important part of the eye lens, in
which 11 bases had been lost in cave loach (Figure S5), leading to
a frame-shift mutation at the end of the protein, which was
verified using the previously mentioned methods.
DISCUSSION

The results of our morphological analyses revealed that the lens
and retinas of cave loach eyes are characterized by numerous
deficiencies, reflecting their lack of use in the subterranean
environment. In particular, the absence of the outer segment of
photoreceptors indicates that visual perception of the cave loach
might be significantly impaired. Additionally, our comparative
transcriptome analysis revealed that, with respect to the
comparison between T. rosa and T. bleekeri, there are a larger
number of DEGs in the eyes than in the other tissues we
examined (Figure S2). These observations might indicate that
the morphological characteristics and the molecular mechanism
underlying the formation of T. rosa eyes have been subjected to
more changes in the process of adapting to the subterranean
environment than the brain, gill, and skin. In addition, we found
that the GO category “structural constituent of eye lens” was
significantly enriched with genes shown to be downregulated in
the eyes of cave loach. Further, enrichment analysis of the
downregulated vision-associated genes from cavefish indicated
that certain GO categories related to vision had low P-values
(Table 2). These RNA-seq results were consistent with our
morphological observations of abnormal lens and retina.

In Astyanax, the lens has been found to be fundamental in
regulating eye degeneration, and in the present study, we
detected the downregulation of the lens-related genes pitx3,
lim2, and b|g-crystallin in the T. rosa transcriptome. pitx3
FIGURE 8 | Alignment of nucleotide and amino acid sequences (top) and sequencing read depth (bottom; the numbers along the x-axis represent the position of
the base at the CDS) for the opn4xa gene. The premature termination (colored red) of opn4xa is due to a single nucleotide insertion (colored orange).
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plays a critical role during lens development, with mutations of
this gene being linked to anterior segment mesenchymal
dysgenesis and congenital cataracts in humans (Sakazume
et al., 2007), as well as the generation of small eyes lacking a
lens in mice (Rieger et al., 2001). Similarly, in zebrafish, pitx3
mutations result in small eyes and abnormalities in lens
development (Shi et al., 2005). QTL and expression analyses of
the Astyanax cavefish genome have revealed that pitx3 might be
related to eye degeneration (Mcgaugh et al., 2014). Lim2 has been
observed to localize to junctional regions of the lens fiber cell
membrane, as well as being distributed throughout fiber cell
membranes, suggesting a role in lens junctional communication,
and mutations in this gene have also been associated with
cataract formation (Tenbroek et al., 1992; Ponnam et al.,
2008). b and g-crystallin are members of the three main
crystalline families associated with eye degeneration in
cavefish, and previous studies in Astyanax have indicated that
the lens plays a critical role in promoting cell survival during eye
development (Strickler et al., 2007b). The abnormal functioning
of these crystallin proteins can also lead to the development of
cataracts (Yi et al., 2011). In particular, b- and g-crystallins play a
pivotal role in retinal tissue remodeling and repair, and strongly
enhance axon regeneration in retinal ganglion cells (Thanos
et al., 2014; Yang et al., 2016). These molecular studies confirm
that the eyes of T. rosa are characterized by a degenerate lens
and retina.

Teleosts have three rx- (Rax-) gene members, which are
essential for organogenesis of the vertebrate eye. Rx1 and rx2
belong to the Rax2 subgroup, with the former functioning in cell
proliferation and differentiation during later development, while
maintaining the identity and proliferative activity of retinal
progenitors within the retina (Nelson et al., 2009; Orquera and
De Souza, 2016). In zebrafish, depletion of rx1 has been
demonstrated to be lethal to retinal progenitors, which are
necessary for rod and cone differentiation, as well as retinal
neurogenesis (Nelson et al., 2009), whereas in Astyanax cavefish,
rx1 is expressed at low levels in the outer nuclear layer where
photoreceptors are located (Strickler et al., 2002). Similarly, the
expression of rx1 has been found to be downregulated in the eyes
of the cave loach. In contrast, S. anophthalmus and S. anshuiensis
do not show differential expression of rx1 (Meng et al., 2013;
Yang et al., 2016). Although a perturbation of rx2 function is not
obviously manifested with respect to phenotypic changes
(Chuang and Raymond, 2001; Nelson et al., 2009; Reinhardt
et al., 2015), the expression of this gene is downregulated in S.
anophthalmus, whereas it is normally expressed in A. mexicanus
and S. anshuiensis (Meng et al., 2013; Li, 2016; Yang et al., 2016).
The Rax1 subgroup member rx3 is the main gene involved in
early eye structure development (Orquera and De Souza, 2016),
and has been implicated in eye degeneration in Astyanax cavefish
(Mcgaugh et al., 2014) but not in Sinocyclocheilus. Crx plays an
important role in the differentiation and maintenance of
photoreceptors and appears to be at the top of the retinal gene
regulatory hierarchy (Meng et al., 2013; Homma et al., 2017;
Assawachananont et al., 2018; Ruzycki et al., 2018). Mutations in
this gene have been found to be associated with macular
Frontiers in Genetics | www.frontiersin.org 12
dystrophy (Griffith et al., 2018), photoreceptor defects (Ruzycki
et al., 2017), and retinitis pigmentosa (Zhu et al., 2019), among
other disorder. Rx activity does not regulate the expression of crx
during photoreceptor development (Nelson et al., 2009), and crx
downregulation in S. anophthalmus cavefish is a major
contributor to the inactivity of retina-specific genes (with the
exception of rx1) and small eyes (Meng et al., 2013). Changes in
the expression of crx have also been implicated in the retinal
degeneration of Astyanax and Sinocyclocheilus cavefish (Jeffery,
2009; Meng et al., 2013; Mcgaugh et al., 2014; Yang et al., 2016),
and in the present study, we detected the downregulated
expression of this gene and associated downstream
transcription factors (e.g., gnat2 and nr2e3). This decrease in
expression might contribute to cave loach retinal degeneration
and an anomalous photoreceptor layer.

The outer segment of photoreceptors, which contains
numerous photosensitive and signal-transduced proteins,
functions to transduce light signals into graded membrane
potentials (Goldberg, 2006). The prph2 (P/rds) gene encodes
the core component of a multi-protein plasma membrane-rim-
disc complex in the outer segment rim regions. This protein also
contributes to the formation and daily renewal of outer segment
disks in both rods and cones (Young, 1976; Molda et al., 1987;
Boesze-Battaglia et al., 1998). In mice, prph2 is essential for
photoreceptor outer segment formation and its absence
specifically abrogates outer segment development and causes a
complete lack of outer segment organization, along with an
increased number of photoreceptors characterized by retinal
pigment epithelium (Sanyal and Jansen, 1981; Zulliger et al.,
2018). Mutations in prph2 are associated with autosomal-
dominant retinitis pigmentosa and multiple classes of macular
degeneration (Chakraborty et al., 2016). Furthermore, QTL
analysis of Astyanax has revealed that prph2a might be
associated with retinal degeneration (O'Quin et al., 2013) and
transcriptome analysis has indicated that expression of this gene
is reduced in adult cave Astyanax (Gross et al., 2013). In the
present study, we found that the expression of prph2 was
markedly downregulated in T. rosa, which is consistent with
the morphological evidence indicating a severely defective outer
segment and lack of functionality in the photosensitive system.
These results are also consistent with the observed
downregulation of genes encoding visual proteins (rho, pde6g,
and rgrb).

Studies on cave Astyanax and Sinocyclocheilus have to date
yielded little evidence to suggest that changes in protein
sequences might play a role in the visual degeneration of
cavefish and have instead tended to indicate that the
degeneration of cavefish eyes is mainly related to the
regulation of gene expression or epigenetic inheritance
(Hinaux et al., 2013; Mcgaugh et al., 2014; Hinaux et al., 2015;
Casane and Rétaux, 2016; Yang et al., 2016; Gore et al., 2018).
However, studies on the evolution of visual degeneration in cave
mammals have indicated that this may not necessary hold true in
all cases. Although the deterioration observed in the eyes of cave
mammals is related to the regulation of gene expression, it is also
inseparable from the accelerated evolution of a large number of
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vision-specific genes (Prudent et al., 2016; Partha et al., 2017). In
this regard, the findings of the present study indicate that the
differences between cave mammals and cavefish are probably
associated with the differential evolutionary rates of the
respective nucleic acids. Cavefish are confined to water-
containing caves and the limited food resources therein require
them to slow their metabolic rate to survive through long periods
of starvation (Hervant et al., 1998; Hervant et al., 1999; Hervant
et al., 2001; Shi et al., 2018). Moreover, the low metabolic rate is
associated with a low rate of nucleic acid evolution (Martin and
Palumbi, 1993). As such, this may have made it difficult to detect
changes in the sequences of proteins that are also involved in
visual degradation.

In the present, however, we obtained higher dN replacement
rate and high dN/dS values for cave loach than for the surface
loach, suggesting that changes in protein sequences are indeed
involved in the process whereby the cave loach adapts to the cave
environment. Given that we have previously excluded the
possibility of the effect small population size (Zhao et al., 2014;
Xue et al., 2015), we suspect that the observed high dN rates
could be due to factors such as positive or relaxed selection
(Comeron and Kreitman, 1998; Subramanian, 2013). However,
we detected no positively selected genes directly related to vision
in the present study. Accordingly, it is conceivable that changes
in protein sequences might be involved in adaptation of the cave
loach and that the degeneration of eyes might be associated with
relaxed selection.

Inaneffort togainabetterunderstanding the evolutionary status
of eye-related genes, we divided the genes into three bins according
to dN/dS values and subsequently performed GO enrichment
analysis on these three types of genes. Although the same gene
can be classified into multiple GO categories, the trend of GO
clustering might indicate that genes directly related to vision have
higherdN/dSvalues thangenes associatedwitheyedevelopment. In
this regard, we identified four GO terms in cave loach directly
related tovision that hadhigherdN/dS values than thedN/dSvalues
of the medium rate bin and the surface loach. Moreover, compared
with the surface loach, we conjecture that the evolutionary rate of
photoreceptordifferentiation-relatedgenes in thecave loachmaybe
higher than that in the surface loach. Indeed, the results of coding
sequence analysis indicated that the proteins directly related to
vision are likely to have a higher rate of evolution and might be
involved in cave loach eye degeneration, which is consistent with
our morphological results showing evidence of the degeneration of
the retina and the absence of the outer segment of photoreceptor
cells. In contrast, the genes associated with eye development appear
to be more conserved, which might be related to the fact that these
genes arenotvision-specific genes (Partha etal., 2017).Accordingly,
these findings may indicate that although cavefish and cave
mammals have evolutionary similar degenerative mechanisms,
the respective rates of the evolutionary processes may differ at the
molecular level.

Further, there are some genes associated with vision that have
a high rate of protein evolution and thus might be candidate
genes involved in eye degeneration in the cave loach (Table 3).
We detected large changes in the amino acid sequence of three
Frontiers in Genetics | www.frontiersin.org 13
genes that might be involved in degeneration of the lens, namely,
a frame-shift mutation in crybb3 and higher evolutionary rates of
crybb1 and a griffin protein (galectin-related inter-fiber protein)
(Table 3). Crybb1 and crybb3 belong to the b|g-crystallin family
and play important roles in maintaining the normal structure of
the lens. Moreover, griffin, a lens-specific protein related to the
galectin family in mammals, birds, and early embryos of
zebrafish, interacts with crystallin and plays an important role
in development of the lens (Ahmed and Vasta, 2008; Barton
et al., 2009; Caballero et al., 2019). These observations may thus
indicate that T. rosa has a degenerate lens.

Visual system homeobox 2 (vsx2) is a key transcription factor
involved in neural retinal development (Sigulinsky et al., 2015),
and mutations in this gene can cause microphthalmia (Ammar
et al., 2017). The encoded protein sequence has a relatively high
evolutionary rate in cavefish, indicating that the abnormal
morphology and small eyes of the cavefish might also be
associated with changes in this gene. Rx3 also has a high
protein evolution rate in cave loach, with a dN/dS value
considerably higher than 1, thereby indicating that this gene
might also be involved in the degeneration of the cave loach
retina. Furthermore, the high rate of evolution or rapid evolution
of genes (Table 3) related to visual perception might also be
associated with eye degeneration and are consistent with the
degradation of photosensitivity and the absence of the outer
segment in cave loach photoreceptor cells.

Finally, we found that some genes related to non-visual
photoreceptors also had altered protein sequences. Opn4xa is
one of five melanopsins in zebrafish and plays a role in non-
image-forming light functions, including the photoentrainment
of circadian rhythms (Davies et al., 2011; Matos-Cruz et al.,
2011). The frame-shift mutation in opn4xa and the higher
evolutionary rate of photoperiod-related genes also indicate
that photoperiod regulation in cavefish might be altered. In
addition, genes related to UV damage repair also exhibit a
higher rate of protein evolution, indicating that UV damage
repair might not be important in a dark environment.
CONCLUSIONS

In this study we compared eye morphology and transcriptome
sequence divergence between T. rosa and T. bleekeri, and thereby
confirmed that eye degeneration is a distinct troglomorphic
characteristic of the former. The cavefish has reduced eye size,
anomalous lens morphology, retinal pyknotic nuclei, and
photoreceptor deficiencies. At the molecular level, lens
degeneration was found to be associated with the transcription
factor pitx3 , which controls lens development, and
downregulation of intrinsic lens proteins (b- and g-crystallins).
Additionally, we demonstrate that retinal defects might be linked
to the transcription factor crx and its downstream transcription
factor genes that are involved in retinal development, vision-
related genes, and the downregulation of structural protein genes
of the photoreceptor outer segment. We also found that changes
in protein sequence were consistent with the production of
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degenerate eye phenotypes. Importantly, we provide evidence
indicating that changes in protein sequences might be involved
in visual degeneration. This is the first time that we have
identified vision-specific genes in cavefish with a higher rate of
evolution at the protein level, and which might be involved in the
degenerative evolution of vision. Our findings also reveal that the
evolutionary trend of vision-specific genes might be associated
with relaxed selection, characterized by the gradual and slow
accumulation of mutations. Moreover, we identified a number of
vision-related genes that are commonly downregulated in T.
rosa, Sinocyclocheilus, and Astyanax cavefish, some of which
(rax-, b|g-crystallin, hsp90a) might exhibit differential expression
patterns (Table S7). Collectively, these finding have provided
important insights regarding the diverse mechanisms underlying
cavefish eye degeneration and suggest that even similar cavefish
phenotypes might be the result of different processes or different
mutations. However, the transcriptome does not provide all the
genetic information of a species and our study is also limited with
respect to the fact that we only examined adult organisms. A
complete explanation of the degenerative mechanisms of the eye
in T. rosa, or in cavefish generally, requires further investigation
of the genomes, transcriptional regulation, pseudogenization,
and developmental biology of these fish.
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