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Abstract

According to many experimental observations, neurons in cerebral cortex tend to operate in

an asynchronous regime, firing independently of each other. In contrast, many other experi-

mental observations reveal cortical population firing dynamics that are relatively coordinated

and occasionally synchronous. These discrepant observations have naturally led to compet-

ing hypotheses. A commonly hypothesized explanation of asynchronous firing is that excit-

atory and inhibitory synaptic inputs are precisely correlated, nearly canceling each other,

sometimes referred to as ‘balanced’ excitation and inhibition. On the other hand, the ‘critical-

ity’ hypothesis posits an explanation of the more coordinated state that also requires a cer-

tain balance of excitatory and inhibitory interactions. Both hypotheses claim the same

qualitative mechanism—properly balanced excitation and inhibition. Thus, a natural ques-

tion arises: how are asynchronous population dynamics and critical dynamics related, how

do they differ? Here we propose an answer to this question based on investigation of a sim-

ple, network-level computational model. We show that the strength of inhibitory synapses

relative to excitatory synapses can be tuned from weak to strong to generate a family of

models that spans a continuum from critical dynamics to asynchronous dynamics. Our

results demonstrate that the coordinated dynamics of criticality and asynchronous dynamics

can be generated by the same neural system if excitatory and inhibitory synapses are tuned

appropriately.

Author summary

What is the dynamical state of cerebral cortex? Are neurons mostly uncorrelated, firing

independently of each other? Or are neurons more coordinated, firing in sync with each

other? The answers to these questions have fundamental implications for how the cortical

neural population encodes and processes information. Here we show that two possible

scenarios—criticality and asynchronous dynamics—that are typically considered incom-

patible can be attained in the same network by maintaining a certain kind of balance,

while tuning the strength of inhibition relative to excitation along with the average synap-

tic strength.
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Introduction

Mounting experimental evidence supports the hypothesis that the cerebral cortex operates in a

dynamical regime near criticality [1–9]. In the context of our work here, criticality refers to a

boundary in the space of possible dynamical regimes. On one side of the boundary, population

activity tends to be orderly with strong correlations among neurons. On the other side, neu-

rons fire more independently of each other resulting in asynchronous population dynamics.

At criticality, population dynamics are more diverse, rarely exhibiting synchronization that

spans the network, but often showing coordinated firing among groups of neurons at small

and intermediate scales [10, 12, 13]. Direct evidence that the cerebral cortex may indeed

operate near such a boundary comes from experiments and models in which the balance of

excitation (E) and inhibition (I) is disrupted. These studies show that one can push cortical

dynamics from a dynamical regime consistent with criticality to a hyperactive synchronous

regime by suppressing inhibition (GABA antagonists) or to a low-firing asynchronous state by

increasing inhibition (GABA agonists) [14–18]. Also, critical dynamics can be pushed into a

low-firing asynchronous regime by suppressing excitation (AMPA and NMDA antagonists)

[16–18]. These observations support the hypothesis that the cortex may operate near criticality

under normal conditions, but only if the proper balance of E and I is maintained.

However, not all observations of the cortex under ‘normal conditions’ exhibit the diverse

multi-scale coordination that is expected near criticality. Indeed, many experimental measure-

ments have revealed relatively asynchronous firing, particularly in vigilant and active behav-

ioral conditions [19–24]. The stark difference between the observations of coordinated critical

dynamics and asynchronous dynamics has traditionally fueled a debate about which is a better

description of the cortex.

A prominent class of models, often referred to as ‘balanced networks’, offers an explanation

of this more asynchronous activity. Beginning with the ‘chaotic balanced state’ hypothesis [25,

26], the idea is that E and I inputs to any given neuron wax and wane together, nearly cancel-

ing each other most of the time. During brief moments the E-I cancellation is imperfect and

neurons can fire, contributing to an asynchronous and irregular activity. Over last two

decades, numerous numerical and theoretical studies have addressed the dynamics and func-

tion of balanced networks (a few examples include [27–31]). Experiments supporting this pos-

sibility show the balance between excitation and inhibition based on whole cell recordings of E

and I inputs [32–35].

Both critical dynamics and asynchronous dynamics have been observed in awake animals

and both seem to require balanced E and I. However, the difference in coordination of popula-

tion activity for criticality versus asynchronous activity is stark. How can we reconcile these

two types of neural activity? When should we expect to see the coordination of criticality;

when should we expect to see asychronous activity?

Recent computational modeling efforts have begun to tackle these questions. They have

shown several different ways that tuning one or a few simple parameters can result in a shift

from asynchronous dynamics to critical dynamics or vice versa [24, 36–38]. For example, Prie-

semann and colleagues showed that tuning the input and an effective branching parameter (m
in their terminology) can generate a family of models ranging from fully asynchronous to criti-

cal [11, 36]. Although very useful, this model was too abstract to identify specific biological

mechanisms that might be responsible for changing m. Buendia et al. studied networks of

excitatory and inhibitory neurons and found that, for sufficiently sparse networks, a new

regime emerges near criticality with weak flucutations around a moderate mean firing rate,

reminiscent of some asynchronous activity [37]. Dahmen et al. also studied sparse networks of

excitatory and inhibitory neurons, highligting how increasing the heterogeneity of synaptic
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strengths can change the dynamics of a system from traditional criticality (as discussed here)

to a different type of critical regime at the “edge of chaos” which manifests with asynchronous

dynamics [24]. Most recently, Girardi-Schappo et al. studied a more complex model of proba-

bilistic leaky integrate and fire neurons [38], showing that Brunel’s classic parameter space

[39] includes a critical point that is adjacent to the ‘asynchronous regular’ regime and nearby

the ‘asynchronous irregular’ regime studied by Brunel and others. (Touboul and Destexhe

have pointed out that the ‘synchronous irregular’ state in Brunel’s model is not consistent with

criticality [40]). These models suggest a revision of the traditional debate; instead of asking

which is a better description of cortical dynamics—criticality or asynchronous dynamics—we

should acknowledge that cortex can generate both types of dynamics. Our work here builds on

this premise, with the goal of exploring possible models of how a single cortical network might

shift between critical dynamics and asynchronous dynamics.

We hypothesize that criticality requires a different kind of E/I balance than that needed to

generate asynchronous activity. We address this possibility using a network-level model of

probabilistic, binary neurons. By tuning excitatory and inhibitory synaptic strengths (keeping

network structure and the input to the network fixed), we find that we can generate a family of

models, spanning a continuum from criticality to the asynchronous networks. When synapses

are strong and balanced, asynchronous network activity results. When synapses are relatively

weak and balanced, criticality results. Our results offer a possible explanation for the variety of

experimental observations, suggesting that the cortex could shift its dynamical regime from

near criticality to asynchrony and a continuum of intermediate states between these extremes,

all while maintaining a certain type of balanced excitation and inhibition.

Results

We study population dynamics of a recurrent network of N = 1000 probabilistic binary neu-

rons, similar to models used in previous studies of criticality [16, 41, 42]. There are 800 excit-

atory neurons and 200 inhibitory neurons. We consider how several aspects of dynamics

depend on changes in excitatory and inhibitory interactions. More specifically, we tune two

parameters: the relative strengths of excitatory and inhibitory synapses (the I/E weight ratio)

and the average synaptic weight.

The majority of the two-dimensional parameter space for our model is occupied by either a

high firing rate regime with dominant excitation or a low firing rate regime with dominant

inhibition (Fig 1a). Both of these imbalanced regimes are poor models for real cortical network

dynamics, which have more moderate firing rates. Along the boundary between the high and

low firing rate regimes more realistic dynamics occur; neither E nor I dominates and firing

rates are moderate (Fig 1d). In this paper we study the dynamics along this boundary line in

more detail.

One way to identify the boundary between the high and low firing rate regimes more pre-

cisely is to consider the eigenvalue spectrum of the connection matrix. The largest eigenvalue

along the boundary is equal to 1 (green line in Fig 1a–1c). The high and low firing rate regimes

have the largest eigenvalues greater and less than one, respectively (Fig 1c). One implication of

having the largest eigenvalue λmax equal to 1 is that activity does not systematically grow nor

decay on average as time passes, which is a reasonable requirement for modeling real brain

activity. Another way this requirement could be met is with λmax somewhat less than 1, but

with stronger external input. We emphasize that our model is well known to operate at critical-

ity when parameters are set such that λmax = 1 and I/E = 0 (i.e. when there are only excitatory

neurons). This is known from many previous studies using a similar model [16, 17, 41].
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However, with a few exceptions [42], how our model dynamics deviate from criticality when

the I/E ratio is substantially increased is less well understood.

We find that the nature of population activity varies dramatically along the λmax = 1 bound-

ary. For weak synapses and smaller I/E ratios the λmax = 1 boundary is sharply defined and

coordinated fluctuations are large in amplitude (Fig 1a–1h). For stronger synapses and higher

I/E ratios, the boundary is less sharply defined, activity is asynchronous, and fluctuations are

less prominent(Fig 1a–1h). The eigenvalue spectra of the weak-synapse regime and the strong-

synapse regime also differ qualitatively (more detailed analysis of eigenvalue spectra are in

Methods). The eigenvalue spectrum in the weak-synapse regime is characterized by a single

positive real outlying eigenvalue (Fig 1i). The eigenvalue spectrum in the strong-synapse

regime consists of circular cloud in the complex plane without any single dominant outlying

Fig 1. Synchronous and asynchronous dynamical regimes along the λmax = 1 boundary. (a) Time averaged population spike rate as a function of I/E

weight ratio and synaptic weight. The λmax = 1 boundary (green line) divides a high firing rate regime (black) from a low firing rate regime (white). (b)

Standard deviation of the population spike rate across time as a function of I/E weight ratio and synaptic weight. Fluctuations are largest along the λmax = 1

boundary. (c) The largest eigenvalue λmax of the synaptic weight matrix as a function of I/E weight ratio and synaptic weight. λmax> 1 in the high firing rate

regime and λmax< 1 in the low rate regime. (d) Shown is the spike rate along the λmax = 1 boundary. The spike rate is moderate all along the boundary. (e)

Shown is the amplitude of spike rate fluctuations (standard deviation across time) along the λmax = 1 boundary. (f) Excitatory and inhibitory synaptic

weights balance each other but become stronger as I/E weight ratio is increased along the λmax = 1 boundary. (g,h) Example spike rasters for the low and

high I/E ratio regimes, corresponding to the blue and pink triangles in panels a-c, respectively. (i,j) Eigenvalue spectra for the two examples in panels g and

h.

https://doi.org/10.1371/journal.pcbi.1008268.g001
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eigenvalue (Fig 1j). Between these extremes, at a particular point along the λmax = 1 boundary,

there is a cross-over between these two types of model characteristics. The cross-over occurs

where the I/E weight ratio equals to 4 in the large N limit. In our model with N = 1000, the

cross-over occurs near 3.34 (Fig 2d), which we confirm analytically in Methods (Eq 4). Note

however, that this cross-over point does not locate the boundary of critical dynamics; critical

dynamics do not emerge unless the I/E weight ratio is smaller, below 1 approximately.

In the remainder of this paper we will examine differences between these two regimes: the

synchronous regime at a low I/E weight ratio and weak synaptic strength, and the asynchro-

nous regime at a high I/E weight ratio and strong synaptic strength. We will examine several

aspects of dynamics traditionally associated with criticality including branching functions [43]

and neuronal avalanche size and duration distributions [14, 43, 44]. We will also examine sev-

eral aspects of dynamics related to asynchronous neural dynamics including correlation func-

tions and cancellation of E and I inputs [20, 27, 32]. In agreement with previous work, we will

show that the weak-synapse λmax = 1 boundary corresponds with criticality, while strong syn-

apses and λmax = 1 result in asynchronous dynamics.

The ‘branching function’ was developed in previous work to theoretically analyze popula-

tion activity near criticality [43]. This approach using the branching function is an alternative

to using mean field theory, which fails to characterize the dynamical properties when the I/E

weight ratio is low [30]. First, we define S(t) as the fraction of neurons in the network that are

firing at time t. The branching function Λ(S) is defined as the expected value of S(t + 1)/S(t)
conditioned on the level of activity S(t). In the weak-synapse, synchronous regime, the

Fig 2. Analysis of branching functions and eigenvalues explain model behavior. (a) Branching functions Λ are distinctly different for networks in the

synchronous regime (blue) and asynchronous regime (pink). Solid lines are calculated semi-analytically and dash lines are obtained from simulating the

model. Inset: The critical range ρ is defined as the range of S for which Λ(S) lies between 1.05 and 0.95. (b) Crossing point where Λ = 1 as a function of I/E

weight ratio and synaptic weight, which successfully reproduces average spike rate in simulations. (c) Critical range as a function of I/E weight ratio and

synaptic weight. The large critical range at low I/E with weak synaptic weight is consistent with the high standard deviation of population activity in the

synchronous regime. (d) The theoretical largest eigenvalue of the synaptic weight matrix as a function of I/E weight ratio and synaptic weight derived in Eqs

1–3. Green line in panels b-d indicates the λmax = 1 boundary. (e) The value of the crossing point where Λ = 1 along the λmax = 1 boundary. (f) The value of

the critical range along the λmax = 1 boundary.

https://doi.org/10.1371/journal.pcbi.1008268.g002
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branching functions have a wide range near Λ(S) = 1 (blue line in Fig 2a), which means the

system is able to wander through various population firing rates. This ‘flat’ branching function

has been considered as a hallmark of criticality in previous work [43]. In contrast, if the

branching function has a substantial slope, crossing Λ(S�) = 1 at a particular value of S = S�,
then the firing rate is relatively stable with small fluctuations around S = S� (e.g. pink line in

Fig 2a). Using a semi-analytical method to determine the shape of the branching function

(Methods), we are able to obtain good qualitative predictions (Fig 2b and 2e) of the average

spike rates that we observe when we run our model (Fig 1a). In the synchronous regime, the

population activity often fluctuates greatly around the mean, as expected due to a wide range

near Λ(S) = 1 in the branching function. We define the ‘critical range’ ρ to measure the range

of the branching function that stays within a certain distance of 1 (Fig 2a inset). The large criti-

cal range in the synchronous regime (Fig 2c and 2f) fits reasonably well with the large standard

deviation in simulations (Fig 1b). In conclusion, the weak-synapse regime has large critical

range, while the strong-synapse regime has small critical range.

As mentioned above, it is well known that our model operates at criticality when λmax = 1

and I/E = 0 (i.e. in the lower left part of our parameter space). The branching functions with

large critical range for the weak-synapse regime are consistent with this fact. Another expecta-

tion near criticality is that distributions of neuronal avalanche sizes and durations should have

power-law form [14, 44, 45]. Next we study how these power-law avalanche statistics break

down as I/E is increased. Similar to previous work [14, 43, 46], we define an avalanche as a

period of time during which the number of active neurons exceed a threshold (Fig 3a). The

duration and size of an avalanche are defined as the number of time steps and the total number

of spikes that occurred during the avalanche, respectively. Next, we examine avalanche distri-

butions along the λmax = 1 boundary (green line in Figs 1 and 2). We find that both avalanche

duration and size distributions change dramatically along this boundary (Fig 3b). When the

I/E weight ratio is low, the avalanche duration and size distributions are close to power-law

distributions, as expected at criticality. As the I/E weight ratio increases, the distributions of

avalanche duration and size deviate from power-law distributions, with large avalanches

becoming less prominent. Similar to previously developed methods [5, 14, 16, 46], we use κ� to

quantify how much a distribution deviates from a power-law distribution with exponent −�. If

the distribution is close to the power-law distribution, then κ� is close to 1, which occurs for

both avalanche duration and size distributions when the I/E weight ratio is low. Based on the

power law exponent we observe for low I/E, we consider � = 1.5 for the size distributions and

� = 1.7 for the duration distributions. Any deviation in κ� from 1 means a deviation from the

power-law distribution. As the I/E weight ratio grows larger, κ� starts to deviate from 1, then

varies erratically for intermediate I/E before settling near κ� = 0.8 as I/E approaches 4. Since

power-law avalanche size and duration distributions are a necessary condition for criticality,

we conclude that our model deviates from criticality as the I/E weight ratio is increased along

the λmax = 1 boundary.

Considering the decrease in critical range and deviation from power-law avalanche distri-

butions, and previous work with similar models [16, 41, 42], we conclude that our model devi-

ates from criticality as we tune it from the weak-synapse synchronous regime to the strong-

synapse asynchronous regime. Next, we study properties predicted by some theories to occur

in asynchronous neural activity. We first examine the excitatory and inhibitory inputs to the

model cells. For all I/E ratios, E and I inputs are strongly correlated, but as we increase the I/E

ratio, the dynamics are tuned from a state in which excitatory input dominates (is not canceled

by inhibition) to a state in which inhibitory input cancels the excitatory input more and more

exactly (Fig 4a–4c). We define ‘E/I tension’ to measure how tightly the excitatory and inhibi-

tory inputs cancel each other (Methods). Fig 4d shows that the E/I tension gradually increases
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as the I/E weight ratio increases, and reaches as high as 1 when the I/E weight ratio is 4. This

result is consistent with previous work showing that tightly balanced E and I currents cancel-

ing each other leads to asynchrony [27].

Another essential property of asynchronous population activity is that neurons should be

weakly correlated across neurons and across time. Thus, we next examine the population-aver-

aged input cross-correlogram (CCG) for different I/E weight ratios (Fig 4e–4g). When the I/E

weight ratio is low, CCGs of excitatory, inhibitory and total inputs all reveal strong correlations

across neurons and over long timescales. As the I/E weight ratio increases, CCGs decrease in

amplitude and timescale. When the I/E weight ratio is high, although the excitatory and inhibi-

tory input CCGs remain relatively high at zero delay, the total input CCG is weak due to bal-

ance between excitatory and inhibitory inputs. We quantify asynchrony based on decreases in

temporal and cross-neuron correlations. For this, we define η to be inversely proportional to

the area under CCG for total input (normalized as defined in the Methods). As shown in Fig

4h, asynchrony η sharply increases when the I/E weight ratio goes beyond 2, and reaches a

high value when the I/E weight ratio is over 3, consistent with the turning point in the eigen-

value analysis. Therefore, strong inhibition makes excitatory and inhibitory inputs balanced

Fig 3. Avalanche distributions indicate deviation from criticality as I/E ratio is increased. (a) An avalanche is

defined as a time period during which the number of active neurons (solid line) exceeds a threshold (dashed line).

Avalanche duration is the number of time steps included in an avalanche, while avalanche size is the number of spikes

included in an avalanche. (b) The probability distributions of avalanche duration and size for different I/E weight

ratios. Color represents different I/E weight ratios as in panels c and d. Vertical axis is logarithmic with the scale bar

showing 3 orders of magnitude. Distributions are shifted vertically for comparison. (c) Deviation from a power law

with exponent −1.7 is measured by κ1.7 for avalanche duration as a function of I/E weight ratio. (d) Deviation from a

power law with exponent −1.5 is measured by κ1.5 for avalanche size as a function of I/E weight ratio. For each I/E, we

generate multiple realizations (dots) and average them to obtain the mean (solid line).

https://doi.org/10.1371/journal.pcbi.1008268.g003
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and leads to asynchronous activity. This is in accordance with the result in previous work that

the population-averaged firing correlation is weak when inhibition is strong and fast [20].

Considering together the balance of E and I inputs and the asynchronous firing, we conclude

that high I/E with strong synaptic strength in our model is consistent with two prominent

expectations for asynchronous network activity.

Finally, we consider the coefficient of variation (CV) of inter-spike-intervals (ISI). For Pois-

son firing, which is often associated with asynchronous dynamics, the CV of ISI is near 1,

while more bursty firing will have CV of ISI greater than 1. We find that in the weak-synapse,

synchronous regime, ISI distributions are similar across neurons, while in the strong-synapse,

asynchronous regime, ISI distributions are more varied across neurons (Fig 4i–4k). Moreover,

as I/E weight ratio is increased, the CV of ISI (averaged across neurons) is high for low I/E

ratios, decreasing to near 1 in the asynchronous regime (Fig 4l).

Discussion

We have shown that the population activity of neural networks can vary dramatically depend-

ing how excitation and inhibition are balanced. If weak excitation is balanced by weak inhibi-

tion, we found that the dynamics exhibit large fluctuations and rather coordinated activity at

criticality. If stronger inhibition balances stronger excitation in a higher “tension” balance, we

found that the dynamics are asynchronous and steady. Along with other recent studies [24,

Fig 4. Excitatory inputs cancel inhibitory inputs in asynchronous regime for high I/E. (a-c) Synaptic inputs when the I/E weight

ratios are 1, 2 and 4, respectively. The excitatory (green) and inhibitory (red) inputs are shown separately from the total synaptic

input (black). (d) E/I tension as a function of the I/E weight ratio. For each I/E, we generate multiple realizations (dots) and average

them to obtain the mean (solid line). (e-g) Population-averaged cross correlograms (CCGs) of total synaptic inputs (black),

excitatory inputs (green) and inhibitory inputs (red) when the I/E weight ratios are 1, 2 and 4, respectively. (h) The level of

desychronization η as a function of I/E weight ratio. For each I/E, we generate multiple realizations (dots) and average them to

obtain the mean (solid line). (i-k) Distributions of inter-spike-intervals (ISI) are similar across neurons for the low I/E regime, more

varied across neurons for the high I/E regime. (l) The coefficient of variation (CV) of ISI as a function of the I/E weight ratio. CV of

ISI is high for small I/E and approaches 1 as the I/E weight ratio is increased. For each I/E, we generate multiple realizations (dots)

and average them to obtain the mean (solid line).

https://doi.org/10.1371/journal.pcbi.1008268.g004
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36–38], our findings suggest that the same cortical network could be tuned from criticality to

asynchrony, by tuning inhibition and excitation appropriately.

How do our results compare to other recent studies relating critical dynamics to asynchro-

nous dynamics? In the work of Priesemann and colleagues, they found that critical dynamics

can shift toward asynchronous dynamics when they reduced the efficacy of activity propaga-

tion (their m parameter), while increasing the input to the network [11, 36]. They have also

shown how homeostatic plasticity mechanisms can act to give rise to a range of dynamical

regimes including criticality and asynchronous states, depending on the input to the system

[47]. In contrast, in our model, we kept input to the network fixed while strengthening synap-

ses to tune the network from criticality to asynchrony. Since stronger synapses are more effec-

tive for propagating activity, we suspect our work points to a different mechanism than that

discussed by Priesemann and colleagues. Buendia et al. focused on the ‘low-activity intermedi-

ate’ (LAI) regime, which had small fluctuations similar asynchronous regimes [37]. Their LAI

regime emerged when they reduced the density of connections to a sufficiently sparse level

(less than 0.01). In our model the density of connections was 0.2, which suggests that our

model is dealing with a different type of asynchronous regime. Our observed changes in eigen-

value spectra as we tuned our model from criticality to asynchrony are similar to those studied

by Dahmen et al. when they compared two types of critical dynamics [24]. As the outlying real

eigenvalue comes closer to the bulk of complex eigenvalues, while maintaining a largest eigen-

value near 1, traditional criticality (like that discussed here) is replaced with “edge of chaos”

criticality. Like our case, this change in eigenvalues and dynamics was also accompanied by

changes in the relative strengths of excitatory and inhibitory synapses in their model. These

similarities suggest that the asynchronous regime in our model might correspond to “edge of

chaos” criticality, but, considering the differences in their model (firing rate) and ours (proba-

bilistic binary neurons), a more careful study would be required to test this possibility. Finally,

we note that Girardi-Schappo et al. found that a network of probabilistic leaky-and-fire neu-

rons can be tuned from criticality to an ‘asynchronous irregular’ regime (as defined by [39]) by

strengthening inhibition relative to excitation (increasing their g parameter) [38]. Our model,

considered together with the work of Girardo-Schappo et al. and Dahmen et al. suggests that

there may be a general principle governing our models; perhaps increasing the strength of

inhibition relative to excitation, while maintaining balance, will always result in a shift away

from criticality, towards asynchronous dynamics. Additional theoretical work will be required

to test this possibility.

In our work here, our goal was to start with a model that is well-understood to operate at

criticality and then push that model away from criticality to generate asynchronous dynamics.

Other studies have approached a similar question starting from models with well-understood

asynchronous dynamics and pushing them into regimes with larger population-level fluctua-

tions (but not criticality). For example, Ostojic found that the asynchronous balanced state can

become unstable with large population-level fluctuations (termed the ‘heterogeneous asyn-

chronous state’) [30]. They implemented this change by increasing synaptic strengths, starting

with λmax< 1 and resulting with λmax> 1. Other recent studies have extended asynchronous

balanced networks to regimes with coherent activities [31, 48]. However, none of these studies

approached the critical regime.

One interesting hypothesis that emerges from our work concerns metabolic efficiency.

First, we note that maintaining a “strong” synapse depends on metabolically expensive bio-

physical mechanisms—greater presynaptic vesicle pool, greater density of postsynaptic recep-

tors, etc. Since the high I/E regime and the low I/E regime have similar mean firing rates, it

stands to reason that the strong synapses of the high I/E scenario would consume more meta-

bolic resources than the lower I/E scenario. Moreover, the critical dynamics we observed at
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low I/E are associated with a number of functional benefits [4, 13, 14]. On the other hand, the

lower fluctuations found in the high I/E regime may be beneficial for functions that require

lower “noise” [4, 25, 27]. When low noise is not required, perhaps the brain could tune itself to

the low I/E regime where energy consumption is less. This is consistent with the observation

that resting, awake animals tend to exhibit greater fluctuations in population activity com-

pared to alert, active animals. Experimental tests of this idea would be challenging, requiring

comparisons of synaptic strengths across behavioral states. We would predict that alert, active

states would exhibit stronger synapses (i.e. excitatory and inhibitory postsynaptic potentials

that are larger in magnitude) than those found in quiescent, resting states.

Our model, in agreement with other recent models, suggest that a single cortical network

can shift between two dramatically different dynamical regimes that have traditionally been

viewed as incompatible: criticality and asynchronous dynamics. By bridging the gap between

these two points of view, we are optimistic that our results help resolve the debate over what

kinds of dynamical regimes can manifest in the cortex.

Methods

Network architecture and eigenvalue spectrum

We construct the recurrent network with N = 1000 binary neurons. Interactions among

neurons are determined by an N × N connection matrix J, with the synapse from neuron i
to neuron j specified in row j and column i. Each neuron randomly connects to each other

neuron with a probability p = 0.2 similar to that found in experiments [49, 50] (discon-

nected neurons have a 0 entry in J). A fraction α = 0.2 of the neurons are inhibitory with

outgoing synapse strengths drawn from a uniform distribution in [0, −gw]. The rest of the

neurons are excitatory, with outgoing synapse strengths drawn from a uniform distribution

in [0, w]. Thus, the connectivity matrix J is governed by two parameters, w and g, where

excitatory synaptic strength is w/2, on average, and inhibitory synaptic strength has the

average −gw/2.

Based on eigenvalue spectrum analysis [51–53], the connectivity matrix has two real eigen-

values determined by the global strength and balance of excitation and inhibition. One is 0

and another one is a non-trivial eigenvalue

lb ¼
w
2
Npð1 � aÞ �

gw
2
Npa: ð1Þ

The other eigenvalues are related to the substructure of the matrix and scattered within a

circular cloud centered at the origin on the complex plane with radius

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N½ð1 � aÞs2

E þ as
2
I �

p
; ð2Þ

where s2
E ¼

p
3
�

p2

4

� �
w2 and s2

I ¼
p
3
�

p2

4

� �
ðgwÞ2 are the variance of all the elements in excit-

atory sub-matrix and inhibitory sub-matrix, respectively. Thus, the largest eigenvalue of the

connectivity matrix is

lmax ¼ max ðlb;RÞ: ð3Þ

Whether λb or R is larger depends only on the I/E weight ratio g, and is independent of the

synaptic strength w. Setting λb = R, we have

g� ¼
pð1� aÞaþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ð1� aÞ2a2 � pa2 � 4

3
� pð Þa=N½ � pð1� aÞ2 � 4

3
� pð Þð1� aÞ=N½ �

p

pa2 � 4
3
� pð Þa=N

; ð4Þ
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which depends on the network size N. With the parameters in our model, the switching point

is near 3.34. At large limit N, we have g� = (1 − α)/α = 4.

Dynamics

We apply probabilistic dynamics on the recurrent network. The state of each neuron is binary,

either 1 or 0 corresponding to active or quiescent, respectively. At each time step t, the proba-

bility of neuron i being active depends on two independent factors: a probability pi due to syn-

aptic inputs from other neurons within the network and a probability pext due to external

inputs or spontaneous firing.

piðtÞ ¼

1 for IiðtÞ � 1

IiðtÞ for 0 � IiðtÞ < 1

0 for IiðtÞ < 0

;

8
>>>>><

>>>>>:

IiðtÞ ¼
XN

j¼1

Jijsjðt � 1Þ;

ð5Þ

where sj(t − 1) is the state of neuron j at time step t − 1, and Ii(t) represents the total synaptic

input to neuron i from other neurons at time step t. pext is set as 0.005/N, which corresponds

to 1 externally-driven spike every 200 time steps over the whole network on average. We chose

a low rate of external input, because high rates of external input are known to preclude critical

dynamics [3]. In simulation, we first apply pi on each neuron and then apply pext indepen-

dently. We run the simulations on the networks in Matlab 2010a.

Branching function

Branching function Λ(S) is defined as the expected value of S(t + 1)/S(t) for a given level of

activity S:

LðSÞ ¼ E½Sðt þ 1ÞjSðtÞ ¼ S�=S; ð6Þ

where S(t) is the fraction of active neurons at the time step t. Λ(S0)>1 means that when the

activity S = S0 the firing rate tends to grow, on average, while Λ(S0)<1 means the firing rate

tends to decrease when S = S0. We obtain the branching function numerically by running the

model one time step forward many times for each possible value of S(1), and averaging the

ratio of S(2)/S(1). We also obtain a prediction for the branching function by combining the

definition of branching function and the dynamics in our model.

LðSÞ ¼
1

S
E s

XnE

i¼1

JEi �
XnI

j¼1

JIj

 !" #

; ð7Þ

where nE and nI are the number of active presynaptic excitatory and inhibitory neurons,

respectively. Here, σ is a step-wise linear function with the same form as used the to obtain the

firing probability pi = σ(Ii(t)) above. JEi and JIj represent the ith excitatory and jth inhibitory
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synaptic strength. Considering the synaptic strength on average, we have

LðSÞ ¼
1

S
E s

w
2
nE �

gw
2
nI

� �h i

¼
1

S

XN

nE¼1

XN

nI¼1

PðnEÞPðnIÞs
w
2
nE �

gw
2
nI

� �
:

ð8Þ

We obtain a good prediction for Λ(S) by assuming nE and nI are Poisson variables with

means μE = Np(1 − α)S and μI = NpαS, respectively.

Critical range is defined as ρ = S2 − S1, which measures how long the branching function

stays near 1. S1 and S2 are the fractions of active nodes when Λ(S1) = 1.05 and Λ(S2) = 0.95, as

shown in Fig 2a insert.

Avalanche distribution

We define the threshold for avalanches at the level S† when the branching function Λ(S†) =

1.01, as done in previous work [43]. We use κ� to measure how much the avalanche duration

and size distributions deviate from power-law distributions with exponent −� [17]. κ� is

defined as

k� ¼ 1þ
1

10

X10

i¼1

FNA
�
ðbiÞ � FðbiÞ; ð9Þ

where FNA
�

is the cumulative distribution function (CDF) of the reference power-law distribu-

tion with exponent −�, and F is the CDF of the avalanche duration or size. From the definition,

κ� is close to 1 if the measured distribution matches the reference power-law distribution well.

κ� > 1 means the measured distribution tends to have more large avalanches than the refer-

ence distribution. κ� < 1 means the measured distribution tends to have fewer large avalanches

than the reference distribution. We take βi as a representative sample of 10 logarithmically

spaced points along the measured distribution. We use � = 1.5 for avalanche size and � = 1.7

for avalanche duration, which are the best-fitted exponents with g = 0 and λmax = 1. 1.5 has

been widely observed as the exponent for avalanche sizes at criticality [44, 54, 55]. It has also

been theoretical derived in similar models with no inhibition, operating at criticality [56].

Synaptic input

The total synaptic input Ii(t) can be separately examined in two parts: excitatory synaptic input

IEi ðtÞ where only positive connections Jij> 0 count, and inhibitory synaptic input IIi ðtÞ where

only negative connections Jij< 0 count. We define the E/I tension T to measure how tightly

the IEi ðtÞ and IIi ðtÞ are balanced. The E/I tension of neuron i is defined as

Ti ¼ 1 �
hIiðtÞi

hIEi ðtÞi þ hjIIi ðtÞji
ð10Þ

where h�i indicates time average. Then, the E/I tension T of the recurrent network is the aver-

age of Ti over all neurons.

Input cross-correlogram (CCG)

We plot the input CCGs by calculating the population-averaged cross correlation function of

synaptic inputs with time lags from −20 to 20 time steps. To measure the the degree of asyn-

chrony of the total synaptic input from the synchronized excitatory and inhibitory synaptic
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inputs, we define η as

Z ¼ 1 �
ATotal

ðAEE þ AIIÞ=2
; ð11Þ

where ATotal is the area under total synaptic input CCG, and AEE and AII are the area under

excitatory and inhibitory synaptic input CCGs, respectively.
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