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INTRODUCTION

As of 31 December 2021, COVID-19, caused by infection with SARS-CoV-2, had been confirmed in
more than 285 million people worldwide, with more than 5.4 million dead resulting in a case fatality
ratio of 1.89%. This figure is likely to be vastly underestimated, as a proportion was not registered
officially as COVID-19-related/excess deaths. The United States recorded the highest number
(54,656,866) of confirmed cases. In Africa, there are 47 countries affected, with 7,065,972 cumulative
cases and 155,081 deaths were recorded by 31 Dec 2021 (WHO African Region numbers at a
glance). To date, the currently approved vaccines have been effective in preventing COVID-19,
particularly in regards to severe symptoms (1). However, several immune escape mechanisms of
SARS-CoV-2 and the rapid emergence of mutated variants (2) pose a great challenge to the efficacy
of these vaccines.

Patients with severe COVID-19 tend to have a high concentration of pro-inflammatory
cytokines (IL-2, IL-7, IL-10, G-CSF, TNF-a, CXCL10, MCP1, and MIP1a) (3), suggesting that a
cytokine release syndrome (CRS) (4) (also loosely referred to as a cytokine storm), which is a form
of life-threatening systemic inflammatory response syndrome (SIRS), can often feature in severe
COVID-19 infections. Among the increased levels of inflammatory mediators in COVID-19
patients, the plasma levels of IL-6, an amplifier in the cytokine storm, are significantly elevated
in non-survivors compared with survivors (5). The main cause of death of COVID-19 is due to
severe acute respiratory distress syndrome (ARDS) with this high severity being dependent on the
cytokine storm.

Sepsis has been defined as a life-threatening organ dysfunction caused by a dysregulated host
response to infection (6). Endothelium damage, vascular permeability, microvascular dysfunction,
coagulation pathway activation, and impaired tissue oxygenation occur during sepsis and can lead
to multisystem organ dysfunction (MODS), organ failure and consequently a potentially lethal
outcome. As many patients with severe COVID-19 show typical clinical manifestations of septic
shock, with other symptoms meeting the diagnostic criteria for sepsis and septic shock according to
the Sepsis-3 International Consensus (6), Li et al. hypothesized that viral sepsis is a crucial process in
severe COVID-19 cases (7). Accumulating evidence further links the pathology of severe COVID-
19, such as acute kidney injury, to sepsis (8).
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IMMUNOMODULATORY THERAPY OF
SEVERE COVID-19

In regards to potential immunomodulatory strategies for severe
COVID-19, the IL-6-STAT3 signaling pathway has been
considered a promising therapeutic target for the cytokine storm
generated in the disease. Tocilizumab, a specific monoclonal
antibody that blocks IL-6, has been recommended for use in
critically ill COVID-19 patients with extensive bilateral pulmonary
lesions and with elevated serum levels of IL-6. However, anti-
cytokine therapy with Tocilizumab did not improve survival rates
despite reducing the likelihood of progression to the composite
outcome of mechanical ventilation or death (9). In addition,
ulinastatin, a serine protease inhibitor with anti-inflammatory
properties (including inhibition of IL-6), previously used in the
treatment of acute pancreatitis and sepsis, has been suggested for
severe COVID-19 treatment (10); yet its clinical performance and
cost-effectiveness remain to be validated in large cohort studies.

The value of glucocorticoids in mitigating the inflammatory
response due to COVID-19 has been widely scrutinized. Recent
reliable evidence from large-scale randomized clinical trials
(RCTs) revealed that the use of dexamethasone reduced 28-day
mortality but only in patients requiring respiratory support (11),
while another parallel, double-blind, placebo-controlled,
randomized, Phase IIb clinical trial showed that the
administration of methylprednisolone was able to reduce 28-day
mortality in patients aged over 60 years (12). In addition,
hydroxychloroquine, a disease-modifying antirheumatic drug
(DMARD), used for the treatment of rheumatoid arthritis and
lupus, has been studied for its potential as an immunomodulatory
therapeutic for COVID-19 disease. Evidence from 12 RCTs
indicated that hydroxychloroquine has little or no effect on the
risk of death, probably has no effect on progression to mechanical
ventilation, and that it is less likely that the drug is effective in
protecting people from infection, although this was not excluded
entirely (13). Other immunomodulatory agents that have been
therapeutically tested in SARS-CoV-2 infection include the
interleukin-1 receptor (IL-1R) antagonist anakinra, the Janus
kinase inhibitors baricitinib and ruxolitinib, the anti-C5a
antibody vilobelimab, the anti-gout agent colchicine, the
antirheumatic drug leflunomide, convalescent plasma, interferon
beta, interferon kappa and intravenous immunoglobulins (IVIg)
(14). However, robust data from further RCTs are required to
elucidate their potential for the treatment of severe COVID-19.
HELMINTH CO-INFECTION AND
SEVERITY OF COVID-19

The “old friends” hypothesis argues that some co-evolved
microbes and other pathogens, including helminths, could help
to establish appropriate immunomodulatory function and thus
protect the host against a large spectrum of immune-related
disorders (15). Mammals infected with helminths typically elicit
an anti-inflammatory Th2 immune response, including the
activation of Th2 cells and the elevation of Th2-type cytokines
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such as IL-4, IL-5 and IL-13 (16). This host-helminth interaction
could be beneficial in dampening inflammatory damage induced
by the Th1/Th17 branches of the immune system, repairing
injured tissue and restoring homeostasis (17). Chronic
helminthic infection suppresses both Th1 and Th2 responses
by actively inducing the expansion of FOXP3+ regulatory T cells,
IL-10 producing B cells and alternatively activated macrophages
(AAMs), which together promote the release of regulatory
cytokines such as TGF-b and IL-10 (18).

There is controversy regarding whether helminth coinfection
leads to increased susceptibility and attenuated immunopathology
of other pathogens (i.e., viruses, bacteria and protozoa) or, in some
circumstance, exacerbated pathology due to higher infection
burdens (19). And this also likely applies to the interaction
between helminths and SARS-CoV-2 (20, 21). It has been
suggested that the immunosuppressive and regulatory T-helper
response stimulated by helminths may balance the inflammatory
Th1/Th17 response triggered by SARS-CoV-2 infection, potentially
restricting the severity of COVID-19 disease (22, 23). In contrast, a
recent viewpoint article argued that COVID-19 patients co-infected
with helminths may be unable to mount a quick and efficient
immune response against SARS-CoV-2 in the early phase of the
infection, thereby leading to increased patient morbidity and
mortality (24). However, other evidence indicates that COVID-19
lethality rates are significantly lower in Sub-Saharan Africa than in
the industrialized world (25). Wolday et al. (26) carried out a
prospective observational cohort study to investigate whether there
was a potential correlation between co-infection with intestinal
parasites and the severity of COVID-19 in two sites in an
endemic area of Ethiopia in Sub-Saharan Africa. The study
revealed that patients co-infected with parasites had lower odds of
developing severe COVID-19, with an adjusted odds ratio (aOR) of
0.23 (p < 0.0001) for all parasites, an aOR of 0.37 (p < 0.0001) for
protozoa, and an aOR of 0.26 (p < 0.0001) for helminths. The
authors thus concluded that co-infection with the enteric parasites,
Hymenolopis nana, Schistosoma mansoni and Trichuris trichiura
reduced the risk of severe COVID-19 occurrence in this cohort of
African patients. When stratified by species, co-infection with T.
trichiura showed the lowest probability of developing severe
COVID-19. In addition, of 11 cohort patients who died, all were
parasite-free (26). The results of this study thus suggested that
parasites, particularly the chronic disease-associated parasitic
helminths, induced a Th2-prone response in the host, which
modulates COVID-19 severity by restricting the hyper-
inflammation associated with the viral infection. Further
epidemiological studies on helminth-mediated COVID-19
alleviation are, however, required to support this argument (27, 28).
HELMINTH-DERIVED PRODUCTS CAN
ATTENUATE THE SEVERITY OF SEPSIS

The “old friends” hypothesis, together with the inverse global
distribution of allergy/autoimmune diseases and helminth
infections, and the proclivity for helminths to orchestrate
immunomodulatory effects (typically induction of a Th2
February 2022 | Volume 13 | Article 849465
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immune response) on the host immune system stimulated the
concept of developing helminth-based therapies. Robust
evidence from animal model studies showed that helminth
infection and helminth-derived products were able to prevent/
alleviate a variety of autoimmune and inflammatory diseases/
disorders (i.e., sepsis, type 2 diabetes, allergic asthma,
rheumatoid arthritis, inflammatory bowel disease, type 1
diabetes and multiple sclerosis) (29, 30).

In regard to sepsis, epidemiological studies (over the period
2006-2015) indicated a rapid increase in hospitalization and
mortality rates due to severe sepsis in high-income countries
(31). This report added further support to the hypothesis that
the lack of helminth infections may contribute to the aetiology of
sepsis (32). To date, a number of helminth-derived molecular
products have resulted in improved sepsis outcomes in animal
models. Several studies have investigated the role of Schistosoma
japonicum cystatin (rSj-Cys) in regulating the inflammatory
response in the cecal ligation and puncture (CLP)-induced
mouse sepsis model (33–35). Administration of rSj-Cys to mice
provided significant therapeutic effects on CLP-induced sepsis
characterized by increased survival rates, alleviated overall disease
severity with reduced tissue injury in the kidney, lung and liver (33)
and cardiomyopathy (34). These therapeutic effects were linked to
the upregulation of regulatory cytokines (IL-10 and TGF-b1) and
the downregulation of pro-inflammatory cytokines (IL-1b, IL-6
and TNF-a) as measured in serum. Similarly, treatment of mice
with cyclophilin A (CsCyPA) from the liver fluke, Clonorchis
sinensis, provided significant therapeutic effects on CLP-induced
sepsis characterized by an improved survival rate (36).
Furthermore, using a murine model of septic shock, Ramos-
Benitez et al. demonstrated in vitro and in vivo that Fh15, a
recombinant variant of the common liver fluke Fasciola hepatica
fatty acid binding protein, suppressed the LPS-induced cytokine
storm, working as an antagonist of Toll-like receptor 4 (TLR4) (37).
In the gram-negative bacteria-induced sepsis rhesus macaque
model, Fh15 effectively suppressed bacteremia, endotoxemia, and
many other inflammatory markers, emphasizing its promise as a
candidate for immunomodulatory therapy against sepsis (38). In
addition, the excretory-secretory products of Trichinella spiralis
adult worms were also shown to be beneficial to the outcome of
CLP-induced sepsis by preventing exacerbated inflammation and
severe pathology in treated mice (39). These effects were associated
with reduced levels of pro-inflammatory cytokines (IL-1b, IL-6 and
TNF-a), upregulated levels of IL-10 and TGF-b, and decreased
expression of HMGB1, TLR2 andMyD88 in the lung tissues of the
treated mice (39). Albeit informative, these observations were
accrued from animal sepsis models and human clinical trials
now need to be undertaken to validate the results obtained.
DISCUSSION

Rapid mutations in SARS-CoV-2 challenge the efficacy of the
current COVID-19 vaccines and concerns about their long-term
safety require an urgent need to search for safe and cost-effective
alternatives for preventing severe COVID-19 disease. Increased
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efforts are required as, to date, conclusive evidence of effective
immunomodulatory therapies for severe COVID-19 is scarce (14).
Due to similarities in the pathological process, sepsis animal models
provide the opportunity to evaluate the efficacy of novel candidates
for the immunomodulatory therapy of critically ill COVID-19
patients. We argue that helminth-derived products and molecules
that can potentially induce a Th2-biased immune response may
provide a contributory role in preventing severe COVID-19 by
restricting the cytokine storm associated with ARDS. The
aforementioned helminth-derived molecules (i.e. rSj-Cys, CsCyPA
and Fh15) have been shown to increase survival rates in animal
models of sepsis, thereby representing potential candidates for
immunomodulatory treatment against severe COVID-19. Such
components should be validated for efficacy, first in the K18-
hACE2 transgenic murine model of SARS-CoV-2 infection which
shares many features of severe COVID-19 infection (40), and then
in clinical cohorts. The time phase in sepsis progression is regarded
as a key factor for successful immunomodulatory therapy. Due to
immunosuppression and immune exhaustion, treatment with
immunomodulators at the late stage of severe COVID-19 could
be less effective or even deleterious; consequently, the helminth-
derived molecular products should be administrated as a
prophylactic therapy against severe COVID-19. The suppression
of the antiviral response due to excessive immunotherapy may
encourage viral replication and result in a delay of clearance of
SARS-CoV-2 so that administration of helminth-derived
immunomodulators that elicit a mild Th2-skewed immune
response could be a useful strategy to prevent severe COVID-19,
while maintaining the patient’s ability to kill cells infected with the
virus. Severe COVID-19 has greater incidence in older individuals,
due in part to an increased inflammatory response in these patients
(41), begging the question whether prophylactic therapy based on
helminth-derived product should primarily target and would be
more effective in older individuals? Another unanswered question is
whether a well-controlled low level concomitant infection with a live
helminth, such as hookworm (42), can achieve an equivalent or
superior effect to an immunomodulator or vaccine in preventing
serious outcomes of COVID-19. It would be valuable to test such
helminthic-based therapies as these may represent a safe and cost-
effective anti-inflammation approach to reducing COVID-
19 severity.
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