
1Scientific RepoRts | 6:28048 | DOI: 10.1038/srep28048

www.nature.com/scientificreports

Integrated network-diversity 
analyses suggest suppressive effect 
of Hodgkin’s lymphoma and slightly 
relieving effect of chemotherapy on 
human milk microbiome
Zhanshan (Sam) Ma1, Lianwei Li1, Wendy Li1, Jie Li1 & Hongju Chen2

We aim to investigate the effects of Hodgkin’s lymphoma and the chemotherapy for treating the 
disease on the human milk microbiome through integrated network and community diversity analyses. 
Our analyses suggest that Hodgkin’s lymphoma seems to have a suppressing effect on the milk 
microbiome by lowering the milk microbial community diversity, as measured by the Hill numbers 
profiles. Although the diversity analysis did not reveal an effect of chemotherapy on community 
diversity, bacterial species interaction network analysis shows that chemotherapy may help to slightly 
restore the milk microbiome impacted by Hodgkin’s lymphoma through its influence on the interactions 
among species (or OTUs). We further constructed diversity-metabolites network, which suggests that 
the milk microbial diversity is positively correlated with some beneficial milk metabolites such as 
DHA (DocosaHexaenoic Acid), and that the diversity is negatively correlated with some potentially 
harmful metabolites such as Butanal. We hence postulate that higher milk microbial diversity should 
be a signature of healthy mothers and beneficial to infants. Finally, we constructed metabolites 
OTU correlation networks, from which we identified some special OTUs. These OTUs deserve further 
investigations given their apparent involvements in regulating the levels of critical milk metabolites 
such as DHA, Inositol and Butanal.

With the rapid expansions of metagenomics technology and human microbiome project (HMP)1,2, the milk 
microbiome has also received increasing attention in recent years3–12. These existing studies have demonstrated 
fundamental importance of milk microbiome in maintaining the nutritional and health values of breast milk to 
infants and mothers. For example, in a recent report, Urbaniak et al.10 called for the attention to the impact of 
drugs administrated to the mothers on the milk microbiome as well as the potential health consequences for the 
infants given the critical significance of milk contents in shaping infant development and immunity. They pre-
sented the first longitudinal study on the effects of chemotherapy on the milk microbiome and discovered that 
chemotherapy for Hodgkin’s lymphoma caused a significant deviation from a healthy microbial and metabolic 
profile, and led to the decline of beneficial metabolites including DHA (docosahexaenoic acid) and Inositol10. In 
this study, we further analyzed Urbaniak et al.10 microbial and metabolic datasets to answer some new questions, 
beyond the findings revealed in their original report, by applying ecological network analysis and diversity profile 
analysis. Specifically, we hope our analyses will shed important lights on the following four biomedical questions: 
(i) Do Hodgkin’s lymphoma and/or the chemotherapy for treating the disease add any significant ‘signature’ to the 
impacted milk microbiome compared with the healthy milk microbiome? (ii) Does the chemotherapy have signif-
icant influence on the milk microbial diversity? If no, does it have any other important impacts that were missed 
by the diversity analysis? (iii) How are the metabolites in the breast milk related to the milk microbial diversity? 
(iv) Are there any specific bacteria species (OTUs) that are more closely associated with the important metabolites 
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than their peers? We also discuss the biomedical implications of these questions. At present, answering to these 
questions is of pressing urgency and, even if preliminary, is of great biomedical importance, given that the critical 
significance of milk components to the development and immunity of infants is still poorly understood, as reit-
erated in Urbaniak et al.10.

Methodologically, we realized that the traditional ecological analysis such as simple diversity index or multi-
variate analysis approaches such as PCA (principal component analysis) and PCoA (principal coordinate anal-
ysis) may be insufficient in answering the new questions raised above. New and more powerful approaches may 
be necessary to detect sophisticated patterns and answer those questions23. Specifically, we replace the traditional 
diversity measures such as species richness and Shannon index with more comprehensive diversity profile—the 
Hill numbers13–19. The diversity profile measured in a series of Hill numbers at different orders (q =  0, 1, 2, 3) is 
now well recognized as the most appropriate metric for measuring alpha diversity because it overcomes the defi-
ciencies of the traditional single diversity index by unifying the units of diversity measures with the concept of 
“number of species equivalents” (i.e., the Hill numbers)19. Furthermore, by using a series of entropies at different 
nonlinearity orders (diversity order q), the information contained in the species abundance distribution (SAD) 
of a community is captured in the diversity profile, making the long debated issue on which diversity index is 
superior in the community ecology mostly obsolete. It has also been demonstrated that Hill numbers have highly 
desirable advantages in measuring beta diversity as well as community similarity thanks to its satisfaction with 
replication principle, especially with the multiplicative partition of beta diversity16. Another approach we use 
in this study is the network analysis, which has become a powerful tool in the arsenal of computational biolo-
gists during the last decade20–23, but has relatively not been widely applied to the studies of microbiome23. As it 
becomes clear in the subsequent sections that either diversity analysis or network analysis alone is not sufficient 
to address the biomedical questions we raised above, and an integrated analysis with both approaches is adopted 
in this report.

Materials and Methods
The breast milk microbiome and metabolome datasets. The 16S rRNA and metabolites datasets of 
the breast milk microbiomes, analyzed in this report, were first reported in Urbaniak et al.10, and a brief descrip-
tion is presented as follows. A series of longitudinal milk samples were collected from a lactating women under-
going chemotherapy for treating Hodgkin’s lymphoma every two weeks over a four-month period, and a cohort 
of 8 healthy women were sampled one time for their mature milk as control. With the longitudinal study, a total 
of 16 milk samples including 8 before chemotherapy and 8 after chemotherapy were collected. The datasets of 16S 
rRNA reads and corresponding OTU tables (97% cutoff of similarity) for the pre-chemotherapy, post-chemother-
apy and healthy cohort samples were obtained by using the Ion Torrent platform and subsequent bioinformatics 
analysis. The metabolome datasets for the milk samples were obtained with gas chromatography-mass spectrom-
etry. Detailed information on both datasets is referred to Urbaniak et al.10.

The computational procedures for network analyses. Three types of correlation networks were con-
structed with standard network analysis techniques explained in Junker & Schreiber22, and these are: (i) The 
milk bacterial species interaction networks (SIN) were built based on the pair-wise correlation between OTU 
abundances, including three networks for pre-chemotherapy, post-chemotherapy, and healthy microbiome sam-
ples, respectively. To reduce the effect of potentially spurious OTU reads, we removed OTUs whose total reads 
in a treatment are less than 5 in the construction of SINs. (ii) The diversity-metabolites network (DMN) was 
built based on the pair-wise correlation between community diversities and metabolite abundances. (iii) The 
Metabolite-OTU interaction network (MON) was built based on the correlation between the metabolite abun-
dance and OTU abundance. The correlation relationship was established based on Pearson’s correlation coeffi-
cients with p-value ≤  0.05, and the actual computation was performed with Cytoscape software20 and iGraph 
package24. In addition, the MCODE plug-in21 for Cytoscape was utilized to detect clusters in the bacterial SINs.

Community diversities in the Hill numbers. The Hill numbers, originally introduced as an evenness 
index in economics by Hill13 who was apparently inspired by Renyi’s25 general entropy of order q, has not received 
the attention it deserves in ecology until recent years. Chao et al.15,16 further clarified Hill’s numbers for measuring 
alpha diversity of biodiversity as:
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where S is the number of species or OTUs, pi is the relative abundance of species i, q is the order number of diver-
sity (q =  0, 1, 2, 3). The Hill numbers are in units of species equivalents, and measure the effective number of species 
or species equivalents.

The Hill number is undefined for q =  1, but its limit as q approaches to 1 exists in the following form:
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The parameter q determines the sensitivity of the Hill number to the relative frequencies of species abun-
dances. When q =  0, the species abundances do not count at all and 0D =  S, i.e., species richness. When q =  1, 1D 
equal the exponential of Shannon entropy, and is interpreted as the number of typical or common species in the 
community. When q =  2, 2D equal the reciprocal of Simpson index, i.e.,
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which is interpreted as the number of dominant or very abundant species in the community (Chao et al.15,16). The 
general interpretation of diversity of order q is that the community contains qD =  x equally abundant species. In 
this study, we compute the Hill numbers at order q =  0–4, for each of the pre-chemotherapy, post-chemotherapy 
and healthy cohort samples.

Results and Discussion
The bacterial species interaction network (SIN) in the pre-chemotherapy, post-chemotherapy 
and healthy milk microbiome samples. The basic network analysis performed with Cytoscape and 
iGraph software packages suggest the following findings (Tables 1–2, Figs 1–3):

  (i)  Most network properties exhibited in Table 1 are similar between the healthy and diseased networks (the lat-
ter includes both pre- and post-chemotherapy networks) or between any of the three pairs. Nonetheless, one 
item in Table 1 (the last column), the P/N ratio of positive vs. negative links (interactions) in the networks is 
an exception. The P/N ratio in the pre-chemotherapy sample (impacted by Hodgkin’s lymphoma) is approx-
imately 10 times higher than those in the other two networks. This indicates that Hodgkin’s lymphoma may 
have a suppressing effect on the number of negative interactions in milk microbial networks. Some of the 
negative interactions involve opportunistic pathogens, and the breakup of the negative links may indicate the 
decline of inhibitive effects on the opportunistic pathogens in the pre-chemotherapy milk microbiome. The 
recovery of negative interactions in the post-chemotherapy demonstrates that chemotherapy seems to have 
a rehabilitating effect on the milk microbiome impacted by Hodgkin’s lymphoma.

    Figs 1–3 exhibit the milk bacterial interaction networks of the pre-chemotherapy, post-chemotherapy and 
healthy microbiome samples, respectively. The above-described contrasting difference in P/N ratio is also 
obvious in Figs 1–3. There are only three negative interactions in the pre-chemotherapy network, compared 
with over 20 in the two other networks.

 (ii)  We further detected the basic motifs in the three networks with Cytoscape software, and the results are dis-
played in Table 2. It is shown that all of the basic motifs detected are most abundant in the healthy network, 
followed by pre-chemotherapy networks, and post-chemotherapy networks in a decreasing order. With ex-
isting dataset, we can only conjecture that Hodgkin’s lymphoma seemed to lower the number of motifs in the 
milk microbiome and the chemotherapy failed to stop the decline.

 (iii)  We further utilized the MCODE plug-in for Cytoscape21 to analyze the three networks by mining modules 
(clusters) that are more general than the basic motifs detected with standard Cytoscape package, because 
clusters detected by MCODE are not limited by the number of nodes or edges, as in the basic motifs dis-
played in Table 2. MCODE can detect clusters, which are highly interconnected regions in a network. In the 
three bacterial interaction networks we constructed for healthy, pre-chemotherapy and post-chemotherapy 
microbiomes, those clusters should represent OTU complexes that have high correlation coefficient values, 
which may signal some functional groups or ecological guilds in the underlying microbiome.

Table 3 lists the results of MCODE cluster-detection in the three bacterial interaction networks. For each net-
work, we list the number, corresponding cluster scores, number of nodes, and number of edges for each cluster. The 
higher the score is, and the stronger the cluster is. From Table 3, we can see that the healthy network has a single 
strongest cluster with 16 nodes and 110 edges, and the other clusters are rather small with 3–4 nodes and 3–6 edges 
only. In contrast, the cluster strengths (score) in the diseased (pre- and post-chemotherapy) networks are relatively 
distributed evenly. For example, in the pre-chemotherapy network, the difference in the number of edges between 
the top two strongest clusters is only 11 (66 vs. 55), compared with the difference of 104 and 29 in the healthy and 
post-chemotherapy network, respectively. Table 3 also shows that the healthy microbiome network has a dominantly 
strong cluster, the diseased networks (pre- and post-chemotherapy) instead have 2–3 clusters with similarly moderate 
strength, and all three networks have variable numbers of small clusters with a minimum strength of approximately 1.

Furthermore, the pattern of cluster distribution in the post-chemotherapy network is closer to the pattern 
in the healthy network than to the pattern in the pre-chemotherapy network. For example, in the healthy net-
work, the ratio of the edge numbers between the top two strongest clusters is approximately 18. In contrast, the 
ratios in the pre-chemotherapy and post-chemotherapy network are approximately 1 and 2, respectively. This 
again supports our previous conjecture, i.e., Hodgkin’s lymphoma may have a far-reaching influence on the milk 
microbiome by breaking up microbiome network into smaller and weaker clusters. The chemotherapy seems to 
be helpful for the milk microbiome to recover slightly by restoring the negative interactions, and therefore may 
possess a relieving effect on the milk microbiome impacted by the disease. There are not any negative links in the 
strongest cluster in the diseased pre-chemotherapy network (Table 4, Fig. 4), but negative links are abundant in 
the strongest clusters of the healthy and post-chemotherapy networks (Table 4, Figs 5 and 6).

The comparisons of the community diversities among pre-chemotherapy, post-chemotherapy 
and healthy microbiomes. We computed the alpha diversities of the milk microbiomes from the three different 
groups of healthy, pre-chemotherapy and post-chemotherapy samples (Table 5). We further performed Student’s t-test 
to determine the difference among the three groups, and the results are listed in Table 6.

Table 6 shows that there are significant differences between the healthy and pre-chemotherapy samples 
or between the healthy and post-chemotherapy samples in terms of the alpha diversities at different orders. 
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Therefore, Hodgkin’s lymphoma disease seems to have significant influence on the community diversity, but 
chemotherapy seems to have little influence on the community diversity. However, previous network analysis 
suggests that chemotherapy does influence milk microbiome network, with a possibly relieving effect for the milk 
microbiome, impacted by Hodgkin’s lymphoma, to recover.

On the surface, the lack of significant difference in the milk microbial community diversity (measured with 
the Hill numbers) between pre-chemotherapy and post-chemotherapy microbiome appears to contradict the dif-
ference in network properties between the pre-chemotherapy and post-chemotherapy microbiome, as suggested 
by the previous network analysis. A careful examination would readily reconcile this apparent contradiction. This 
is because community diversity is determined only by the species abundance distribution (SAD) in a community, 
and it does not reflect the interaction (measured in correlation) between species. Therefore, the lack of significant 
difference in diversity does not preclude the existence of other effects that chemotherapy may have on the micro-
biome. For example, the effect of chemotherapy on the interaction (correlation) among bacterial species, which 
is not reflected in the Hill numbers, may be reflected in the properties of milk bacterial interaction networks.

The diversity-metabolites network (DMN) and metabolites-OTU network (MON). We con-
structed a correlation network with the datasets of metabolites (abundances) and milk microbial community 

Networks

Num. 
of 

Nodes

Num. 
of 

Edges
Average 
Degree

Avg. Local 
Cluster 

Coefficient Diameter

Average 
Path 

Length
Num. of 

Commu-nities
Network 
Density

Network 
Modularity

P/N 
Ratio =  Positive/

Negative

Pre-Chem. 69 273 7.913 0.734 10 4.219 6 0.116 0.690 90 (270/3)

Post-Chem. 69 206 5.971 0.660 11 4.449 7 0.088 0.719 9.3 (180/20)

Healthy 60 209 6.967 0.636 9 3.792 9 0.118 0.399 6.2 (180/29)

Table 1.  The basic properties of the milk bacterial interaction networks.

Networks

3-motif 
type-I

3-motif 
type-II

4-motif 
type-I

4-motif 
type-II

4-motif 
type-III

4-motif 
type-IV

4-motif 
type-V

4-motif 
type-VI

Pre-Chem. 493 612 139 1211 1455 6 401 1064

Post-Chem. 365 292 94 919 728 7 199 295

Healthy 571 534 303 1634 1814 15 923 1232

Table 2.  The number of basic motifs detected in the milk bacterial interaction networks.

Figure 1. The milk bacterial species interaction network constructed with the pre-chemotherapy samples. 
Symbols used: edges in green—positive correlation, edges in red—negative correlation, hexagon in pink—hubs 
(nodes with the top three highest degrees), cycles in red—MAO (top three most abundant OTUs), and cycles in 
pink— assuming dual role of hub and MAO.
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Figure 2. The milk bacterial species interaction network constructed with the post-chemotherapy samples. 
Symbols used: edges in green—positive correlation, edges in red—negative correlation, hexagon in pink—hubs 
(nodes with the top three highest degrees), cycles in red—MAO (top three most abundant OTUs), and cycles in 
pink— assuming dual role of hub and MAO.

Figure 3. The milk bacterial species interaction network constructed with the healthy samples. Symbols 
used: edges in green—positive correlation, edges in red—negative correlation, hexagon in pink—hubs (nodes 
with the top three highest degrees), cycles in red—MAO (top three most abundant OTUs), and cycles in pink— 
assuming dual role of hub and MAO.
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diversities at different diversity orders (q), and the resulting network graph is displayed in Figs 7–9. In Fig. 7, 
the network nodes can be classified into three types: the milk microbial community diversities measured in the 
Hill numbers from 0 to 4th order (5 nodes marked in pink diamond), 4 metabolites (DHA, Inositol, Threitol, 
and a PUFA) that are positively correlated with the Hill numbers, and 5 metabolites (Butanal, Xlmonopalmitin, 
Decanoic Acid, Arabinose, Myristic acid) that are negatively associated with the Hill numbers. Figures 8 and 9 
are sub-graphs extracted from Fig. 7, which exclusively show the positively or negatively associated metabolites, 
respectively. The former includes the metabolites that are positively associated with the diversity only, and the 
latter includes the metabolites that are negatively associated with the diversity only. Figure 8 shows an inter-
esting phenomenon that the diversity at order zero (q0) (i.e., species richness) is correlated with one metabolite 
(unknown PUFA) only. In contrast, the high-order diversity Hill numbers (q =  1–4) are closely associated with 
multiple metabolites and may be better indicators to the effects of the positively associated metabolites.

It seems worthy of particular notice that two metabolites positively associated with the diversity should be 
beneficial to baby’s health. For example, DHA is an unsaturated fat that plays a critical role in the development of 
baby’s eyesight and brain26,27. Inositol is a growth factor that lowers the cholesterol level. Furthermore, the effects 
of metabolites that are negatively associated with the diversity are unknown (Arabinose) or with lower toxicity 
(Myristic Acid)28. We hence postulate that higher microbial diversity in the milk microbiome is likely a ‘signature’ 
of healthy milk microbiome of healthy mothers, and therefore beneficial to infants. We further postulate that 
diseases, such as Hodgkin’s lymphoma that seems to lower milk microbial diversity, may have an opposite effect 
on mothers and their infants.

Figure 10 further displays the metabolites-OTU network (MON), which is constructed based on the pair-wise 
correlation between OTU (nodes in cyan color) abundances and metabolite abundances (nodes in pink or green). 
The metabolites in Fig. 10 can be distinguished as two groups. One group consists of 4 nodes (green color) that 

Healthy network Pre-chemotherapy network Post-chemotherapy network

Cluster No. Score Nodes Edges Cluster No. Score Nodes Edges Cluster No. Score Nodes Edges

1 6.875 16 110 1 5.5 12 66 1 3.562 16 57

2 1.5 4 6 2 5 11 55 2 3.5 8 28

3 1.25 4 5 3 4 9 36 3 2.5 6 15

4 1 3 3 4 2.5 6 15 4 2.444 9 22

5 1 3 3 5 2 5 10 5 1.5 4 6

6 1 3 3 6 1.5 4 6

7 1 3 3 7 1.25 4 5

8 1 3 3

9 1 3 3

Table 3.  The most strongly connected modules (clusters) in the healthy, pre-chemotherapy and post-
chemotherapy networks.

Network Species 1 Species 2

Healthy Network

Anoxybacillus/Bacillus_27 Bacillus_12

Anoxybacillus/Bacillus_27 Prevotella_33

Anoxybacillus/Bacillus_27 Schlegelella_36

Anoxybacillus/Bacillus_27 Tepidimonas_40

Anoxybacillus/Bacillus_27 Streptococcus_59

Anoxybacillus/Bacillus_27 Lactobacillus_65

Anoxybacillus/Bacillus_27 Bacillus_72

Anoxybacillus/Bacillus_27 Lactobacillus_76

Anoxybacillus/Bacillus_27 Bifidobacterium_91

Anoxybacillus/Bacillus_27 Staphylococcus_99

Anoxybacillus/Bacillus_27 Corynebacterium_152

Anoxybacillus/Bacillus_27 Finegoldia_168

Pre-Chemotherapy Network None None

Post-Chemotherapy Network

Bacteria_23 Lysobacter_11

Bacteria_23 Schlegelella_36

Bacteria_23 Tepidimonas_40

Bacteria_23 Porphyrobacter_66

Bacteria_23 Bacillus_72

Bacteria_23 Petrobacter_79

Bacteria_23 Acinetobacter_17

Table 4.  The negative links distributed in the strongest clusters in the three networks.
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Figure 4. The strongest clusters in the milk bacterial interaction networks of the pre-chemotherapy 
samples, i.e., extracted from Fig. 1, and the symbols used are the same as in Fig. 1.

Figure 5. The strongest cluster in the milk bacterial interaction networks of the post-chemotherapy 
samples, i.e., extracted from Fig. 2, and the symbols used are the same as in Fig. 2.
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Figure 6. The strongest cluster in the milk bacterial interaction networks of the healthy samples i.e., 
extracted from Fig. 3, and the symbols used are the same as in Fig. 3.

Figure 7. The metabolites-diversity network (MDN): symbols used: edges in green—positive correlation, 
edges in red—negative correlation, diamond—diversity at order q = 0–4, cycle in green—beneficial 
metabolite, cycle in cyan—unknown or potentially harmful metabolite. 
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are associated positively with diversity in Figs 7–9, and is associated with some beneficial bacteria in Fig. 10. In 
contrast, the other group consists of 5 nodes (pink color) that are associated negatively with diversity in Figs 7–9, 
and is associated with some potentially harmful bacteria in Fig. 10.

For example, three OTUs, Acinetobacter_1, Acinetobacter_2 and Acinetobacter_129 of genus Acinetobacter are 
positively associated with potentially harmful metabolites, but negatively associated with beneficial metabolites. 
Acinetobacter is a genus including some opportunistic pathogens in the proteobacteria group29. Acinetobacter bau-
mannii, one species of this genus, is often found as the cause of pneumonia in hospitalized patients, in particular 
those dependent on ventilators in the Intensive Care Units30. We conjecture that either the potentially harmful 
metabolites (Xlmonopalmitin, Decanoic acid, Myristic acid, and Arabinose) promote the growth of the three 
Acinetobacter OTUs, or they may be the metabolic products of the three OTUs. In addition, Acinetobacter_2 and 
Acinetobacter_129 exhibited negative correlation relationships with beneficial metabolite (a PUFA) (Fig. 10), and 
may be inhibited by the PUFA in healthy milk microbiome given their negative correlation.

For another example, many Streptococcus bacteria are opportunistic pathogens, and especially some group B 
streptococci cause life-threatening diseases in newborns, pregnant women, the elderly, and adults with compro-
mised immune systems31. In Fig. 10, Streptococcus_9 is negatively associated with beneficial metabolite Threitol. 
We conjecture that it may by inhibited by Threitol in healthy milk microbiome.

Network Sample ID q =  0 q =  1 q =  2 q =  3 q =  4

Pre-chemotherapy 
samples

0A 57 19.264 10.856 8.280 7.172

2A 59 8.227 3.185 2.487 2.257

4A 59 7.357 4.389 3.644 3.307

6A 57 9.131 5.772 4.910 4.534

10A 53 11.532 7.756 6.406 5.715

12A 51 3.063 2.078 1.867 1.770

14A 54 10.756 6.167 5.000 4.487

16A 51 1.514 1.178 1.133 1.117

Mean 55 8.856 5.173 4.216 3.795

Post-chemotherapy 
samples

0B 61 28.335 20.045 16.248 14.188

2B 61 11.679 4.406 3.214 2.833

4B 56 11.432 6.827 5.530 4.938

6B 48 5.863 3.872 3.389 3.165

10B 54 11.055 7.525 6.671 6.308

12B 46 2.851 2.187 2.056 1.986

14B 57 6.996 4.408 3.651 3.303

16B 55 7.533 3.871 3.114 2.811

Mean 55 10.718 6.643 5.484 4.942

Healthy samples

H1 46 22.130 14.242 11.362 10.030

H2A 42 15.721 10.483 8.897 8.149

H2B 44 18.051 10.976 8.642 7.584

H3 50 20.789 14.849 12.792 11.775

H5 42 20.522 14.271 11.929 10.777

H6 52 22.699 14.082 10.243 8.422

H7 44 19.175 11.909 9.591 8.564

H8 46 18.674 11.846 9.465 8.314

H10 48 15.379 8.988 7.048 6.189

Mean 46 19.238 12.405 9.997 8.867

Table 5.  The alpha diversity (measured in Hill numbers) of the pre-chemotherapy, post-chemotherapy, 
and healthy milk microbiome samples.

Diversity 
Order (q)

Healthy vs. Post-chemotherapy Healthy vs. Pre-chemotherapy Pre-chemotherapy vs. Post-CT

Healthy Chemo- p-value Healthy Chemo- p-value Post-C Pre-C p-value

0 46.000 53.857 0.000 46.000 54.857 0.000 53.857 54.857 0.681 

1 19.238 8.201 0.000 19.238 7.369 0.000 8.201 7.369 0.670 

2 12.405 4.728 0.000 12.405 4.361 0.000 4.728 4.361 0.751 

3 9.996 3.946 0.000 9.996 3.635 0.000 3.946 3.635 0.746 

4 8.867 3.621 0.000 8.867 3.312 0.000 3.621 3.312 0.723 

Table 6.  The results of Student’s t-test of the Hill numbers among healthy, pre-chemotherapy and post-
chemotherapy microbiome samples.
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Some other interesting relationships between milk bacteria and metabolites are also displayed in Fig. 10. 
Comamonadaceae exhibited positive correlations with beneficial metabolites (DHA & Inositol), and negative 
correlation with potentially harmful Butanal. Comamonadaceae are a family of the Proteobacteria, and they are 
Gram-negative and aerobic. Bacillus is negatively associated with Butanal (a potentially harmful meta-factor) and 
it constitutes 10% in the microbiome of breast tissue10. Bacillus is mostly beneficial bacteria and may play a role in 
suppressing the accumulation of Butanal.

Summary. We reiterate the following findings summarized from the previous sections.

 (i)  Bacterial species interaction network (SIN) analysis shows that the ratio of positive vs. negative interac-
tions (P/N ratio) in the pre-chemotherapy microbiome of Hodgkin’s lymphoma patient is approximately 10 
times more than the P/N ratio in the post-chemotherapy microbiome of Hodgkin’s lymphoma patient, and 
is approximately 15 times more than the P/N ratio in the microbiome of healthy subjects. From this finding, 
we postulate that Hodgkin’s lymphoma may have a suppressing effect on the negative interactions in the 
milk microbiome, and the chemotherapy may have a relieving effect on milk microbiome by restoring the 
negative interactions. Given that many of the negative interactions involve opportunistic pathogens, the 
breakup of the negative links suggests the decline of inhibitive effects on the opportunistic pathogens in the 
diseased microbiome. The recovery of negative interactions in the post-chemotherapy microbiome suggests 
that chemotherapy may have a rehabilitating effect on the milk microbiome. Further network analysis with 
MCODE module detection technique also supports our postulation. That is, Hodgkin’s lymphoma has a 
far-reaching effect on the milk microbiome by breaking up the network into smaller and weaker clusters. The 
chemotherapy seems to be helpful for the milk microbiome to recover slightly.

 (ii)  Diversity analysis with the Hill numbers demonstrates that Hodgkin’s lymphoma has a significant influence 
on the milk microbial community diversities, but chemotherapy does not. Since diversity does not reflect the 
interactions between species, therefore the lack of influence from chemotherapy on community diversity does 
not imply that it does not have any effect on other aspects of microbiome, especially the interactions among 
microbial species, which is reflected in the findings from the previous network analysis.

 (iii)  Diversity-metabolites network (DMN) analysis suggests that the diversity is positively associated with some 
potentially beneficial metabolites such as DHA and Inositol, and negatively associated with some potentially 
harmful or unknown metabolites such as Butanal. From this finding, we postulate that high milk microbial 
diversity should be a signature of the healthy milk microbiome of healthy mothers, and hence beneficial to 
mothers and their infants.

 (iv)  Metabolites-OTU network (MON) analysis suggests that some OTUs may play critical role in the 
milk microbial community thanks to their close correlations with the metabolites. For example, some 

Figure 8. Sub-graph of MDN displaying the metabolites that are positively correlated with the diversity 
only, i.e., extracted from Fig. 7, and the symbols used are the same as in Fig. 7.
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opportunistic pathogens such as three species of Acinetobacter genus and Streptococcus_9 are positively asso-
ciated with some potentially harmful metabolites, and they are negatively associated with some potentially 
beneficial metabolites. We conjecture that beneficial metabolites may have inhibiting effects on those oppor-
tunistic pathogens. We also postulate that those potentially harmful metabolites may promote the growth of 
opportunities pathogens or they might be the products of the opportunistic pathogenic OTUs. For another 
example, mostly beneficial bacteria genus Bacillus is negatively associated with Butanal (a potentially harm-
ful factor) and it constitutes 10% in the microbiome of breast tissue10, and we conjecture that Bacillus may 
inhibit the accumulation of potentially harmful Butanal.

Here we revisit the four questions raised in previous introduction section, and we also discuss the potential 
biomedical implications of those questions.

 (i)  Do Hodgkin’s lymphoma and/or the chemotherapy for treating the disease add any significant ‘signature’ to 
the impacted milk microbiome compared with the healthy milk microbiome? Our analyses revealed multiple 
contrasting differences between healthy and diseased microbiome samples, and one of the most conspicuous 
signatures should be the P/N ratio (positive vs. negative interactions). Since the P/N ratio may reflect the 
number of opportunistic pathogenic OTUs in milk sample, our finding of this ‘signature’ may help to assess 
the effect of Hodgkin’s lymphoma on the milk microbiome as well as its healthy implications to infants. A 
general treatment on the utilization of P/N ratio as an in silicon biomarker for differentiating between healthy 
and diseased microbiome is presented elsewhere by Ma et al. (2016, submitted).

(ii)  Does the chemotherapy have significant influence on the milk microbial diversity? If no, does it have any other 
important impacts that were missed by the diversity analysis? Our diversity analysis failed to show the impact 
of chemotherapy on milk microbial diversity, but chemotherapy may affect other aspects of the microbiome 
such as species interactions. Indeed, chemotherapy appears to have a rehabilitating effect on the milk micro-
biome. The finding demonstrates an important methodological limitation, network or diversity analysis 
alone is not sufficient to fully reveal the influence of chemotherapy on the milk microbiome and an integrated 
approach of both analyses is necessary.

 (iii)  How are the metabolites in the breast milk related to the milk microbial diversity? Our diversity-metabolites 
network analysis suggests that the milk microbial diversity is positively correlated with some beneficial 
metabolites such as DHA and Inositol, and is negatively correlated with some potentially harmful metab-
olites such as Butanal. We postulate that high milk microbial diversity should be a signature of healthy 
milk microbiome of healthy mothers, and hence beneficial to mothers and their infants. To the best of our 
knowledge, this finding should be the first piece of quantitative evidence to support the health benefit of 
high bacterial diversity in the human milk.

Figure 9. Sub-graph of MDN displaying the metabolites that are negatively correlated with the diversity 
only, i.e., extracted from Fig. 7, and the symbols used are the same as in Fig. 7.
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 (iv)  Are there any specific bacteria that are more closely associated with the important metabolites than their 
peers? We identified that three OTUs of Acinetobacter genus, one OTU of Streptococcus and one OTU 
of Gemella may be opportunistic pathogens in milk microbiome, and all of them except for Gemella_47 
appear to be negatively associated with beneficial metabolites and/or positively associated with potentially 
harmful metabolites. We further conjectured that beneficial metabolites might impose inhibiting effects 
on the opportunistic pathogens, or alternatively, potentially harmful metabolites might be the metabolic 
products of the opportunistic pathogenic OTUs. We also identified some beneficial bacteria (Bacillus 
and Comamonadaceae), which are negatively associated with potentially harmful metabolite Butanal; 
Comamonadaceae are also positively associated with beneficial metabolites (DHA & Inositol). These special 
OTUs obviously deserve further investigation.

Finally, we emphasize that the findings reported in this article are of preliminary nature, and many of our 
statements were formulated as postulations, due to the limitation of available datasets. Nevertheless, given the 
presently still very limited understanding of the milk microbiome, not to mention answering the four specific 
questions we raised previously, the results we obtained are of significant biomedical implications. To the min-
imum, the postulations we proposed as well as the OTUs we identified are worthy of further investigations 
obviously.
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