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Abstract: We address the inverse Frobenius–Perron problem: given a prescribed target distribution
ρ, find a deterministic map M such that iterations of M tend to ρ in distribution. We show that all
solutions may be written in terms of a factorization that combines the forward and inverse Rosenblatt
transformations with a uniform map; that is, a map under which the uniform distribution on the
d-dimensional hypercube is invariant. Indeed, every solution is equivalent to the choice of a uniform
map. We motivate this factorization via one-dimensional examples, and then use the factorization to
present solutions in one and two dimensions induced by a range of uniform maps.

Keywords: inverse Frobenius–Perron problem; Rosenblatt transformation; uniform map; multivari-
ate probability distribution; transfer operator; ergodic map

1. Introduction

A basic question in the theory of discrete dynamical systems, and in statistical me-
chanics, is whether a chaotic iterated function M : X → X that maps a space X ⊆ Rd back
onto X has an equilibrium distribution with probability density function (PDF) ρ(x). The
PDF is with respect to some underlying measure, typically Lebesgue. Throughout this
paper, we use the same symbol for the distribution and associated PDF, with meaning
taken from context.

A necessary condition is that the distribution ρ is invariant under M; i.e., if x ∼ ρ (x
is distributed as ρ), then so is M(x), and further that the orbit of almost all points x ∈ X
defined as O+(x) =

{
x, M(x), M2(x), M3(x), . . .

}
tends in distribution to ρ. Then, under

mild conditions, the map is ergodic for ρ; that is, expectations with respect to ρ may be
replaced by averages over the orbit [1,2].

For example, it is well known [1–4] that the logistic map Mlog(x) = 4x(1− x), for
x ∈ [0, 1], is chaotic with the equilibrium distribution having PDF

ρlog(x) =
1

π
√

x(1− x)
,

implying that Mlog is ergodic for ρlog.
Our motivating interest is the use of this ergodic property to implement sample-based

inference for Bayesian analysis or machine learning. In those settings, the target distribution
ρ is defined by the application. Generating a sequence {x0, x1, x2, x3, . . .} that is ergodic
for ρ is useful because expectations of any quantity of interest can then be computed as
averages over the sequence; i.e.,

lim
N→∞

1
N

N−1

∑
i=0

g(xi) =
∫

X
g(x)ρ(x)dx. (1)
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In statistics, such ergodic sequences are commonly generated using stochastic iterations
that simulate a Markov chain targeting ρ [5]; here, we explore deterministic iterations that
generate an orbit that is ergodic for ρ.

The equilibrium distribution for a given iterated function, if it exists, can be approx-
imated by computing the orbit of the map for some starting point and then performing
kernel density estimation, or theoretically by seeking the stationary distribution of the
Frobenius–Perron (FP) operator that is the transfer [6], aka push-forward, operator induced
by a deterministic map [1,2]; we present the FP equation in Section 2.

The inverse problem that we consider here—determining a map that gives a prescribed
equilibrium distribution—is the inverse Frobenius–Perron problem (IFPP) and has been
studied extensively [7–14]. Summaries of previous approaches to the IFPP are presented
in [12,15], which characterize approaches as based on conjugate functions (see [7] for
details) or the matrix method (see [15] for details), and [16], which also lists the differential
equation approach. Existing work almost solely considers the IFPP in one variable, d = 1,
with the exception being the development of a two-dimensional solution in [12] that is also
presented in [15].

The matrix method, first suggested by Ulam [17], solves the IFPP for a piecewise-
constant approximation to the target density using a transition matrix representation of the
approximated FP operator. Convergence of the discrete approximation is related to Ulam’s
conjecture and has been proved for the multidimensional problem; see [16] and references
therein. While the matrix method allows the construction of solutions, at least in the limit,
existing methods only offer a limited class of very non-smooth solutions, which are not
clearly useful for characterizing all solutions, as we do here. We do not further consider
the matrix methods.

The development in this paper starts with the differential equation approach in which the
IFPP for restricted forms of distributions and maps is written as a differential equation that may
be solved. We re-derive some existing solutions to the IFPP in this way in Section 3. The main
contribution of this paper is to show that the form of these solutions may be generalized to
give the general solution of the IFPP for any probability distribution in any dimension d,
as presented in the factorization theorem of Section 4. This novel factorization represents
solutions of the IFPP in terms of the Rosenblatt transformation [18] and a uniform map; that
is, a map on [0, 1]d that leaves the uniform distribution invariant. In particular, we show
that the conjugating functions in [7] are exactly the inverse Rosenblatt transformations.
For a given Rosenblatt transformation, there is a one-to-one correspondence between the
solution of the IFPP and the choice of a uniform map.

This reformulation of the IFPP in terms of two well-studied constructs leads to practi-
cal analytic and numerical solutions by exploiting existing, well-developed methods for
Rosenblatt transformations and deterministic iterations that target the uniform distribution.
The factorization also allows us to establish the equivalence of solutions of the IFPP and
other methods that employ a deterministic map within the generation of ergodic sequences.
This standardizes and simplifies existing solution methods by showing that they are special
cases of constructing the Rosenblatt transformation (or its inverse) and the selection of a
uniform map.

This paper starts with definitions of the IFPP and the Lyuapunov exponent in Section 2.
Solutions of the IFPP in one dimension, d = 1, are developed in Section 3. These solutions
for d = 1 motivate the factorization theorem in Section 4, which presents a general solution
to the IFPP for probability distributions with domains in Rd for any d. Section 5 presents
further examples of univariate, d = 1, solutions to the IFPP based on the factorization
theorem in Section 4. Two two-dimensional numerical examples are presented in Section 6.3
to demonstrate that the theoretical constructs may be implemented in practice. A summary
and discussion of results is presented in Section 7, including a discussion of some existing
computational methods that can be viewed as implicitly implementing the factorization
solution of the IFPP presented here.
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2. Inverse Frobenius–Perron Problem and Lyapunov Exponent

In this section, we define the forward and inverse Frobenius–Perron problems, and
also the Lyuapunov exponent that measures chaotic behavior.

2.1. Frobenius–Perron Operator

A deterministic map xn+1 = M(xn) defines a map on probability distributions over
state, called the transfer operator [6]. Consider the case where the initial state x0 ∼ ρ0(·)
(x0 is distributed as ρ0) for some distribution ρ0 and let ρn denote the n-step distribution;
i.e., the distribution over xn = Mn(x0) at iteration n. The transfer operator that maps
ρn 7→ ρn+1 induced by M is given by the Frobenius–Perron operator associated with
M : x 7→ y [1,2,19]

ρn+1(y) = ∑
x∈M−1(y)

ρn(x)
|J(x)| (2)

where |J(x)| denotes the Jacobian determinant of M at x, and the sum is over inverse
images of y. We have used the language of differential maps, as all the maps that we
display in this paper are differentiable almost everywhere [20]. More generally, |J(x)|−1

denotes the density of ρn M−1 with respect to ρn+1; see, e.g., [2] (Remark 3.2.4.).
The equilibrium distribution ρ of M satisfies

ρ(y) = ∑
x∈M−1(y)

ρ(x)
|J(x)| (3)

and we say that ρ is invariant under M.

2.2. Inverse Frobenius–Perron Problem

The inverse problem that we address is finding an iterative map M that has a given
distribution ρ as its equilibrium distribution. We do this by exploring the inverse Frobenius–
Perron problem (IFPP) of finding an M that satisfies (3) to ensure that ρ is an invariant
distribution of M. Establishing chaotic and thus ergodic behavior is a separate calculation.

We assume throughout this work that ρ is absolutely continuous with respect to
the underlying measure, meaning that a probability density function ρ(x) exists and
furthermore that ρ(x) > 0, ∀x ∈ X.

2.3. Lyapunov Exponent

The Lyapunov exponent h of an iterative map gives the average exponential rate of
divergence of trajectories. We define the (maximal) Lyapunov exponent h as [1,2]

h = lim
N→∞

1
N

log
∣∣∣∣dxN

dx0

∣∣∣∣ = lim
N→∞

1
N

N−1

∑
n=0

log |J(xn)| (4)

that features the starting value x0. For ergodic maps, the dependency on x0 is lost as
N → ∞, and the Lyapunov exponent may be written

h =
∫

X
log |J(x)|ρ(x)dx (5)

where ρ(x) is the invariant density. A positive Lyapunov exponent h indicates that the map
is chaotic.

The theoretical value for the Lyapunov exponent may be obtained using (5), while (4)
provides an empirical value obtained by iterating the map M. For example, the Lyapunov
exponent of the logistic map evaluated by (5) is hlog = log 2 ≈ 0.693147, while (4) evaluated
over an orbit with 10,000 iterations gives hlog ≈ 0.693140.

For chaotic maps, any uncertainty in the initial value means that an orbit cannot be
precisely predicted, since initial states with any separation become arbitrarily far apart,
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within X, as iterations increase. It is therefore useful to characterize the orbit statistically, in
terms of the equilibrium distribution over states in the orbit.

It is interesting to note that theoretical chaotic and ergodic behavior does not nec-
essarily occur when iterations of a map are implemented on a finite-precision computer.
For example, when the logistic map, as shown above, on [0, 1] is iterated on a binary
computer, the multiplication by 4 corresponds to a shift left by 2 bits, and all subsequent
operations maintain lowest order bits that are 0. Repeated iterations eventually produce
the number zero, no matter the starting value. While it is simple to correct this non-ideal
behavior, as was done to give the numerical Lyapunov exponent, as shown above, it is
important to note that computer implementation can have very different dynamics to the
mathematical model.

3. Solution of the IFPP in 1-Dimension

In this section, we develop solutions of the IFPP in one dimension, d = 1. Without
loss of generality, we consider distributions on the unit interval X = [0, 1] as the domain
of any univariate distribution may be transformed by a change of variable to X = [0, 1],
including when the domain is the whole real line (−∞, ∞).

For distributions over a scalar random variable, the FP equation for the invariant
density (3) simplifies to

ρ(y) = ∑
x∈M−1(y)

ρ(x)
|M′(x)| . (6)

3.1. The Simplest Solution

We first note, almost trivially, that the identity map M = I, where I(x) = x, has ρ
as an invariant distribution and thus solves the IFPP for any ρ. Somewhat less trivial is
the derivation of this simplest solution by assuming that M is monotonic increasing and
M(0) = 0, meaning that there is only one inverse image in (6). Writing |M′(x)| = dM/dx
gives the differential equation with separated variables

ρ(M)dM = ρ(x)dx (7)

that has solution
F(M) = F(x)

where F(x) =
∫ x

0 ρ(x′)dx′ is the cumulative distribution function (CDF) for ρ. If F is
invertible, denote the inverse by F−1, called the the inverse distribution function (IDF);
otherwise, let F−1 denote the generalized inverse distribution function, F−1(p) = inf{x ∈
X : F(x) ≥ p}. Then, M = F−1(F(x)) = x, or M(x) = x, almost everywhere. Thus, the
identity map is the unique monotonic increasing map that has ρ as its invariant distribution.
Clearly, the identity map is not ergodic for ρ.

We may generalize this solution by setting M(0) = k, for some k ∈ [0, 1), and also
only requiring M to be piecewise continuous. Allowing one discontinuity in M, we write
the integral of the separated differential Equation (7) as

F(M) = F(x) + k mod 1

giving the solution to the IFPP

M(x) =
(

F−1 ◦ Tc ◦ F
)
(x) (8)

where c = F−1(k). Here, Tc denotes the operator that translates by c with a wrap-around
on [0, 1) (thus, Tc is the translation operator on the unit circle S1)

Tc(y) = y + c− by + cc, (9)
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where b c denotes the floor function; see Figure 1 (left). The identity map is recovered
when k = c = 0.

Figure 1. Translation operator Tc for c = 0.3 (left) and triangle map t1 (right).

It is easily seen that the Lyapunov exponent of the map in (8) is h = 0, so the map
is not chaotic. However, interestingly, this map can generate a sequence of states that
produce a numerical integration rule with respect to ρ, since appropriate choices of c and
the number of iterations N can produce a rectangle rule quadrature or a quasi Monte Carlo
lattice rule; see Section 4.3.

3.2. Exploiting Symmetry in ρ(x)

When the PDF ρ has reflexive symmetry about 1/2—i.e., ρ(x) = ρ(1− x)—we can sim-
plify the FP Equation (6) by assuming that the map M has the same symmetry. Specifically,
we write the triangle map (see Figure 1 (right))

t1(x) = 1− 2|x− 1/2| (10)

that has reflexive symmetry about 1/2, and write

M(x) = m(t1(x)) (11)

where m(x) : [0, 1]→ [0, 1] is a monotonic increasing map with m(0) = 0 (and, as is shown
below, m(1) = 1). Thus, the FP equation simplifies to

ρ(y) = 2
ρ(x)
|M′(x)| , x ∈ M−1(y), (12)

which we can write as the separated equations

ρ(M)dM = 2ρ(x)dx, x < 1/2,

ρ(M)dM = −2ρ(x)dx, x > 1/2,

which have the continuous solution

F(M) = t1(F(x))

giving the continuous solution to the IFPP

M(x) =
(

F−1 ◦ t1 ◦ F
)
(x). (13)

One can solve for m(x) = F−1(2F(x/2)), though we do not further consider the function m.
The approach we have used here simplifies the approach in [9], while “doubly sym-

metric” maps of the form (11) were considered in [21] and again in [10,11].
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3.3. Symmetric Triangular Distribution

To give a concrete example of the solution in (13), we consider the symmetric triangular
distribution on [0, 1] with PDF

ρtri(x) = 2− 4
∣∣∣∣x− 1

2

∣∣∣∣ (14)

that has reflexive symmetry about x = 1
2 . The CDF is

Ftri(x) =

{
2x2 0 ≤ x ≤ 1

2
1
2 + 4x− 2x2 1

2 ≤ x ≤ 1

giving the unimodal map, after substituting into (13),

Mtri(x) =



√
2x 0 ≤ x ≤ 1√

8

1−
√

1
2 − 2x2 1√

8
≤ x ≤ 1

2

1−
√

1
2 − 2(1− x)2 1

2 ≤ x ≤ 1− 1√
8√

2(1− x) 1− 1√
8
≤ x ≤ 1

(15)

shown in Figure 2 (left). The same map was derived in [7]. Figure 2 (right) shows a
normalized histogram of 106 iterations of Mtri starting at x = 0.3, confirming that the orbit
of Mtri converges to the desired triangular distribution. The numerical implementation
avoids finite-precision effects, as discussed later.

Figure 2. Iterative map Mtri in (15) (left) and a histogram of 1× 106 iterates of the map Mtri (right).

The theoretical Lyapunov exponent for Mtri is htri = log 2 ≈ 0.693147, while (4)
evaluated over an orbit with 106 iterations gives htri ≈ 0.693148.

4. Solutions of the IFPP for General Multi-Variate Target Distributions

The solutions to the one-dimensional IFPP with a special structure in Equations (8) and (13)
are actually examples of a general solution to the IFPP for multi-variate probability distributions
with no special structure. We state that connection via a theorem that establishes a factorization
of all possible solutions to the IFPP and that also provides a practical means of solving the IFPP.

We first introduce the forward and inverse Rosenblatt transformations; that is, the
multi-variate generalization of the CDF and IDF for univariate distributions.
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4.1. Forward and Inverse Rosenblatt Transformations

A simple transformation of an absolutely continuous d-variate distribution into the
uniform distribution on the d-dimensional hypercube was introduced by Rosenblatt [18],
as follows. The joint PDF can be written as a product of conditional densities,

ρ(x1, . . . , xd) = ρ1(x1)ρ2(x2|x1) · · · ρd(xd|x1 . . . , xd−1),

where ρk(xk|x1 . . . , xk−1) is a conditional density given by

ρk(xk|x1 . . . , xk−1) =
pk(x1, . . . , xk)

pk−1(x1 . . . , xk−1)
, (16)

in terms of the marginal densities,

pk =
∫

ρ(x1, . . . , xd)dxk+1 · · ·dxd, (17)

where k = 1, . . . , d.
Let z = (z1, . . . , zd) = R(x1, . . . , xd) where R is the Rosenblatt transformation [18]

from the state-space X ⊆ Rd of ρ to the d-dimensional unit cube [0, 1]d, defined in terms of
the (cumulative) distribution function F by

z1 = F1(x1) =
∫ x1

−∞
ρ1(x′1)dx′1,

z2 = F2(x2|x1) =
∫ x2

−∞
ρ2(x′2|x1)dx′2,

...

zd = Fd(x2|x1, . . . , xd−1) =
∫ xd

−∞
ρd(x′d|x1, . . . , xd−1)dx′d.

As noted in [18], there are d! transformations of this type, corresponding to the d! ways
of ordering the coordinates. Further multiplicity is introduced by considering coordinate
transformations, such as rotations.

Notice that in one dimension the Rosenblatt transformation R(x) is simply the
CDF F(x).

It follows that if x ∼ ρ, then z = R(x) ∼ Unif([0, 1]d); i.e., z is uniformly distributed
on the d-dimensional unit cube [18]. When ρ(x) > 0, ∀x ∈ X, the distribution functions
are strictly monotonic increasing and the inverse of the Rosenblatt transformation R−1 is
well defined; otherwise, let R−1 denote the generalized inverse as in Section 3.1. Then, if
z ∼ Unif([0, 1]d), it follows that x = R−1(z) ∼ ρ; i.e., x is distributed as the desired target
distribution ρ [22]. This is the basis of the conditional distribution method for generating
multi-variate random variables, which generalizes the inverse cumulative transformation
method for univariate distributions [22–25]. These results may also be established by
substituting R or R−1 into the the FP Equation (2), noting that there is a single inverse
image and that the Jacobian determinant of R equals the target PDF ρ(x).

In the remainder of this paper, we refer to any map R satisfying x ∼ ρ ⇒ R(x) ∼
Unif([0, 1]d) as a Rosenblatt transformation, with the (generalized) inverse as defined above.

4.2. Factorization Theorem

The following theorem characterizes solutions to the IFPP.

Theorem 1. Given a probability distribution ρ in d dimensions, a map M(x) is a solution of the
IFPP; that is, M(x) satisfies the FP Equation (3) if and only if

M(x) = (R−1 ◦U ◦ R)(x), (18)
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where R is a Rosenblatt transformation and U is a “uniform map” on the unit d-dimensional
hypercube; i.e., a map that has Unif([0, 1]d) as invariant distribution.

Proof. We show that ρ is an invariant distribution of M if and only if M has the form (18).
(⇒) Assume M has the form (18). If x ∼ ρ, then R(x) ∼ Unif([0, 1]d); thus, U(R(x)) ∼
Unif([0, 1]d), as Unif([0, 1]d) in invariant under U, and thus M(x) = R−1(U(R(x))) ∼ ρ,
as desired. (⇐) If ρ is invariant under M, then U = R ◦M ◦ R−1 is a uniform map, since
if z ∼ Unif([0, 1]d), then R−1(z) ∼ ρ, M(R−1(z)) ∼ ρ, and R(M(R−1(z))) ∼ Unif([0, 1]d).
Inserting this U into (18) gives the desired factorization.

The first part of the proof shows that any uniform map U induces a solution to the
IFPP, though the particular solution depends on the particular Rosenblatt transformation.
The second part of the proof shows that different solutions to the IFPP effectively differ
only by the choice of the uniform map U, once the Rosenblatt transformation is determined;
that is, a coordinate system is chosen with an ordering of those coordinates.

Grossmann and Thomae [7] referred to dynamical systems M and U related by a
formula of the form (18) as “related by conjugation”, or simply “conjugate”, and the map
R−1 in (18) is a “conjugating function”. Thus, in the language of [7], Theorem 1 shows that
the IFPP for any distribution ρ has a solution (actually, it shows that there are infinitely
many solutions), every solution map is conjugate to a uniform map, and the conjugating
function is precisely the inverse Rosenblatt transformation.

Notice that both the translation operator Tc in (9) and the triangle map in (10) are
uniform maps on the unit interval [0, 1]. Thus, the solutions to the IFPP given in Equa-
tions (8) and (13) are examples of the general solution form in (18). In particular, while the
solution to the IFPP in (13) was derived assuming the symmetry of the target density ρ(·),
(13) actually gives a solution of the IFPP for any density ρ(·). Unimodal maps of this form
were derived in [8].

Computed examples of solutions to the IFPP given by the factorization (18) are pre-
sented in Section 5 in one dimension and in Section 6 in two dimensions. High-dimensional
calculations are discussed in Section 7.

4.3. Properties of M from U

Many properties of the map M are inherited from the uniform map U.
When R and R−1 are continuous, M is continuous if and only if U is continuous. In

one dimension, the monotonicity of the CDF and IDF implies that the number of modes
of U equals the number of modes of M; in particular, M is unimodal if and only if U
is unimodal.

Constructing iterative maps with a specific periodicity of the orbit is possible through
the use of translation operators Tc as uniform maps, defined in Equation (9). First, consider
maps in one dimension on [0, 1]. If the shift c 6= 0 and c /∈ Q, the map is aperiodic. However,
in the case that c 6= 0 and c ∈ Q such that

c =
N
D

(19)

with N, D ∈ N and gcd(N, D) = 1, then the map is periodic with periodicity D, and
iterative maps constructed with U = Tc exhibit the same periodicity. These properties may
be extended to multi-dimensional settings when the translation constant c is a vector of
shifts in each coordinate direction, as used in rank-one lattice rules for quasi-Monte Carlo
integration [26].

The factorization in Theorem 1 also shows that performing an iteration xn+1 = M(xn)
with an iterative map M on the space X is equivalent to applying the corresponding
uniform map zn+1 = U(zn) on the space [0, 1]d through the transformations R and R−1, as
indicated in the following (commuting) diagram.
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xn zn

xn+1 zn+1

R
M U

R−1

R

R−1

Using this commuting property, it is straightforward to prove the following lemma:

Lemma 1. For given distribution ρ, let R be a Rosenblatt transformation for ρ. Let M = R−1 ◦U ◦ R
be a solution of the IFFP, as guaranteed by Theorem 1, where U is a uniform map. Then

O+
M(x0) = R−1(O+

U (R(x0))
)
. (20)

Thus, instead of iterating M on the space X to produce the sequence {x1, x2, x3, . . .},
Equation (20) shows that one can iterate the map U on the space [0, 1]d to produce the
sequence {z1, z2, z3, . . .} and then evaluate xn = R−1zn, n = 1, 2, . . . to produce exactly the
same sequence on X. Since the map M is mixing or ergodic if and only if the uniform map U
is mixing or ergodic, respectively, in this sense, the mixing and ergodicity of M is inherited
from U. When the uniform map U satisfies the stronger condition that Unif([0, 1]d) is the
equilibrium distribution, U is called an exact map [2].

Using the expansion in Equation (20), we see that M is deterministic or stochastic if
and only if U is deterministic or stochastic, respectively. Even though we do not consider
stochastic maps here, we note that, for stochastic maps, iterations of M are correlated or
independent if and only if iterations of U are correlated or independent, respectively.

Some other properties that are and are not preserved by the transformation from U to
M are discussed in [7].

5. Examples in One Dimension
5.1. Uniform Maps on [0, 1]

We have already encountered three uniform maps on the interval [0, 1], namely the
identity map I(x) = x (Figure 3 (top, left)) and the translation operator (9) (Figure 1 (left)),
that have the Lyapunov exponent h = 0, and the triangle map (Figure 1 (right)) with the
Lyapunov exponent h = log 2.

Some further elementary uniform maps on [0, 1] and associated Lyapunov exponents
are listed as follows:

• ` periods of a sawtooth function on [0, 1] (Figure 3, top-right, for l = 3 periods)

s`(x) = ` ∗ x− b` ∗ xc, (21)

with the Lyapunov exponent h = log `; (the two-period sawtooth map s2 is also called
the Bernoulli map, and its orbit O+(x) is the dyadic transformation)

• ` periods of a triangle function on [0, 1] (Figure 3 (bottom, left) for l = 3 periods)

t`(x) = 1− 2|s`(x)− 1/2|. (22)

with the Lyapunov exponent h = log 2`; (this is the “broken linear transformation”
in [7] of order p = 2`)

• The asymmetric triangle, for c ∈ (0, 1) (Figure 3 (bottom, right) for c = 0.3)

tc(x) =


x
c

0 ≤ x ≤ c

1− x
1− c

c ≤ x ≤ 1
(23)

with the Lyapunov exponent 0 ≤ h = −c log c− (1− c) log(1− c) ≤ log 2.
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Figure 3. Four examples of uniform maps on [0, 1]. (Top, left) identity map. (Top, right) ` periods
of a sawtooth wave for ` = 3. (Bottom, left) ` periods of a triangle wave for ` = 3. (Bottom, right)
asymmetric triangle for c = 0.3.

Obviously, many more uniform maps are possible. Further examples can be formed
by partitioning the domain and range of any uniform map and then permuting the subin-
tervals. Many existing “matrix-based” methods for constructing solutions to the IFPP
can be viewed as examples of such a partition-and-permute of an elementary uniform
map [27]. Uniform maps of other forms are developed in [28] from two-segmental Lebesgue
processes, producing uniform maps that are curiously non-linear.

Lemma 2. The composition of uniform maps is also a uniform map; i.e., if U1 and U2 are uniform
maps, then so is U = U1 ◦U2.

An example is t`, which can be constructed as the composition t` = s` ◦ t1.
We mentioned the numerical artifacts that can occur with finite-precision arithmetic,

particularly when implementing maps on a binary computer and when the endpoints of
the interval X and constants in the maps have exact binary representations. Computation
was performed in MatLab implementing IEEE Standard 754 for the double-precision binary
floating-point format. We avoided these artifacts by composing the stated uniform map
with the translation Tc for c = 1/3× 10−9 that does not have a finite binary representation.
This small shift is indiscernible in the graphs of the maps.

5.2. Ramp Distribution

To give a concrete example of the solution in (13) for a distribution without reflexive
symmetry, we consider the ramp distribution with PDF

ρramp(x) = 2x (24)



Entropy 2021, 23, 838 11 of 19

that has CDF
Framp(x) = x2.

We produce a unimodal, continuous map by choosing the uniform map t1, as in (13), to give

Mramp =


√

2x 0 ≤ x ≤ 1√
2√

2
√

1− x2 1√
2
≤ x ≤ 1

(25)

as shown in Figure 4 (left). Figure 2 (right) shows a normalized histogram of 106 iterations
of Mramp starting at x = 0.3, confirming that the orbit of Mramp converges to the desired
ramp distribution, as guaranteed by Theorem 1. The numerical implementation avoids
finite-precision effects, as discussed earlier.

Figure 4. Iterative map Mramp in (25) (left) and a normalized histogram of 1× 106 iterations that
approximates the equilibrium PDF (right).

The estimated Lyapunov exponent for this map is h ≈ 1.040035, which is greater than
the Lyapunov exponent for the inducing triangular map t1, which is log 2 ≈ 0.693147.

Using a different uniform map gives a different solution to the IFPP. For example,
choosing s3 gives the map M = F−1 ◦ s3 ◦ F, as shown in Figure 5 (left). A normalized
histogram over an orbit of 106 iterations is shown in Figure 5 (right), confirming that this
map is also ergodic for ρramp.

Figure 5. Iterative map Mramp in (25) (left) and a normalized histogram of 1× 106 iterations that
approximates the equilibrium PDF (right).

The estimated Lyapunov exponent for this map is h ≈ 1.098612, which is the same
numerical value as the Lyapunov exponent for the sawtooth map s3, which is log 3 ≈ 1.098612.
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5.3. The Logistic Map and Alternatives

The logistic map, as mentioned in the introduction, is

Mlog(x) = 4x(1− x). (26)

The equilibrium distribution of this map

ρlog(x) =
1

π
√

x(1− x)
, (27)

can be easily verified by substituting into the FP Equation (6). The CDF of ρlog(x) is

Flog(x) =
∫ x

0
ρlog(x′)dx′ =

2
π

arcsin(
√

x), (28)

and the IDF is
F−1

log (x) = sin2(
πx
2
) =

1
2
(1− cos(πx)). (29)

The logistic map (26) is induced by the factorization (18) by choosing the triangle map
t1 as a uniform map; i.e., substituting the CDF (28) and IDF (29) into (13) (see Figure 6 (left)).
Equivalently, one may note that the logistic map (26) is transformed into the triangle map
t1 by the change of variables z = F−1(x); in the language of [7], Mlog and t1 are conjugate
dynamical laws.

Other iterative maps that preserve the same equilibrium distribution (27) can be
constructed by choosing another uniform map, such as ` periods of a triangle function (22).
This gives the iterative maps

M` = F−1
log ◦ t` ◦ Flog = sin2(2` arcsin(

√
x)), ` ≥ 1, (30)

that coincide with the nth power of the logistic map (26) for ` = 2n−1. Figure 6 (right)
shows the map which preserves the same equilibrium distribution as the logistic map but
induced by the uniform map t3. Since 3 is not of the form 2n−1, this map is not simply a
power of the logistic map.

Figure 6. Logistic map Mlog, that equals M1 = F−1
log ◦ t1 ◦ Flog (left), and the map M3 = F−1

log ◦ t3 ◦ Flog

that has the same equilibrium distribution (right).

The theoretical value of the Lyapunov exponent of the map in (30) is log 2`, using (5).
Table 1 gives the theoretical values of the Lyapunov exponent and experimentally calculated
values using 10,000 iterations, as in (4), for some values of `.
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Table 1. Experimental he and theoretical ht Lyapunov exponents for the maps in Figure 6 for a range
of `, given to six decimal places.

` he ht

1 0.692819 0.693147
2 1.386284 1.386294
4 2.079430 2.079442

224 17.328594 17.328680
239 27.725713 27.725887

6. Two Examples in Two Dimensions

6.1. Uniform Maps on [0, 1]2

Two well-known examples of uniform maps in the two-dimensional unit square,
X = [0, 1]2, are the baker’s map

Ub(x1, x2) =

2x1 mod 1,
x2 + u

(
x1 − 1

2

)
2

, (31)

where u is the unit step function, and the Arnold cat map

UA(x1, x2) = ((2x1 + x2) mod 1, (x1 + x2) mod 1). (32)

Other uniform maps in d > 1 dimensions may be formed by 1 dimensional uniform maps
acting on each coordinate, giving the coordinate-wise uniform map

U(x) = (U1(x1), U2(x2), . . . , Un(xd)) (33)

where Ui(x), i = 1, 2, . . . , d, are uniform maps in 1 dimension. We use the baker’s map (31)
and a coordinate-wise uniform map in the 2 dimensional examples that follow.

6.2. Checker-Board Distribution

This example demonstrates the construction of a map in two-dimensions that targets a
checker board distribution, as shown in Figure 7 (bottom-left), using the factorization (18).

The first step in constructing a solution to the IFPP for this distribution is to construct
the forward and inverse Rosenblatt transformations, which requires the marginal den-
sity functions (17), which may be evaluated analytically in this case. A plot of the two
components of the functions R and R−1 is shown in Figure 8.

We construct two solutions to the IFPP, each induced by choosing a particular uniform
map: the first is the baker’s map (31), and the second is a component-wise uniform map (33)
with an asymmetric triangle map (23) acting on each component,

U(x1, x2) = (U1(x1), U2(x2)) (34)

where U1 = tc for c = 0.3 and U2 = tc with c = 0.9.
Figure 7 (top row) shows the two components of the map induced by the baker’s map,

the checker-board distribution (bottom-left), and a histogram of 106 iterations (bottom-right)
showing that the map does indeed converge in distribution to the desired distribution.

Figure 9 (top row) shows the two components of the map constructed using the two
component-wise asymmetric triangular maps, the checker-board distribution (bottom-left),
and a histogram of 106 iterations (bottom-right) showing that the map also converges in
distribution to the desired distribution, and hence is also a solution to the IFPP.
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Figure 7. Iterated function constructed with U being the baker’s transformation, a histogram of
iterations, and the checker board distribution. The x1 part of the constructed map (top-left), the x2

part of the constructed map (top-right), the checker board distribution (bottom-left), and a histogram
of iterates of the constructed map (bottom-right) are shown.
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Figure 8. Plots of the Rosenblatt transformation R and its inverse R−1 for the checker-board distribu-
tion. The top row shows the components of R: first component (left) and second component (right).
The bottom row shows the components of R−1: first component (left) and second component (right).
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Figure 9. Same as Figure 7, except M is constructed with U being component-wise asymmetric
triangular maps.

6.3. A Numerical Construction

The numerical implementation of the factorized solution (18) is not difficult in a small
number of dimensions. In this section, we present an example of numerical implementation
using a normalized greyscale image of a pre-2006 New Zealand 50 cent coin, piecewise
constant over pixels, as the target distribution; see Figure 10 (left). The marginal distri-
butions (17) are evaluated as a linear interpolation of cumulative sums over pixel values,
and thus the CDF and then forward and inverse Rosenblatt transformations follow as in
Section 4.1. The uniform map was produced as component-wise univariate translation
maps, specifically

U(x1, x2) = (U1(x1), U2(x2))

where U1 = Tc for c = 0.6 and U2 = Tc with c = 0.2. The resulting map is given by
Equation (18).

Figure 10. A normalized greyscale image of a coin used as the target distribution, and a normalized
histogram of iterations of the map targeting this distribution. Original image (left), and normalized
histogram of 106 iterations (right).
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Figure 10 (right) shows a normalized histogram, binned to pixels, of 106 iterations of
this map. As can be seen, the estimated PDF from the orbit of this map does reproduce
the image of the coin. However, there are also obvious artifacts near the edge of the image
showing that the mixing could be better. We conjecture that a chaotic uniform map would
produce better mixing and fewer numerical artifacts.

7. Summary and Discussion

We have shown that the solution of the IFPP—finding an iterative map with a given
invariant distribution—can be constructed from uniform maps through the factorization
established in Theorem 1,

M = R−1 ◦U ◦ R

where R denotes the Rosenblatt transformation that has a Jacobian determinant equal to
the density function of the invariant distribution. In one dimension, R is exactly the CDF of
the given distribution, meaning that the factorization generalizes existing one-dimensional
solutions to the setting of arbitrary multi-variate distributions. The factorization also shows
the relationship between arbitrary iterative maps and uniform maps; i.e., given a Rosenblatt
transformation, the solution of the IFPP is equivalent to the choice of a uniform map that
has Unif([0, 1]d) as an invariant distribution.

We find the factorization (18) appealing as it shows that the solution of the IFPP
for arbitrary distributions, and in multiple dimensions, is reduced to two standard and
well-studied problems; i.e., constructing the Rosenblatt transformation (or CDF in one
dimension) and designing a uniform map. It is therefore surprising to us that the factoriza-
tion (18), and more generally the Rosenblatt transformation, appears not to be widely used
in the study of chaotic iterated functions and the IFPP. Grossmann and Thomae [7], in one
of the earliest studies of the IFPP, essentially derived the factorization (18) by introducing
conjugate maps and establishing the relation (in their notation) that ρ∗(x) = dh−1(x)/dx,
where ρ∗ is the invariant distribution and h is the conjugating function; see [7] (Figure 3).
It is a small step to identify that h is the IDF, generalized in multiple dimensions by the in-
verse Rosenblatt transformation. However, the connection was not made in [7], despite the
Rosenblatt transformation having been already known in statistics for some decades [18].

We constructed solutions to the IFPP for distributions with a special reflexive symme-
try structure, and then with no special structure, by constructing the Rosenblatt transforma-
tion and its inverse for some examples in one and two dimensions. For simple distributions
with an analytic form, the Rosenblatt transformation may be constructed analytically, while
numerically-defined distributions require the calculation of the marginal distributions (17)
using numerical techniques.

Although this factorization and construction is applicable to high-dimensional prob-
lems, the main difficulty is obtaining all necessary marginal densities, which requires the
high-dimensional integral over xk+1 . . . xd in (17). In general, this calculation can be ex-
tremely costly. Even a simple discretization of the PDF ρ, or of the argument of the marginal
densities (17), leads to a cost that grows exponentially with the number of dimensions.

To overcome this cost, Dolgov et al. [25] precomputed an approximation of ρ(x1, . . . , xd)
in a compressed tensor train representation that allows the fast computation of integrals
in (17) and subsequent simulation of the inverse Rosenblatt transformation R−1 from the
conditionals in (17) and showed that computational cost scales linearly with dimension
d. Practical examples presented in [25], in dimension d ≤ 32, demonstrate that operation
by the forward and inverse Rosenblatt transformations is computationally feasible for
multivariate problems with no special structure.

Finding a solution of the IFPP with desired properties is reduced to a standard problem
of designing a uniform map on [0, 1]d, for which there are many existing efficient options.
For example, standard computational uniform random number generators, which produce
pseudo-random sequences of numbers, are one such existing uniform map, as are the quasi-
Monte Carlo rules mentioned earlier [26]. These induce pseudo-random and quasi-Monte
Carlo sequences, respectively, on the space X via the inverse Rosenblatt transformation
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R−1 [29]. Both these schemes were demonstrated in practical high-dimensional settings
in [25].

The RHS of Equation (20) in d = 1 dimension is exactly the standard computational
route for implementing inverse cumulative transformation sampling from ρ, since com-
putational uniform pseudo-random number generators perform a deterministic iteration
on [0, 1] to implement a uniform map [29]. For d > 1, the RHS of Equation (20) is the
conditional distribution method that generalizes the inverse cumulative transformation
method, as mentioned above [22–25]. Thus, Lemma 1 shows that the standard computa-
tional implementation of both the inverse cumulative transformation method in d = 1 and
the conditional distribution method in d > 1 is equivalent to implementing a solution to
the IFFP. In this sense, computational inverse cumulative transformation sampling from ρ
can be viewed as the prototype for all iterative maps that target the distribution ρ, with
each ergodic sequence corresponding to a particular choice of uniform map.

We mentioned that the Rosenblatt transformation associated with a given distribution
ρ is not unique. Actually, any two Rosenblatt transformations for ρ are related by a uniform
map, as shown in the following Lemma.

Lemma 3. If R1 is a Rosenblatt transformation for ρ then R2 is a Rosenblatt transformation for ρ
if and only if

R2 = U ◦ R1

for some uniform map U.

Proof. (⇒) Since R1 and R2 are Rosenblatt transformations for ρ, then U = R2 ◦ R−1
1 is a

uniform map and R2 = U ◦ R1. (⇐) If R2 = U ◦ R1 then if x ∼ ρ, R1(x) ∼ Unif([0, 1]d)
and U ◦ R1(x) ∼ Unif([0, 1]d), and so R2 is a Rosenblatt transformation.

Thus, any Rosenblatt transformation R may be written as R = U ◦R0 for some uniform
map U and a fixed Rosenblatt transformation R0.

The Rosenblatt transformations that map any distribution to the uniform distribution
on the hypercube may also be used to understand mappings between spaces that are
designed to transform one distribution to another, such as the “transport maps” developed
in [30]. Consider distributions ρA and ρB, with Rosenblatt transformations RA and RB,
respectively, that may be related as in the following diagram:

ρA Unif([0, 1]d) ρB

RA

R−1
A

R−1
B

U

RB

The diagram provides a proof of the following lemma, which generalizes the factorization
shown in Theorem 1.

Lemma 4. A map M satisfies x ∼ ρA ⇒ M(x) ∼ ρB if and only if it can be written as
M = R−1

B ◦U ◦ RA, where RA and RB are Rosenblatt transformations for ρA and ρB, respectively,
and U is a uniform map.

Thus, for given Rosenblatt transformations, the choice of a map that maps samples
from ρA to samples from ρB is equivalent to the choice of a uniform map. Alternatively, if a
fixed uniform map is selected, such as the identity map, the choice of map M is completely
equivalent to the choice of Rosenblatt transformations. This factorization also shows that
the equivalence class of conjugate maps, noted in [7] for each dimension d, is generated by
the uniform maps, and each member of the equivalence class contains maps that target each
distribution, when the associated Rosenblatt transformation satisfies the mild conditions to
be a conjugating function as defined in [7].
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