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Although many driver mutations are thought to promote carcinogenesis via abnormal splicing, the landscape of splicing-

associated variants (SAVs) remains unknown due to the complexity of splicing abnormalities. Here, we developed a statis-

tical framework to systematically identify SAVs disrupting or newly creating splice site motifs and applied it to matched

whole-exome and transcriptome sequencing data from 8976 samples across 31 cancer types, generating a catalog of

14,438 SAVs. Such a large collection of SAVs enabled us to characterize their genomic features, underlying mutational pro-

cesses, and influence on cancer driver genes. In fact, ∼50% of SAVs identified were those disrupting noncanonical splice

sites (non-GT-AG dinucleotides), including the third and fifth intronic bases of donor sites, or newly creating splice sites.

Mutation signature analysis revealed that tobacco smoking is more strongly associated with SAVs, whereas ultraviolet

exposure has less impact. SAVs showed remarkable enrichment of cancer-related genes, and as many as 14.7% of samples

harbored at least one SAVs affecting them, particularly in tumor suppressors. In addition to intron retention, whose asso-

ciation with tumor suppressor inactivation has been previously reported, exon skipping and alternative splice site usage

caused by SAVs frequently affected tumor suppressors. Finally, we described high-resolution distributions of SAVs along

the gene and their splicing outcomes in commonly disrupted genes, including TP53, PIK3R1, GATA3, and CDKN2A, which offers

genetic clues for understanding their functional properties. Collectively, our findings delineate a comprehensive portrait of

SAVs, novel insights into transcriptional de-regulation in cancer.

[Supplemental material is available for this article.]

Comprehensive genomic characterization ofmultiple cancer types
in large-scale genetic studies has increasingly broadened the cata-
log of somatic alterations that dictate cancer evolution, including
single nucleotide variants (SNVs), small indels (insertions and
deletions), and copy number alterations (Garraway and Lander
2013; Vogelstein et al. 2013; Martincorena and Campbell 2015).
Moreover, it has also revealed disturbances in transcriptional regu-
lation, such as expression changes and splicing defects that under-
lie cancer pathogenesis (Garraway and Lander 2013; Vogelstein
et al. 2013). However, there has been only a little progress in the
understanding of how somatic alterations in cancer genomes exert
direct transcriptional consequences.

In cancer transcriptomes, splicing defects play important
roles in many aspects of cancer development and progression
(Venables 2004; Kalnina et al. 2005; Dvinge et al. 2016; Scotti
and Swanson 2016; Singh and Eyras 2017). Discovery of somatic
variants affecting RNA splicing factors, such as SF3B1 and U2AF1,
which induce extensive alterations in RNA splicing (trans-acting
regulation) in several kinds of cancers, highlights the relevance of
RNA missplicing in cancer pathogenesis (Yoshida et al. 2011;
Brooks et al. 2014; Dvinge et al. 2016). Anothermechanism,which
is the focus of this paper, is cis-acting regulation, in which somatic
variants directly cause abnormal splicing of the affected gene. For
example, somatic variants in canonical splice sites (highly con-

served GT-AG dinucleotides at exon-intron boundaries) have
long been reported to cause dysregulation of cancer-related genes
(Venables 2004; Kalnina et al. 2005). These variants can induce
different forms of abnormal splicing, such as exon skipping, intron
retention, and activation of cryptic splice sites (SSs). Recent pan-
cancer studies showed that SNVs causing aberrant intron retention
in exon-intron boundaries are enriched in tumor suppressor genes
(TSGs), especially TP53 (Supek et al. 2014; Jung et al. 2015).
However, the complexity of splicing systems and the perplexing
relationship between somatic variants and splicing alterations
have limited the opportunities for systematic analyses of the
extent and consequences of splicing-associated variants (SAVs):
Due to the diversity of transcription across tissues as well as indi-
viduals, a huge number of transcripts have not been well defined,
making it difficult to distinguish abnormal transcripts from nor-
mal variations. Together with this diversity, the rarity of SAVs
(usually represented by just one sample in a cohort) hampers
the sensitivity of conventional statistical methods to measure
the association between variant status and splicing changes, unless
there are some restrictions on the association to be considered
(e.g., aberrant splicing caused by variants near exon-intron bound-
aries). In addition, there is not always a one-to-one relationship be-
tween them; a somatic variant occasionally generates different
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abnormal splicing events, whereas several different somatic vari-
ants sometimes cause the same splicing event.

To overcome these limitations, we have developed a novel
algorithm, SAVNet (Splicing-Associated Variant detection by
NETwork modeling), for detecting SAVs based on a list of somatic
variants in a cohort and its matched RNA sequencing (RNA-seq)
data using a rigorous statistical framework. One of the keys to suc-
cess is that we carefully set the association rules between variants
and abnormal splicing, including the restriction of relevant posi-
tional relationships between them. Furthermore, we have resolved
the complex relationships between variants and splicing by utiliz-
ing network-based modeling and a Bayesian model averaging
framework. Through this approach, we performed a comprehen-
sive analysis of a large number of primary cancer samples across
31 cancer types from The Cancer Genome Atlas (TCGA), decipher-
ing the landscape of splicing aberrations caused by cis-acting vari-
ants in human cancers.

Results

Overview of the SAVNet framework

The overview of the proposed framework (SAVNet) is summarized
in Figure 1A. First, we collected evidence of abnormal splicing from
tumor-derived RNA-seq data. Exon skipping and alternative 5′ SS
and 3′ SS usage (defined by RefSeq transcript annotation) were
extracted by capturing splicing junctions demarcated by split-
aligned sequencing reads, whereas intron retention was identified
by detecting sequencing reads spanning exon-intron boundaries
(Fig. 1B). To obtain reliable and interpretable results, we focused
exclusively on either (1) a somatic variant located at or close to
an authentic exon-intron boundary (registered in the RefSeq data-
base), in which normal splicing is disrupted (SS disruption), or
(2) a somatic variant located within a newly created SS inferred
by an alternative SS usage event (SS creation). To represent the
complex relationships, we constructed a bipartite graph showing
all potential associations between somatic variants and abnormal
splicing events for each gene. Next, based on a probabilistic model
for the number of abnormal splicing-supporting reads and the
presence of a somatic variant, we deduced significant causal rela-
tionships through the evaluation of a Bayes factor incorporating
a Bayesian model averaging framework (Supplemental Fig. S1A;
Flutre et al. 2013; Stephens 2013). A simulation study investigating
the effect of the number of variant-splicing associations validated
that the proposed framework can utilize the information from
multiple associations for the sensitive identification of SAVs
(Supplemental Fig. S1B,C).

In the TCGA cohort, we compiled a total of 4,825,046 SNVs
and 523,236 indels from 8976 samples across 31 cancer types
that underwent both whole-exome sequencing (WES) and RNA-
seq using our in-house pipeline (see Methods; Supplemental
Tables S1, S2). Initially, to determine the relevant positions within
authentic SSs, we applied SAVNet to these sequencing data and
assessed the accuracy of SAVNet for each position by calculating
position-wise false discovery rates (FDRs) using a permutation of
combinations of WES and RNA-seq data. Within authentic SSs,
SS-disrupting variants at positions −3 through +6 of donor sites
and −1 through +6 (except for position +4) of acceptor sites had
low FDR values (below 20%), whereas much higher FDRs were
observed at other positions (Fig. 1C). This observation prompted
us to focus on somatic variants at these positions in the subsequent
analysis. In addition, to control the overall FDR at these positions

below 5%, we employed a threshold of e3.0 or greater for the Bayes
factor, depending on cancer type (Supplemental Fig. S1D). To eval-
uate the sensitivity of SAVNet under these settings, we compared
our framework with two studies using the TCGA data (Jung et al.
2015; Jayasinghe et al. 2018). In the overlapping patient popula-
tion (n = 929 [Jung et al. 2015] and 8247 [Jayasinghe et al. 2018],
respectively), SAVNet detected a markedly higher number of
SAVs, including more than a half of those found in the previous
studies (Supplemental Fig. S1E–H). These results demonstrate the
excellent detectability and satisfactory accuracy of SAVNet.

Landscape of SAVs in human cancers

With this optimized setting, we identified 14,438 somatic variants
(13,414 SNVs and 1024 indels) responsible for 18,036 splicing
alterations in the TCGA samples (Fig. 1E; Supplemental Table
S3). A total of 11,153 SNVs and 875 indels disrupted splicing donor
(n = 6799) or acceptor (n = 5229) motifs, of which 4406 SNVs
and 359 indels were not located within GT-AG canonical sites.
In addition, 2261 SNVs and 149 indels were detected to create
novel splicing donor (n = 1566) and acceptor (n = 844) sites.
Thus, 7175 (49.7%) somatic variants would not be expected to
be identified by conventional methods that concentrate on SAVs
involving canonical sites. Although the number of SAVs per sam-
ple was generally low (median of 1), there were quite a few samples
withmore instances of SAVs, particularly in cancer typeswith high
somatic variant rates, such as lung and skin cancers (Supplemental
Fig. S2A).

Overall, these splicing alterations included exon skipping
(n = 6873), intron retention (n = 1917), and alternative 5′ SS and
3′ SS usage (n = 4522 and 4724, respectively) (Fig. 1D). Although
the vast majority of SAVs caused a single splicing alteration,
2778 (19.2%) variants induced multiple splicing alteration events
(Fig. 1E; Supplemental Fig. S2B). The transcriptional consequences
substantially differed according to the somatic variant pattern
(donor vs. acceptor and disruption vs. creation). Exon skipping
and intron retention were caused by variants disrupting both
donor and acceptor sites (Fig. 1D). As expected, donor disruptions
tended to generate an alternative 5′ SS (n = 2783), whereas accep-
tor disruptions more frequently gave rise to an alternative 3′ SS
(n = 3625). Exon skipping was the most frequent consequence of
donor disruptions (n = 4442), whereas alternative 3′ SSs accounted
for more than one-half of acceptor disruptions. Many new splice
donor and acceptor siteswere created by variants outside authentic
SSs. Aberrant splicing events associated with variants in trans-act-
ing splicing factors (Dvinge et al. 2016) showed no overlap with
those detected by SAVNet (Supplemental Tables S4, S5).

Positional effects of SAVs disrupting authentic SSs

To investigate the positional effects of somatic variants on splic-
ing, we evaluated the number of SAVs disrupting authentic SSs
and their ratio to overall variants according to the distance from
the exon-intron boundary. This analysis revealed a substantial
difference among SS positions, although the proportion of splicing
outcomes was nearly consistent within donor and acceptor SSs, re-
spectively (Fig. 2A; Supplemental Fig. S2C). As previously reported
(Jung et al. 2015), canonical GT-AG sites (at positions +1 and +2)
had the highest ratios of splicing aberrations (18.4%–24.2%). In
donor SSs, noncanonical sites showed a comparable total number
of SAVs (n = 3428) with canonical sites (n = 2867), whereas the
majority of SAVs in acceptor SSs were present at canonical sites
(n = 3880, 79.9%). Together with the last exonic bases (−1) of
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Figure 1. Workflow and evaluation of SAVNet and overview of SAVs. (A) Workflow for detecting SAVs by SAVNet frommatched WES and RNA-seq data.
(B) Schematics depicting quantification methods of exon skipping and alternative 5′ SS or 3′ SS usage (by split-aligned reads) and intron retention (by
junction-spanning reads) and examples of somatic variants associated with abnormal splicing. SAVs within authentic SSs that disrupt normal splicing
(SS disruption) and those outside authentic SSs that create alternative SSs (SS creation) were evaluated separately. (C) Evaluation of position-wise numbers
of SAVs (green) and estimated false positives (brown) between the fifth exonic base (−5) and the 15th intronic base (+15) for splicing donor and acceptor
sites. Purple points with lines showestimated position-wise FDRs. Red dashed lines represent exon-intron boundaries. (D) Number of each type of abnormal
splicing events for each SAV type, stratified by (1) donor or acceptor, (2) disruption or creation, (3) SNVs or indels, and (4) canonical or noncanonical sites.
Numbers in parentheses indicate the number of each type of SAV. (E) Histogram of the number of SAVs according to the number of associated abnormal
splicing events. See also Supplemental Figures S1 and S2, A and B.
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donor sites, whose relevance was pointed out in the earlier study
(Jung et al. 2015), the fifth intronic bases (+5) also had a relatively
high ratio of abnormal splicing, followed by the third intronic
bases (+3). BesidesGT dinucleotides, these bases arewell conserved
and relevant to the interactionwithU1 andU5 small nuclear RNAs
(Lee and Rio 2015; Sibley et al. 2016). In fact, usingminigene splic-
ing assays (Nishida et al. 2011), we experimentally demonstrated
that not only canonical but also noncanonical site variants cause
abnormal splicing (Fig. 2B). The transcripts harboring variants at

positions +5 as well as −1 showed abnormal splicing, such as
exon skipping or intron retention, with comparable efficiency to
canonical site variants (+1), while the wild-type transcripts were
largely normally spliced.

Features of genomic sequences associated with SAVs

Splicing outcomes mediated by SAVs appear to be context-depen-
dent: Somatic variants within authentic SSs can cause different

A

C

D E

B

Figure 2. Genomic features of SS-disrupting variants generating distinct splicing alterations. (A) Number of SNVs disrupting splice donor and acceptor
sites (SAV count, upper) and their fraction relative to total SNVs (SAV ratio, lower) at each position in the entire cohort. See also Supplemental Figure S2C for
indels. (B) In vitro splicing analyses using H492 minigene constructs (left) showing exon skipping or intron retention (right) caused by SAVs at positions −1,
+1, and +5 of NF1 exon 37 or TP53 exon 4 donor sites, respectively. (WT) Wild type, (Mut) mutated. (C ) Change in splicing strength (based on MaxEnt
scores) triggered by somatic variants at authentic splicing donor (left) and acceptor (right) sites according to splicing outcomes. “Complex” represents
samples showingmore than one splicing alteration, and “Normal splicing” represents samples lacking the relevant splicing alterations despite the presence
of somatic variants in genes with detectable expression (fragments per kilobase of exon per million fragments mapped [FPKM]≥ 10). See also
Supplemental Figure S3B–E. (D) Sequence motifs of splicing donor sites at which somatic SNVs lead to normal (left) or abnormal splicing (right; identified
by SAVNet) according to the variant position. See also Supplemental Figure 3, F and G. (E) GC contents of exons affected by SAVs, and their flanking 5′ and
3′ introns were compared among the five splicing groups. See also Supplemental Figure S4.
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forms of splicing aberration, while the same substitutions at the
same relative position frequently do not alter splicing. To elucidate
the factors determining the potential of somatic variants within
authentic SSs to alter splicing, we compared the genomic features
of SSs between normal (those not identified as SAVs) and abnormal
splicing groups (SAVs) (Supplemental Fig. S3A). Generally, SS-
disrupting SAVs attenuated the splicing strength more than
variants that induced no abnormal splicing, regardless of the sub-
stituted position and consequent splicing alteration type (Fig. 2C;
Supplemental Fig. S3B–E). A sequence motif analysis revealed a
distinctive feature of SSs disrupted by SAVs, especially those at po-
sitions other than canonical GT-AG sites. As for variants occurring
at the penultimate (−2) and last (−1) exon bases in the donor SSs,
splicing motifs with abnormal splicing showed more conserved
exonic bases but less conserved intronic bases when compared
with normal splicing motifs, except for the universally conserved
canonical GT dinucleotides (Fig. 2D; Supplemental Fig. S3G).
This difference was opposite for SAVs at intronic bases, in which
consensus sequences were more conserved in introns, especially
at positions +4 through +6, but not in exons. These findings are
compatible with the proposed mutually repressive relationship
between the exonic and intronic regions of donor sites (Burge
and Karlin 1997; Carmel 2004). Analysis of the disrupted acceptor
sites revealed that thymine (T) at position +4 was overrepresented
in samples with SAVs at position +3, which may be due to the
frequent C >G substitutions at TpC dinucleotides attributed to
APOBEC activity (Supplemental Fig. S3F; Alexandrov et al. 2013;
Shiraishi et al. 2015).

Consistent with the previous report (Jung et al. 2015), inspec-
tion of the exon-intron architecture revealed that exon skipping
was characterized by a lower GC content in both exons and flank-
ing introns, shorter exon and longer intron length, and stronger
splicing strength (Fig. 2E; Supplemental Fig. S4A–F). These features
are characteristic of SSs governed by the exon definition mecha-
nism, in which exons are initially recognized by splicing factors
(Keren et al. 2010; Naftelberg et al. 2015). In contrast, intron reten-
tion and alternative SS usage were associated with longer exon
length, suggesting that these SSs are regulated in common by the
intron definition mechanism.

Mutational signatures associated with SAV generation

Despite the expansion of our understanding on the signatures of
mutational processes (Alexandrov et al. 2013; Shiraishi et al.
2015), the effect of these signatures on a specific type of somatic
variants have not been fully elucidated. Here, we noticed occasion-
al discrepancies between the efficiency of somatic variants to cause
abnormal splicing and the actual number of SAVs. For instance,
position +2 of acceptor sites showed only a moderate number of
SAVs, albeit the highest SAV ratio (Fig. 2A). These discrepancies
may be attributed to the overall number of somatic variants (in-
cluding those not associated with splicing alterations) and their
substitution patterns at each position, which reflect both the
unique base composition at SSs and mutational signatures.
In fact, positions at −1, +1, and +5 of donor sites as well as +1
of acceptor sites, which were dominated by G bases, showed fre-
quent G > A and G > T substitutions, suggestive of age- and smok-
ing-related mutational processes, respectively (Fig. 3A, upper). In
contrast, position +2 of donor and acceptor sites, which predomi-
nantly consist of A/T bases, showed a relatively low frequency of
somatic variants. Among them, variants at canonical GT-AG sites
caused splicing alterations, regardless of their base substitution

pattern, whereas almost all SAVs at positions −1 and +5 of donor
sites occurred at G bases, indicating almost no effect of substitu-
tions from other bases on splicing (Fig. 3A, lower). In addition, po-
sitions having a smaller fraction of abnormal splicing were more
strongly affected by the base substitution pattern. For example,
G > A substitutionswere themost common at position +3 of donor
sites but did not result in splicing aberrations. Moreover, despite
their low frequency of overall variants, C >G substitutions (com-
patible with the APOBEC cytidine deaminase mutational pattern
as shown below) accounted for a considerable proportion of SAVs
at position +3 of acceptor sites. These findings are consistent with
relatively limited conservationof splicingmotifs at thesepositions.

To evaluate the underlying mutational process operative in
SAVoccurrence,we estimated the extent of contribution (posterior
probability) by eachmutational signature for all the variants found
in the current sample set using a pmsignature algorithm (Shiraishi
et al. 2015) and calculated the fraction of SAVs to total variants
for eachmutational signature (see Method). Among the five major
mutational signatures (processes generating a large number of
somatic variants) (Supplemental Fig. S5A), the smoking signature
(C > A substitutions) showed the largest contribution to SAV gener-
ation, followed by APOBEC (C > T and C >G substitutions at
TpC sites) and aging signatures (C > T substitutions at CpG sites).
Signatures related to ultraviolet exposure (C > T substitutions at
YpC sites) and altered activity of the error-prone polymerase
POLE (C > A substitutions at TpCpT sites and C > T substitutions
at TpCpG sites) had less impact (Fig. 3B; Supplemental Fig. S5B).
These differences can partly be explained by the predominance
of G bases at highly affected positions (−1, +1, and +5 of donor
sites and +1 of acceptor sites), and the transcriptional strand bias
of severalmutational signatures, i.e., the smoking signature, prefer-
entially affecting C bases on the noncoding strand (G bases on the
coding strand), was strongly enriched, whereas the ultraviolet sig-
nature, which frequently alters C bases on the coding strand, was
underrepresented. Reflecting these differences among mutational
processes, lung squamous cell carcinomas (LUSC) and lung adeno-
carcinomas (LUAD) hadmore SAVs than expected from the overall
somatic variant rate, whereas cancers frequently affected by POLE
alterations, such as uterine corpus endometrioid carcinomas
(UCEC) and colon adenocarcinomas (COAD), as well as ultravio-
let-associated skin cutaneous melanomas (SKCM), showed a rela-
tively lower number of SAVs (Fig. 3C). The effects of smoking
status and POLE alterations were similarly observed within LUAD
as well as UCEC and COAD (Supplemental Fig. S5C–H).

Characteristics of SAVs creating alternative SSs

Our analysis also revealed the positional distribution of SAVs creat-
ing alternative donor and acceptor sites. Newly created donor
sites were widely distributed in both exons and introns, whereas
abnormal acceptor sites were created predominantly within the
polypyrimidine tract (Fig. 4A, upper), likely reflecting the involve-
ment of additional conserved elements in introns, such as branch-
point sequences and polypyrimidine tracts (Lee and Rio 2015;
Sibley et al. 2016). Apparently, similar distributions were also
seen for cryptic SSs activated by variants disrupting the authentic
SSs (Fig. 4A, lower). However, unlike newly created acceptor sites, a
biased localization of cryptic acceptor sites toward exons was
observed, which can be plausibly explained by a depletion of AG
dinucleotides in the polypyrimidine tract.

We also evaluated the substitutionpattern of somatic variants
creating new splicing sites based on their relative position within
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the newly created SSs. Most newly created donor sites resulted
from GT canonical site generation through C > T substitutions at
position +2, whereas variants associated with acceptor creation
tended to form a new YAG (Y, pyrimidine) motif at positions +3
through +1 (Fig. 4B,C). These results suggest that, showing a strong
bias toward particular base substitutions, these SAVs generate addi-
tional consensus donor or acceptor motifs that are more efficient
for splicing than those in authentic SSs, as implicated by stronger
splicing strength (assessed by MaxEnt [Yeo and Burge 2004] or H-
bond [Freund et al. 2003] scores) (Fig. 4D–F).

Enrichment of SAVs in TSGs

To evaluate the role of SAVs during cancer development, we inves-
tigated which genes are frequently altered by SAVs. Thirty-eight
(63.3%) out of 60 frequently affected genes (present in ≥10 sam-
ples across the entire cohort) were well-established TSGs (Fig. 5A,
B; Supplemental Fig. S6A,B). In agreement with this study (Jung
et al. 2015), in which intron retention was argued to be a major
mechanism of SAV-induced TSG inactivation, SAVs that caused

intron retention showed the strongest enrichment of TSGs, regard-
less of the cancer gene sets (Vogelstein et al. 2013; Lawrence et al.
2014; Ye et al. 2016). However, SAVs associatedwith exon skipping
and alternative SS usage also had a greater proportion of TSGs,
even when compared with nonsense variants, accounting for
88% of SAVs affecting TSGs (Fig. 5C). These findings suggest
that, togetherwith intron retention, exon skipping and alternative
SS usage play crucial roles in TSG inactivation. In contrast, onco-
genes were less frequently affected by SAVs, comparable to mis-
sense variants. In total, 1684 SAVs in candidate cancer-related
genes (Ye et al. 2016) were identified in 14.7% of the TCGA
samples (1315 of 8976). Particularly, as many as 914 SAVs
found in 9.3% of samples targeted well-known TSGs (Vogelstein
et al. 2013), of which 341 were not located at canonical sites.
Moreover, SAVs accounted for 9.5% of loss-of-function variants
in these genes. Therefore, SAVs represent an important but previ-
ously underestimated mechanism for TSG inactivation, irrespec-
tive of splicing outcome.

Likenonsensevariants, splicingalterationsare thought to trig-
ger nonsense-mediated decay (NMD), a surveillance mechanism

A

B C

Figure 3. Mutational signatures underlying the generation of SS-disrupting SAVs. (A) Base substitution patterns of total somatic variants (upper) and SAVs
(lower) at each exonic and intronic position of splice donor and acceptor sites. Different colors are used to display different types of alternative bases. The x-
axes represent different reference bases, and the y-axes represent the numbers of variants. Fractions of SAVs relative to total somatic variants (purple points)
with Bayesian confidence intervals (5% to 95% posterior quartiles) are also shown. (B) Fraction of estimated SAVs relative to estimated total variants attrib-
uted to eachmutational signature. Red dashed line represents the overall fraction of SAVs relative to total variants. See also Supplemental Figure S5, A and B.
(C ) Scatter plot showing the relationship between SAV and total variant counts in 31 cancer types. A linear regression line (red) is fitted to the data points for
each cancer, excluding those for COAD, SKCM, and UCEC. The truncated mean is used to exclude the samples with extremely large numbers of somatic
variants. See also Supplemental Figure S5C–H.
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that selectively degrades abnormal transcripts containing a prema-
ture termination codon (Jung et al. 2015; Scotti and Swanson
2016). To clarify the effects of SAVs on gene expression through
NMD in TSGs, we investigated the whole transcript level across
different types of abnormal splicing. In line with the previous re-
port (Jung et al. 2015), transcripts with intron retention showed
a substantially lower expression level than normal transcripts,
which was comparable to those with nonsense variants (Fig. 5D).

The expression of transcripts with exon skipping or alternative
SS usage was also reduced when their splicing alterations caused
frameshift changes.

Genes frequently altered by SAVs

Among genes frequently targeted by SAVs, TP53 was the most
frequently altered gene, affecting 233 samples in 22 cancer types

A

C

D E F

B

Figure 4. Genomic features and positional differences of SS-creating SAVs. (A) Histogram showing the distribution of newly created alternative SSs (up-
per) and cryptic SSs caused by SS disruption (lower). Red dashed lines and pink shading represent exon-intron boundaries and polypyrimidine tract regions
(positions +5 through +25), respectively. (B) Two typical examples of SS-creating SAVs (through formations of GT and YAG motifs, respectively) are dis-
played. (C ) Base substitution patterns of SAVs creating alternative SSs according to the distance from the newly created exon-intron boundaries. Colors
and axes are the same as in Figure 3A. (D) The effects of SAVs on splicing strength (based on MaxEnt or H-bond scores) for authentic or alternative SSs
were assessed. For SS-disrupting SAVs, the difference in splicing strength between alternative and unsubstituted authentic SSs (WT) was compared with
that between alternative and substituted authentic SSs (Mut). For SS-creating SAVs, the difference between unsubstituted alternative and authentic SSs
(WT) was compared with that between substituted alternative and authentic SSs (Mut). (E,F) Box plots showing the differences of MaxEnt scores for alter-
native 5′ SSs and 3′ SSs (E) and H-bond scores for alternative 5′ SSs (F).
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C

D

Figure 5. Entire spectrum of SAVs across cancer types. (A) Left: Landscape of SAVs in frequently altered genes (total number≥10) across cancer types. The
point size indicates the number of affected samples. Genes are sorted by the total number of SAVs in all cancer types, and known cancer-related genes (Ye
et al. 2016) are shown in red. Right: Relative frequencies of variant types and splicing outcomes of SAVs. For SAVs causing multiple splicing alterations,
splicing outcomes with the largest number of supporting reads are selected. (B) The fractions of SAVs affecting oncogenes or TSGs (based on
Vogelstein et al. 2013) relative to total SAVs according to splicing outcomes were compared with other types of somatic variants (silent, missense, and
nonsense). See also Supplemental Figure S6. (C) The number of SAVs affecting oncogenes or TSGs (based on Vogelstein et al. 2013). (D) Box plots showing
changes in normalized (z-scored) mRNA expression (FPKM) for each splicing outcome, as compared to other types of somatic variants.
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(Fig. 5A). Although the last bases of exons 4, 6, and 9were reported
to be frequently mutated (Supek et al. 2014; Jung et al. 2015), we
identified a number of recurrent variants at splice donor and
acceptor sites of introns 3 through 9, with prominent base-level
and/or SS-level hotspots at donor and acceptor sites of intron 4

(Supplemental Tables S6, S7). Approximately one-half of recurrent
SAVs simultaneously produced different types of abnormal splic-
ing, while identical abnormal splicing events were generated
by different SAVs, such as retention of introns 7, 8, and 9 caused
by donor and acceptor SAVs of each intron (Fig. 6, upper left).

A

B

Figure 6. Genes frequently affected by SAVs in human cancers. (A) Distribution of SAVs and their resultant splicing outcomes for TP53 (upper left), PIK3R1
(upper right), GATA3 (lower left), and CDKN2A (lower right). SS-disrupting and SS-creating SAVs are aggregated according to the authentic and alternative
SSs, respectively. The numbers in circles or triangles represent the number of SS-disrupting and SS-creating SAVs for each SS, respectively. See also
Supplemental Figure S7A. (B) Fraction of the most frequent relative to total associated splicing outcomes for each SS-level SAV hotspot (found in ≥8 sam-
ples). The most frequent splicing outcome is noted in parentheses for each SS. The same color indicates the identical SAVs in terms of position and sub-
stitution or indel patterns. See also Supplemental Figure S7B.
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Most of these SAVs induced frameshift splicing alterations, likely
leading to mRNA degradation through NMD, whereas other SAVs
generated in-frame exon skipping or alternative SS usage, such as
exon 5 acceptor variants activating cryptic 3′ SS, followed by a
15-amino acid (aa) deletion. PIK3R1, encoding the p85 regulatory
subunit of phosphatidylinositol 3-kinase, ranked second (39 sam-
ples), approximately one-half of which were found in UCEC (Fig.
5A). The majority of these SAVs caused splicing alterations result-
ing in in-frame deletions of the iSH2 domain, which is also affect-
ed by the small deletions typically observed in this gene (Fig. 6A,
upper right; Cheung et al. 2011).

In many genes, particularly NF1 and RB1, most SAVs and
consequent splicing alteration events were diverse and widely dis-
tributed throughout the entire gene (Supplemental Fig. S7A, upper
and middle), whereas several genes displayed prominent hotspots
of SAVs (Supplemental Tables S6, S7). Among the latter genes,
SAVs affecting the same SSs tended to generate identical splicing
consequences (Fig. 6B; Supplemental Fig. S7B). A typical example
was CDKN2A, a well-known TSG that encodes the p16INK4A and
p14ARF proteins, which was recurrently affected by SAVs targeting
exon 2 common to both proteins (Fig. 6A, lower right). Other in-
stances includedGATA3 SAVs found in breast invasive carcinomas
(BRCA), in whichmost of themwere the identical CA dinucleotide
deletion at the acceptor site of exon 5, thus activating a cryptic 3′

SS (7 nucleotides [nt] downstream) (Fig. 6A, lower left). Utilization
of this cryptic splice acceptor caused a reading frameshift, resulting
in loss of the second zinc finger (ZnF2) domain (Usary et al. 2004).
As was the case with GATA3, several genes showed tissue specific-
ity, such as FUBP1 and ATRX in lower grade gliomas (LGG), prob-
ably reflecting the organ-specific growth advantage conferred by
these alterations. In contrast, most of the frequently altered genes
were relevant across multiple cancer types (Fig. 5A).

Together with these well-established TSGs, SAVNet identified
several recurrently altered genes (found in ≥10 samples) which
had not been included in the cancer-related gene list (Ye et al.
2016) but reported or predicted to function in a tumor-suppressive
manner, including KANSL1 (Yoshida et al. 2013), NIPBL (Barber
et al. 2008), CUL3 (Ooi et al. 2013), MYH9 (Schramek et al.
2014), SMCHD1 (Leong et al. 2013), and HUWE1 (Fig. 5A; Inoue
et al. 2013). Thus, SAVNet may have potential to identify putative
TSGs that are more prone to be affected by splicing aberrations.
Conversely, MET, which encodes a hepatocyte growth factor re-
ceptor, was the only frequently affected oncogene, whose variants
in the exon 14 donor site caused in-frame exon skipping known to
activate c-Met (Fig. 5A; Supplemental Fig. S7A, lower left; Ma et al.
2005). Additionally, SAV hotspot analysis also identified recurrent
SAVs occurring at the donor site of exon 3 of MIEN1, a putative
oncogene located on the ERBB2 (also known as HER2) amplicon
(Fig. 6B; Supplemental Fig. S7A, lower right; Dasgupta et al.
2009). Although the underlying mechanisms need to be clarified,
SAVs may contribute to the activation of several oncogenes.

Discussion

The development and application of SAVNet have led to the sys-
tematic detection of a substantial number of SAVs that had been
overlooked by earlier studies (Supek et al. 2014; Jung et al. 2015),
although we focused only on those disrupting or creating splicing
donor or acceptor motifs. Following previous studies (Xu and Lee
2003; Supek et al. 2014; Jung et al. 2015), our comprehensive
and thorough analysis revealed the landscape of cis-acting somatic
variants affecting splicing and characterized their positional differ-

ences, genomic features, and underlying mutational processes in
detail, showing their enrichment in cancer driver genes, especially
in TSGs. In particular, we demonstrated that exon skipping and
alternative SS usageweremore frequently involved in SAV-mediat-
ed TSG inactivation than intron retention. In addition,we clarified
the relevance of SAVs at noncanonical sites, including the pre-
viously unrecognized position +3 and +5 of donor sites. The pro-
posed framework with FDR control, which can dissect complex
variant-splicing associations based on the Bayesian approach,
is applicable to identify additional classes of somatic variants
that disrupt splicing regulatory elements, including exonic and/
or intronic splicing enhancers and silencers, although further
elaboration of association rules will be required. Based on our find-
ings, not only exonic but also intronic SNVs near exon-intron
boundaries should be carefully evaluated as pathogenic variants,
irrespective of the presence of amino acid changes. In the era of
precision medicine, our framework and the acquired list of SAVs
will constitute helpful resources to capture more driver variants,
including previously overlooked SAVs, in cancer patients.

Methods

Download of TCGA WES and RNA-seq data

WES and RNA-seq data were downloaded from Cancer Genomic
Hub (currently hosted at NCI Genomic Data Commons [https://
portal.gdc.cancer.gov/legacy-archive]). We used samples whose
tumor and matched control WES and RNA-seq data are all avail-
able. We excluded LAML (acute myeloid leukemia) and OV (ovar-
ian serous cystadenocarcinoma), because most of their DNA
samples underwent whole-genome amplification, leading to a
large amount of artifactual variants.

Alignment of TCGAWES data

As a reference genome, we used the sequences of assembled chro-
mosomes, unlocalized and unplaced scaffolds from GRCh37
(human reference assembly), as well as NC_007605 (Epstein-Barr
virus) and hs37d5 (decoy from The 1000 Genomes Project Phase
II) sequences. Our preliminary comparison showed the choice of
GRCh37 and GRCh38 had almost no impact on the detection
of SAVs. In WES analysis, for downloaded sequence data in
BAM format, we first convert it to FASTQ format using bamto-
fastq command (with collate=1 exclude=QCFAIL,SECONDARY,
SUPPLEMENTARY options) of biobambam (https://github.com/
gt1/biobambam). FASTQ-formatted sequences were aligned with
BWA-MEM version 0.7.8 (Li and Durbin 2009) with −T0 option
and sorted by biobambam bamsort command (with index=1
level=1 inputthreads=2 outputthreads=2 calmdnm=1 calmdnmre-
compindentonly=1 options). Then, PCR duplicates were removed
by biobambam bammarkduplicates command (with markth-
reads=2 rewritebam=1 rewritebamlevel=1 index=1 options).

Detection of somatic SNVs and short indels

Our approach for detecting somatic SNVs and short indels consists
of the following five steps:

(1) Identification of candidate somatic SNVs and short indels
using the approach based on Fisher’s exact test (as previously
described [Yoshida et al. 2011]), which is currently implement-
ed in GenomonFisher (https://github.com/Genomon-Project/
GenomonFisher);

(2) Excluding candidates present in pooled control samples by us-
ing EBFilter (https://github.com/Genomon-Project/EBFilter),
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a variant filtering algorithm based on a rigorous empirical
Bayesian framework (Shiraishi et al. 2013);

(3) Local realignment of short reads around candidate variants,
which is implemented in GenomonMutationFilter (https://
github.com/Genomon-Project/GenomonMutationFilter);

(4) Removal of putative OxoG artifacts; and
(5) Annotation of the variants using Annovar (Wang et al. 2010).

For step (1), we tallied up the numbers of mismatched bases at
each position using short reads with mapping quality of ≥20 (for
SNVs and indels) and with base quality of ≥15 (for SNVs). First,
we roughly extracted the candidates satisfying the following
criteria: (1) sequence depth≥ 10; (2) mismatch ratio in tumor
samples≥ 0.05; (3) number of variant-supporting reads≥ 4; and
(4) mismatch ratio in matched control samples < 0.03. Next, we
performed Fisher’s exact test to assess the differences in the ratios
of the numbers of reference-supporting to variant-supporting
reads between tumor andmatched control samples, and candidate
variants with P-value≤ 0.1 were adopted.

For step (2), we performed filtering of all the remaining can-
didates, based on a beta-binomial error model, as described previ-
ously (Shiraishi et al. 2013). Briefly, we estimated the parameters of
the beta-binomial error model using nonmatched control samples
(20 samples in this paper), obtained the predictive distributions
of the mismatch ratios, and compared them with the observed
mismatch ratio of tumor samples to quantify the statistical signifi-
cance. We adopted candidate variants with P-value < 10−4.

For step (3), we performed local realignment of all short reads
surrounding the candidate variants and their paired reads to the
reference and variant-containing sequences and counted the num-
bers of reference- and variant-supporting read pairs for tumor
and matched control samples. We used “read pair-based” count
to avoid double counting of a variant located in both reads of a sin-
gle read pair with a small insert size. Then, we adopted candidates
satisfying the following criteria: (1) number of variant-supporting
read pairs in tumor samples ≥4; (2) number of variant-supporting
readpairs inmatchedcontrol samples≤1; and (3)P-valueof Fisher’s
exact test comparing the ratios of the numbers of reference- and
variant-supporting read pairs between tumor andmatched control
samples ≤0.1.

For step (4), to remove putative OxoG artifacts (Costello et al.
2013), we calculated ALT_F1R2 (the number of variant-supporting
read pairs whose first and second parts are aligned in the forward
and reverse directions, respectively) and ALT_F2R1 (the number
of variant-supporting read pairs whose first and second parts
are aligned in the reverse and forward directions, respectively)
for C > A and G > T substitutions. Then, C > A substitutions were
removed if ALT_F1R2 < 2 or ALT_F2R1/(ALT_F1R2 + ALT_F2R1) >
0.9, and G > T substitutions were removed if ALT_F2R1 < 2 or
ALT_F1R2/(ALT_F1R2 + ALT_F2R1) > 0.9.

Alignment of TCGA RNA-seq data

Genome indexes were generated using STAR version 2.5.2a (Dobin
et al. 2013) with the GRCh37 release 19 GTF file (ftp://ftp.sanger.
ac.uk/pub/gencode/Gencode_human/release_19/gencode.v19.
annotation.gtf.gz) and –sjdbOverhang 100 option. For each
sample, alignment to the reference genomes was performed by
STAR version 2.5.2a with the following options: - -runThreadN
6 - -outSAMtype BAM Unsorted - -outSAMstrandField intronMotif
- -outSAMunmapped Within - -outSJfilterCountUniqueMin 1 1 1
1 - -outSJfilterCountTotalMin 1 1 1 1 - -outSJfilterOverhangMin
12 12 12 12 - -outSJfilterDistToOtherSJmin 0 0 0 0 - -alignIntron
Max 500000 - -alignMatesGapMax 500000 - -alignSJstitch
MismatchNmax -1 -1 -1 -1 - -chimSegmentMin 12

- -chimJunctionOverhangMin 12. Then, sorting and indexing of
BAM files were performed using SAMtools version 1.2 (Li et al.
2009).

Quantification of expression values for each gene

from RNA-seq data

To quantify gene expression, we used our in-house software
GenomonExpression (Supplemental Code S1; https://github.
com/Genomon-Project/GenomonExpression), which calculates a
slightly modified version of FPKM (fragments per kilobase of tran-
script per million mapped reads) measures (Shiraishi et al. 2014).
Briefly, after excluding improperly aligned or low-quality read
pairs (mapping quality <20), sequence depth in the exonic regions
was calculated, and normalized as per kilobase of exon as well
as per million of aligned bases for each RefSeq gene. For genes
with multiple transcript variants, their expression values were de-
termined by selecting a transcript variant with the maximum
FPKM value.

Identification of splicing-associated variants (SAVNet)

To identify splicing-associated variants, we developed and applied
the novel approach, SAVNet (Supplemental Code S2; https://
github.com/friend1ws/SAVNet), which consists of the following
steps.

1. Collection of evidences of different types of abnormal splicing

We consider four types of abnormal splicing: exon skipping, alter-
native 5′ splice site, alternative 3′ SS usage, and intron retention.
The first three types (exon skipping, alternative 5′ SS, alternative
3′ SS) are extracted using splicing junctions (defined as pairs
of start and end positions demarcated by spliced-aligned reads).
We first extract abnormal splicing junctions (not registered in
RefSeq genes) (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/
database/refGene.txt.gz) with ≥2 supporting reads (number of
uniquely mapped reads crossing the junction) in at least one
sample in the cohort by processing SJ.out.tab files generated as
by-products of the STAR alignment step. Then, using our in-house
program (junc_utils) (Supplemental Code S3; https://github.com/
friend1ws/junc_utils), we classify each splicing junction into
exon skipping, alternative 5′ SS, or alternative 3′ SS by the follow-
ing criteria:

• Exon skipping: Two ends of the splicing junction correspond to
annotated intron start (splicing donor) and end (splicing accep-
tor) sites of a gene, respectively.

• Alternative 5′ SS: One end of the splicing junction corresponds
to an annotated intron end (splicing acceptor) site of a gene,
whereas the other end is located within the gene but not at an
annotated intron start (splicing donor) site of the gene.

• Alternative 3′ SS: One end of the splicing junction corresponds
to an annotated intron start (splicing donor) site of a gene,
whereas the other end is located within the gene but not at an
annotated intron end (splicing acceptor) site of the gene.

Splicing junctions that do not meet any of the above criteria
are removed.

Intron retentions are identified by our in-house program
(intron_retention_utils simple_count command) (Supplemental
Code S4; https://github.com/friend1ws/intron_retention_utils).
For each exon-intron boundary, the number of putative intron
retention reads (those covering ≥10 bp of both sides of the exon-
intron boundary) as well as that of normally spliced reads covering
the last exonic base of the exon-intron boundary is counted. In
this paper, to remove events observed in noncancer samples, we
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used a panel of 742 control samples (collected from the TCGA
cohort) and filtered out splicing junctions with ≥2 supporting
reads in ≥8 control samples, and intron retentions whose
intron retention fraction (the number of intron retention reads di-
vided by total reads (intron retention reads + normally spliced
reads) covering the exon-intron boundary) is ≥0.05 in ≥8 control
samples.

2. Association of splicing alterations with somatic variants to construct

possible variant-splicing bipartite graphs

In this step, we list candidate combinations of somatic variants
and possibly associated splicing alterations for each gene, which
are subject to further investigation in the later step. For each
gene, let g = (g1, g2, …, gN)∈ {0, 1, …, M}N denote the status of
somatic variants of N samples in the cohort, where M denotes
the number of distinct somatic variants, gn = 0 represents that
the nth sample does not have any somatic variants in the target
gene, and gn =m represents that the nth sample has the mth
somatic variant. Also, let y j = (yj1, yj2 , ..., yjN ), j = 1, 2, ..., J denote
the number of supporting reads (the number of putative intron re-
tention reads for intron retention) for the jth splicing alteration,
and let w = (w1,w2 ,...,wN ) [ RN

+ denote the weight for each sam-
ple used for normalization to negate variations in the amount of
total sequence reads. We set wn =Un/10

7, where Un is the number
of uniquely aligned read pairs of the nth sample.

The mth somatic variant is considered to be associated with
the jth splicing alteration if the following three conditions are
satisfied:

i. Their positional relationship implicates that the abnormal
splicing can be a consequence of disruption of authentic SSs
(those registered in the RefSeq database) or creation of novel
SSs caused by the somatic variant. More specifically, we check
the following relationship:
• Abnormal splicing junction events caused by authentic SS
disruption: (1) A somatic variant occurs at authentic
splicing donor (between positions −3 [the third exonic
base] through +6 [the sixth intronic base]) or acceptor
sites (between −1 through +6), and (2) an abnormal splic-
ing junction event (exon skipping and alternative 5′ SS
and 3′ SS) encompasses or is located within 100 bp of
the variant.

• Abnormal intron retention caused by authentic SS disrup-
tion: (1) A somatic variant occurs at authentic splicing
donor or acceptor sites, and (2) an intron retention occurs
at the disrupted SS or its opposite site of the same intron.

• Alternative SS usage caused by new SS creation: A somatic
variant occurs within the newly created SS of an unannotat-
ed junction end of an abnormal splicing event (alternative
5′ SS or 3′ SS).

ii. The average number of supporting reads for the jth splicing al-
teration in samples with the mth somatic variant is at least
three times larger than those in samples without any somatic
variants of the gene in consideration

∑
n:gn=m yjn∑
n:gn=m wn

≥ 3×
∑

n:gn=0 y
j
n∑

n:gn=0 wn
.

iii. The median number of supporting reads for the jth splicing
alteration in samples without any somatic variants of the
gene in consideration is zero.

The second and third criteria are incorporated to reduce the
computational cost (which increases exponentially as the number

of associations). The third criterionalso canhelp improveboth sen-
sitivity and accuracy. In our preliminary observation, the numbers
of supporting reads showing abnormal splicing are typically zero
for almost all samples without any splicing-associated variants,
whereas they are nonzero (sometimes as small as 2 or 3) for those
harboring SAVs. Adopting this criterion in fact resulted in a slight
improvement of the false discovery ratio.

We create a bipartite graph (VM, VS, E) for the entire structure
of variant-splicing associations, where vertices (VM,VS) represent
somatic variants and splicing alterations and edges (E) repre-
sent combinations of associated somatic variants and splicing al-
terations. We then split the association graphs into several
subgraphs through checking the connectivity, and performed
the pruning procedure described in the next section.

3. Pruning of edges to select the best model explaining the data

Here, we choose a subgraph of the bipartite graph constructed in
the previous step, which most effectively explain the status of
somatic variants and their impacts on splicing alterations (quanti-
fied by the numbers of supporting reads). We use the idea of “con-
figuration” from previous eQTL and GWAS studies performed
in complicated situations (Flutre et al. 2013; Stephens 2013).
The configuration here is a |E|-dimensional binary vector g =
(γm,j)(m,j)∈E, where γm,j∈ {0,1} indicates whether the mth variant
and the jth splicing alterations have a causal relationship (1) or
not (0). When there is no causal relationship between any somatic
variants and splicing alterations (which we call the null model
henceforth), g = g0, where g0 is a vector whose elements are all
zero (∀(m,j) [ E,g0m,j = 0). Under a configuration γ, we classify
somaticvariants into“active” (Mj

active(g) = {m|gm,j = 1})and“inac-
tive” (Mj

inactive(g) = {0}< {m|gm,j = 0}) for the jth splicing
junction.

For each configuration γ, we assume that the supporting reads
y j are generated by Poisson distributions whose parameters are
dependent on the activity status of somatic variants and multi-
plied by sampleweights. The parameter of the Poisson distribution
for the nth sample is set to wnλ0 when it has only inactive variants
on the jth splicing alteration (gn [ Mj

inactive(g)), whereas it is set to
wnλ1 for active variants (gn [ Mj

active(g)). Additionally, we assume
that λ0 and λ1 are generated by a gamma distribution with shape
and rate parameters (α0,β0), (α1,β1), respectively. In this study, we
set (α0,β0) = (1,1) and (α1,β1) = (1,0.01). Therefore, the likelihood
of y j given γ is

Pr(y j|g,g) =
∫ ∏

n:gn[Mj
inactive(g)

Pr(yjn|l0)

⎛

⎜⎝

⎞

⎟⎠Pr(l0|a0,b0)dl0

×
∏

n:gn[Mj
active(g)

∫
Pr(yjn|l1)Pr(l1|a1,b1)dl1

=
∏N

n=1

wyjn
n

yjn!

( )
×
G
(∑

n:gn[Mj
inactive(g)

yjn + a0
)

G(a0)

× ba0
0

(∑
n:gn[Mj

inactive(g)
wn + b0

)
∑

n:gn[M
j
inactive

(g) y
j
n+a0

×
∏

n:gn[Mj
active(g)

G(yjn + a1)
G(a1)

ba1
1

(wn + b1)y
j
n+a1

,

and the likelihood of the whole data (Y = {y j}j=1, 2, …, J) is
Pr(Y|g,g) = PJ

j=1Pr(y j|g,g). Also, the likelihood of y j under the
null model g = g0, which can be calculated as a special case of
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the above, is

Pr0(y j|g0) =
∏N

n=1

1

yjn!

( )
G
(∑N

n=1 y
j
n + a0

)

G(a0)
ba0
0

(N + b0)
∑N

n=1
yjn+a0

.

For each variant m, we perform Bayesian model comparison
to determine whether the somatic variant has any causal rela-
tionships with any splicing alterations (∃j, gm,j = 1) or not
(∀j, gm,j = 0). Typically, to perform model comparison, we evalu-
ate the Bayes factor between the two distinctmodels. Here, as there
are often many distinct null and nonnull models, we aggregate
these models through Bayesian model averaging and evaluate
the Bayes factor between the aggregated null and nonnull models

BF(m) =
∑

g:∃j, gm,j=1 Pr(Y|g,g)Pr(g)
∑

g:∀j, gm,j=0 Pr(Y|g,g)Pr(g) ,

where Pr(γ) is set to be the uniform distribution. The variant m is
identified as a SAV if its logarithm of the Bayes factor is above
the threshold (the default value is set to 3). Also, the splicing alter-
ations caused by the variant m are identified by selecting the best
model by argmaxg:∃j,gm,j=1Pr(Y| g,g).

4. Evaluation of FDR by permutation

To evaluate FDR, we permute the pairs of genomic and transcrip-
tome data so that somatic variants and splicing alterations from
different patients are coupled and perform the same procedures
(step 1 to 3). Assuming that Dtarget and Dperm

i (i = 1, ..., I) are the
numbers of SAVs identified in the original step (correct combina-
tions) and in the ith permutation procedure, respectively, then
FDR is estimated as

FDR = min 1,

1
I

∑I

i=1
Dperm

i

Dtarget

⎛

⎜⎝

⎞

⎟⎠.

In this paper, we performed 100 permutation trials (I = 100).

5. Postprocessing and rescuing SAVs

SAVs causing alternative intronic 5′ or 3′ SSs are generally accompa-
nied with intron retention at the original authentic SSs. Therefore,
in these cases, we removed intron retention and retained only
alternative 5′ SSs or 3′ SSs in this paper. To sensitively detect recur-
rent SAVs, we performed additional screening and adopted vari-
ants satisfying the following criteria: (1) The combination of the
same somatic variants (the same substitution at the same position)
and the same splicing alterations was identified in other samples
by the SAVNet procedure described above; (2) variantmismatch ra-
tio in tumor samples ≥0.05; (3) number of variant-supporting
reads ≥3; (4) mismatch ratio in tumor samples ≥10-fold of that
in matched control samples; and (5) number of reads supporting
associated splicing alterations ≥2.

Evaluation of influences of spliceosome variants

on abnormal splicing

First, in the TCGA cohort, we searched for previously known
somatic variants of splicing factors, including missense variants
at K700, K666, H662, R625, E622, G740, G742, N626, and E902
of SF3B1, S34 and Q157 of U2AF1, and P95 of SRSF2, as well as
missense, nonsense, and frameshift variants of ZRSR2 (Dvinge
et al. 2016). First, for each cancer type, we extracted splicing alter-
ations with ≥2 supporting reads in at least one sample. Then, we
identified splicing factors affected in ≥1% samples within each
cancer type and compared the number of RNA-seq reads support-

ing each splicing alteration between samples with andwithout the
splice factor variants to derive the P-value using the t-test. Finally,
we calculated the Q-value for each splicing alteration using the
qvalue R package (http://github.com/jdstorey/qvalue), and splic-
ing alterations with Q-value < 0.05 were considered to be associat-
ed with splice factor variants.

Estimation of mutational signatures and membership of SAVs

We used pmsignature for estimating the signatures of mutational
processes operative in the entire cohort and each cancer cohort
as described in the previous paper (Shiraishi et al. 2015). Then,
the extracted mutation signatures were classified into any
of the COSMIC signatures (http://cancer.sanger.ac.uk/cosmic/
signatures) using minimum centered cosine similarity. Mutation
signatures with centered cosine similarities to all the COSMIC
signatures <0.75 were classified to “other.” The estimates of mem-
bership (conditional probabilities attributed to each mutation sig-
nature) for each variant are provided by the following equation:

Pr(zi,j = k|xi,j = m) = Pr(zi,j = k)Pr(xi,j = m|zi,j = k)
∑

k′ Pr(zi,j = k′)Pr(xi,j = m|zi,j = k′)

= qi,k
∏

l fk,l,ml∑
k′ qi,k′

∏
l fk′,l,ml

,

where the notation for each variable is described in the previous
paper (Shiraishi et al. 2015). Finally, variant-level membership es-
timates were aggregated according to the COSMIC signatures and
the presence of association with splicing alterations, so that the
total numbers of variants and SAVs caused by eachmutation signa-
ture (e.g., tobacco, ultraviolet) were estimated.

Quantification of splicing-related features

MaxEnt (Yeo and Burge 2004) and H-bond (Freund et al. 2003)
scores were calculated using the spliceSites R package (https://
bioconductor.org/packages/release/bioc/html/spliceSites.html).
To derive lengths and GC contents of exons affected by SAVs and
their flanking introns, we extracted exonic nucleotides and adja-
cent upstream and downstream 150 intronic nucleotides. Then,
we discarded 10 exonic and 20 intronic nucleotides from the
exon-intron boundaries since they constitute splicing signals
with specific nucleotides. Here, we excluded SS-disrupting SAVs af-
fecting short exons (≤30 bp), exons with multiple annotated start
and end positions to avoid ambiguity.

Cell line

HEK293T cells were obtained from the RIKEN Cell Bank. Cell lines
were authenticated by the provider and routinely tested for myco-
plasma infection.

Minigene splicing assay

For each region of interest, exonic and∼300-bp flanking fragments
containing either wild-type or variant sequences were synthesized
(GeneArt, Thermo Fisher Scientific) and cloned into the NheI
and BamHI sites of the plasmid H492 (a kind gift from Prof.
Masafumi Matsuo, Kobe University) using the In-Fusion HD
cloning kit (TaKaRa). Each construct was transiently transfected
into HEK293T cells using X-tremeGENE 9 DNA Transfection
Reagent (Roche) in six-well tissue culture plates. Forty-eight hours
after transfection, total RNA was isolated with an RNeasy Mini
kit (QIAGEN) and used to synthesize cDNA with ReverTra Ace
qPCR RT Kit (TOYOBO). Each cDNA was amplified with KOD
FX Neo DNA polymerase (TOYOBO) using the primers (forward,
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5′-ATTACTCGCTCAGAAGCTGTGTTGC-3′, and reverse, 5′-AAGTC
TCTCACTTAGCAACTGGCAG-3′), which correspond to sequences
of exons of H492. PCR products were separated by electrophoresis
on 2% agarose gels and visualized with a UV transilluminator
(UVP). To confirm the sequence of each band, the PCR products
were gel-purified and analyzed by Sanger sequencing (Supplemen-
tal Data).

Data analysis

All analyses were performed in Python 2.7.8 and R 3.3.2 and most
figures were generated using the ggplot2 R package (Wickham
2016). In all box plots, the center line and lower and upper hinges
correspond to the median and the first and third quartiles (25 and
75 percentiles), respectively. The upper and lower whiskers extend
from the upper and lower hinges to the largest or smallest values
no further than 1.5 × IQR from the hinges, respectively, where
IQR represents inter-quartile range, or distance between the first
and third quartiles. Sequence logos were drawn via our in-house
program (Supplemental Code S5; https://github.com/friend1ws/
ggseqlogo).

Data access

All Sanger sequencing reads of minigenes generated in this study
are available as Supplemental Data. The processed data and scripts
for generating figures are available via GitHub (https://github.
com/friend1ws/savnet_paper) and as Supplemental Codes S1–S5.
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