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Abstract

Background: Depression and attention deficit hyperactivity disorder are known to be comorbid. 

Treatment of these commonly coexisting diseases typically involves the combined prescription of 

methylphenidate (MP), a psychostimulant, and fluoxetine (FLX), a selective serotonin reuptake 

inhibitor (SSRI). MP and cocaine have similar mechanisms of action and this study examined the 

effects of chronic treatment of MP combined with FLX on cocaine consumption in rats.

Methods: Four groups of rats received access to drinking solutions of water (control), MP (30/60 

mg/kg/day), FLX (20 mg/kg/day), or the combination of MP (30/60 mg/kg/day) plus FLX (20 

mg/kg/day), during 8 h per day for one month. Following these drug treatments, rats were allowed 

to self-administer cocaine for 14 days.
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Results: Our results showed that, during the first week of cocaine self-administration, the MP-

treated rats had significantly greater numbers of active lever presses (plus 127%) and increased 

consumption of cocaine compared to the control rats. In contrast, during week two of cocaine 

self-administration, the rats treated with the MP + FLX combination showed significantly more 

lever presses (plus 198%) and significantly greater cocaine consumption (plus 84%) compared to 

the water controls.

Conclusion: Chronic oral treatment during adolescence with the combination of MP plus FLX 

resulted in increased cocaine use after 2 weeks of cocaine self-administration in rats. These novel 

findings suggest that the combined exposure to these two drugs chronically, during adolescence, 

may produce increased vulnerability towards cocaine abuse during young adulthood.
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Introduction

Patients diagnosed with attention deficit hyperactivity disorder (ADHD) are often prescribed 

methylphenidate (MP), a psychostimulant also known as Ritalin. MP works by blocking 

the reuptake of both dopamine and norepinephrine. This causes a surge of both 

neurotransmitters in the synapse. Aside from its medicinal benefits, MP is often used 

illicitly among high school and college students to increase cognitive function or as a 

party drug [1,2]. Off-label use of MP is most common among 18- to 25-year-olds and 

recent data shows that as many as 25% of high school students engage in nonmedical 

use of prescription stimulants (NUPS) [3]. In fact, students that attended high schools 

with the greatest rates of psychostimulant therapy for ADHD had 36% increased odds 

of NUPS compared with students attending schools with the lowest rates [3]. ADHD is 

often associated with depression and anxiety. More specifically, about 12% of children have 

a comorbidity of anxiety. This statistic increases with patients suffering from depression 

as well to 16–26% [4]. The comorbidity of these mood disorders often results in co-

prescription of MP and serotonin reuptake inhibitor (SSRI) antidepressants including 

fluoxetine (FLX) [5]. Additionally, increased use of psychotropic drugs such as MP in 

adolescents [6] leads to increased accidental MP+SSRI co-exposure when patients on 

SSRIs use MP off-label. Exposure to such psychotropic medications during development 

is of concern, as preclinical studies demonstrated a variety of drug-induced long-term 

neurobehavioral changes suggestive of an increased risk for substance use disorder and 

other neuropsychiatric disorders later in life (e.g., [7–9]).

Combined use of MP and FLX has been shown to induce changes in body weight and 

behavior [10] as well as in gene regulation in the striatum that mimic effects of cocaine, 

and that have been previously associated with an increased risk for addictive-like behaviors 

[5]. Cocaine’s mechanism of action is analogous to MP, blocking both dopamine and 

norepinephrine reuptake, hence it is important to assess the effect of combined MP+FLX 

treatment on cocaine consumption. The striatum is a brain region important for addiction 

because of its involvement in compulsive and habit forming behaviors (see, e.g., [11]). 

Therefore, understanding how these drug treatments will affect the striatum is crucial. A 
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number of studies have shown that FLX potentiates effects of MP on gene regulation in the 

striatum ([5, 12–14]. For example, in a previous study [5], we used a chronic oral treatment 

regimen (in drinking water) that produces clinically relevant drug plasma levels [15] and 

found that MP+FLX induced changes in gene expression for the neuropeptides dynorphin 

and substance P, both markers for the direct output pathway of the striatum [16], which is 

predominantly affected by various psychostimulant treatments [11]. In this study, exposure 

to MP alone induced marginal increases in dynorphin and substance P mRNA levels [5]. 

Consumption of FLX alone did not increase gene expression; however, when FLX was 

combined with MP, gene expression for both neuropeptides was dramatically enhanced [5]. 

Moreover, although present throughout the striatum, these molecular changes were most 

robust in sensorimotor sectors [5], which mediate habit formation, as well as compulsive 

behavior (see [11]).

The above MP+FLX-induced molecular changes are more “cocaine-like” than those of 

MP alone in several aspects [13], which is likely based on the neurochemical impact 

of these drugs. MP and FLX inhibit dopamine and serotonin reuptake, respectively, the 

combination of both would produce greater dopamine and serotonin signaling and regulate 

addiction-related genes [11–14]. Both MP and cocaine inhibit dopamine reuptake, leading 

to a surge of dopamine in the synapse (e.g., [17]; for review, see [18]). However, unlike 

cocaine, MP does not affect serotonin reuptake [13]. Serotonin is known to contribute to 

the behavioral and neuronal effects of cocaine [13]. Combining serotonin reuptake inhibitors 

such as FLX with MP treatment thus enhances also the serotonin neurotransmission and 

potentiates dopamine (MP)-mediated gene regulation, mimicking cocaine effects [13]. It 

has been shown that repeated psychostimulant exposure facilitates subsequent cocaine self-

administration in animal models [19], thus potentially increasing the addiction risk [20]. 

The present study thus investigated whether chronic oral MP+FLX treatment, with the same 

regimen that produced the previous molecular changes [5], resulted in altered cocaine intake 

in the cocaine self-administration model.

Materials and Methods

Subjects

3-week old male Sprague-Dawley rats (Taconic) were housed individually in temperature 

and humidity-controlled cages and began treatment at four weeks of age. Rats were assigned 

to one of four groups: water (n=13), MP (n=12), FLX (n=14), and MP+FLX (n=11). In 

their home cage, rats had access to water ad libitum during the first week before the drug 

treatment to allow proper habituation. Following habituation the rats were placed on a 

standard rat chow for the duration of the experiment with body weights measured daily. 

Food intake was measured on a weekly basis once drug treatment began. Experimental 

procedures followed the guidelines as described in the “Guide for the Care and Use of 

Laboratory Rats” in conformity with the National Academy of Science’s Guide for the Care 

and Use of Laboratory Animals (NAS and NRC, 1996) and were approved by the State 

University at Buffalo Institutional Animal Care and Use Committee.
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Dosing Paradigm

Oral drug treatment began at 4 weeks of age [postnatal day (PND) 28] and 

continued for 4 weeks. All rats were given a daily 8h limited access drinking. 

Methylphenidate hydrochloride (MP; Mallickrodt Pharmaceuticals, Dublin, Ireland) and 

fluoxetine hydrochloride (FLX; Spectrum Chemical, New Brunswick, New Jersey) were 

administered orally through their drinking water bottle access for eight hours a day (0900–

1700). The water group had access to water for eight hours a day (0900–1700). Water 

access was restricted to eight hours a day for all treatment groups as previously noted in 

past literature [21,22]. The MP group was given access to 30 mg/kg MP for one hour 

(0900–1000) and 60 mg/kg for the next seven hours (1000–1700). FLX was administered at 

20 mg/kg for eight hours (0900–1700) with two separate drinking bottles and concentrations 

(0900–1000 and 1000–1700). Bottles were prepared fresh daily by using stock MP and FLX 

solutions, each animals body weight and the amount of fluid consumed by each animal to 

produce the following doses (30/60 mg/kg or 20 mg/kg) when the bottles were consumed 

respectively for MP and FLX as previously described [15]. MP dosing was chosen based 

on previous research. In the present study, we utilized the higher dose of 30/60 mg/kg MP 

[15,23]. The FLX dose utilized was also based on prior research [5,24]. The MP+FLX group 

received a combined dose of MP (30/60 mg/kg) plus FLX (20 mg/kg) [5]. Drug exposure 

continued daily for four weeks (see timeline; Fig. 1).

Jugular Vein Catheterization

Following the four-week drug treatment period, each cohort underwent jugular vein 

catheterization (JVC) surgery in preparation for cocaine self-administration (CSA) at 

approximately 10 weeks old. Techniques were adopted from previous literature [25]. Briefly, 

rats were anesthetized using 2–3% isoflurane. Throughout the surgery, breathing and the 

general health of the rats were monitored. Once the rat was anesthetized and pedal reflexes 

were checked, the surgery site was properly sterilized. A 3 cm horizontal incision was 

made in the upper lateral portion of the rats’ chest. Absorbable sutures were placed to 

anchor the catheter to the vein. Blunt dissection was used to tunnel to the dorsal portion 

of rat, where the port was pulled through. Once finalized, both the ventral and dorsal 

incisions were sterilely closed with absorbable sutures. JVC surgeries were followed by 

three consecutive days of post-operative care. During the post-operative period (3–7 days 

depending on the animals recovery), rats received both Rimadyl (5 mg/kg) and Baytril 

(5 mg/kg) via subcutaneous injections once a day for a minimum of three days, along 

with topical neomycin application to the incisions. Body weights and diet were carefully 

monitored to ensure the health and safety of the animals. In addition, catheters were flushed 

twice daily with heparin (30 units/mL), baytril (22.7 mg/mL) and saline, to maintain cannula 

patency.

Cocaine Self-Administration

Cocaine self-administration (CSA) was performed following completion of drug treatment 

(see timeline; Fig. 1). All procedures were administered in standard operant chambers 

containing two retractable levers, a cue light, a house light, and tone generator [26]. Prior to 

the start of cocaine administration all animals underwent three consecutive days of 2 h food 
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training in the operant chambers as previously described [26]. Once the rats were trained 

to lever press for food and reached a criteria [95% of total responses were on the active 

(food) lever, and less than 5% from inactive lever for a minimum three days] they began 

the cocaine self-administration experiment (CSA) which was conducted for 14 days. CSA 

sessions lasted for 2 h each day, and cocaine was administered on a FR1 schedule with a 30 

s timeout. Active lever presses were followed by an infusion of (0.3 mg/kg) cocaine. During 

the timeout, cocaine was not dispensed, however, the lever presses were recorded. Inactive 

lever presses served as an activity control. Pressing the inactive lever resulted in no cocaine 

infusions.

Statistics

Results are presented as cumulative daily cocaine infusions, active lever presses and inactive 

lever presses over all 14 days and for weeks 1 and 2, separately. A one-way ANOVA was 

conducted between the 4 different treatment groups (water, MP, FLX or MP+FLX) for active 

lever responses, inactive lever responses, as well as cocaine infusions. Significant ANOVA 

results were followed up with Tukey’s HSD post-hoc analysis to describe differences 

between individual groups. All statistical analyses were performed using Prism software 

(GraphPad; San Diego, CA, US) with statistical significance set as a = 0.05.

Results

Lever Responses

A main effect of drug treatment was found for active lever responses accumulated over the 

14 days [F(3,94)=5.110; p < .01; Fig. 2B]. Post-hoc analysis using the Tukey HSD test 

showed that in weeks 1 and 2 cumulatively, MP+FLX-treated rats had 135% more active 

lever responses compared to water-treated controls (p < .01; Fig. 2B). There were also main 

effects of drug treatment for active lever responses in week 1 [F(3,45) = 6.984; p < .001; Fig. 

2D] and week 2 [F(3,45) = 5.811; p < .01; Fig. 2F], separately. Post-hoc comparisons using 

the Tukey HSD test showed that in week 1, MP-treated rats had 127% more active lever 

responses compared to water-treated rats (p < .001; Fig. 2D). In week 2, MP+FLX-treated 

rats had 198% more active lever responses compared to water-treated rats (p < .01; Fig. 2F). 

MP+FLX-treated rats had also significantly more active lever responses than MP-treated (p 
< .05) and FLX-treated rats (p < .05) (Fig. 2F). No treatment effects were found for inactive 

lever presses for either week 1 [F(3,45) = 0.3237; p > .05; Fig. 3B] or week 2 [F(3,45) = 

2.599; p > .05; Fig. 3C].

Cocaine Infusions

A main effect of drug treatment was also found for cocaine consumption (infusions) across 

the 14 days [F(3,94)=5.331; p < .01] (Fig. 4B). Post-hoc analysis using the Tukey HSD 

test revealed that in weeks 1 and 2 cumulatively, MP-treated rats had 57% more cocaine 

infusions compared to the water control group (p < .05; Fig. 4B). Additionally, MP+FLX-

treated rats had 66% more infusions compared to the water control (p < .05; Fig. 4B) 

and more infusions compared to the FLX-treated rats (p < .05; Fig. 4B). Main effects of 

treatment were again found for cocaine infusions within both week 1 [F(3,45) = 3.537; 

p < .05; Fig. 4D] and week 2 [F(3,45) = 3.447; p < .05; Fig. 4F]. Post-hoc comparisons 
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using Tukey’s HSD test showed that during week 1, MP-treated rats had 64% more cocaine 

infusions compared to the water control group (p < .05; Fig. 4D). In contrast, during week 2, 

MP+FLX-treated rats showed 84% more infusions compared to the control (p < .05; Fig. 4F)

Discussion

Our most important findings are summarized as follows. Four weeks of oral treatment 

with MP, FLX or the combination of MP+FLX (in their drinking water) in adolescent rats 

produced significant changes in subsequent cocaine self-administration behavior. During 

week 1 of acquisition of cocaine self-administration, rats pre-treated with MP alone 

displayed significantly more active lever presses than any of the other 3 groups and more 

cocaine infusions than the water control group. During week 2 cocaine self-administration 

was more stable and rats pre-treated with MP+FLX showed significantly more active 

lever presses and cocaine infusions than control rats. Therefore, while MP treatment 

alone facilitated the early acquisition of cocaine taking behavior, the combined MP+FLX 

treatment greatly enhanced cocaine seeking behavior after that.

In the present study, MP and FLX were administered orally in adolescent male rats. Future 

studies need to extend these results using females. The oral doses of MP corresponded to 

clinically similar pharmacokinetic levels that were determined based on previous studies in 

rats [15,23,25]. The FLX dose was also based on prior research [5,24]. Compared to the 

water control group, chronic oral treatment with MP, FLX, or the combination (MP+FLX) in 

these rats resulted in an overall lower body weight during the 4 weeks of treatment. These 

findings were in agreement with those of prior studies following chronic MP administration 

in rats [27], an effect also observed in clinical studies [28,29]. Similarly, a decrease in body 

weight was observed with FLX treatment [24,30,31,10]. The decrease in body weight for 

the combined MP+FLX group was also in agreement with our recent study [32]. The weight 

loss in the MP+FLX combined treated rats underlines the importance of weight monitoring 

when these drugs are administered together, specifically for subjects with prior low body 

mass index (BMI).

We examined the active lever pressing behavior across experimental groups. Overall, there 

were significant differences in active lever pressing after MP and MP+FLX treatments. 

While MP only-treated rats showed significantly enhanced active lever pressing compared 

to the other groups (water control, FLX, and MP+FLX) in week 1, MP+FLX-treated rats 

displayed significantly more active lever presses than all the other experimental groups 

in week 2. Inactive lever presses were monitored as a control for general activity. No 

significant differences were observed between these groups. These results show that the 

changed lever pressing behavior was specific to the cocaine-delivering active lever and 

not related to generalized increased activity. Locomotor activity was not recorded in this 

study. There were no significant differences in inactive lever presses (Fig. 3). If there were 

locomotor differences between the groups, one would expect significant differences in the 

inactive lever presses as well. Future research into locomotor activity during cocaine self-

administration is needed. The cocaine intake (number of infusions) paralleled the differences 

in active lever pressing, with significantly more cocaine infusions in MP-treated animals 
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than water controls in week 1 and even greater cocaine consumption (infusions) in the 

MP+FLX-treated animals (compared to controls in week 2).

The increased lever pressing for cocaine and cocaine intake after MP pre-treatment 

found in week 1 agreed with previous findings in studies using various MP doses for 

repeated treatment at different developmental stages. Thus, facilitated acquisition of cocaine 

self-administration was demonstrated subsequent to MP treatment in preweanling (MP 2 

mg/kg, i.p., PND 11–20; [33]), adolescent (2 mg/kg, i.p., PND 36–42; [34]), and adult 

rats (20 mg/kg, i.p.; [35]). These earlier findings were obtained with intermittent i.p. 

injections of MP, which are of course not as clinically similar and produce a very different 

pharmacokinetic profile (compared to oral dosing) with higher plasma peak levels, and may 

thus be more relevant for intermittent MP abuse. Our present findings are to our knowledge 

the first to show enhanced cocaine intake following oral administration of MP with clinically 

relevant MP plasma levels [15]. Other studies have been reported with lower oral doses 

of MP. For example, one study treated juvenile rats (PND 20) with MP (2 mg/kg/day, 

orally) for three weeks and found no effect on cocaine self-administration 6 weeks later 

[36]. In another study, rats chronically administered with a lower dose of oral MP (2 mg/kg/

day) starting at PND 28 showed significant reductions in dopamine D2 receptor levels 

which is associated with an increased propensity for self-administration of drugs both in 

laboratory animals and in humans [25] and that this risk may be mediated by the duration 

of treatment. These findings indicate that the treatment regimen (e.g., doses, duration) and 

testing variables are important for the outcome.

The present study is the first to investigate the effects of combined oral MP+FLX treatment 

on cocaine self-administration in a non-ADHD model. Future studies should be done to 

observe the effects of combined treatment on cocaine self-administration in an ADHD 

model. FLX alone has no significant effect on CSA and in contrast to our MP-only 

pretreatment, our findings in the combination treatment group (MP+FLX) demonstrated 

significantly greater cocaine consumption compared to the controls, during week 2. MP 

inhibits dopamine reuptake by blocking the dopamine transporter [37]. Adding the SSRI, 

FLX to MP will increase extracellular serotonin levels in addition to the elevated dopamine 

levels, with the combination thus mimicking more closely the neurochemical effects of 

cocaine, which blocks dopamine and serotonin reuptake (for review, see [18]). A series of 

studies demonstrated that FLX potentiates MP-induced gene regulation in the forebrain [13], 

presumably via stimulation of the dopamine neurotransmission by serotonin action [13].

Enhanced gene regulation in the striatum by MP+FLX vs. MP includes greater molecular 

responses to cocaine subsequent to repeated MP+FLX exposure [38,39], as well as elevated 

expression of serotonin receptors and neuropeptides, notably dynorphin [14], with some 

of these molecular adaptations lasting for at least 2 weeks after the repeated treatment 

[38]. While the above studies used repeated i.p. drug administration of relatively high 

doses, mimicking abuse doses [13], our more recent study [5] investigated the effects of 

more clinically relevant administration of MP and FLX, using the same oral treatment 

regimen as employed in the present study. Our results demonstrated that potentiated gene 

regulation also occurs with this oral MP+FLX treatment. These effects included a very 
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robust upregulation of dynorphin expression in most striatal areas, including the nucleus 

accumbens [5].

Dynorphin is an opioid peptide that is notably important during addiction, as it regulates 

dopamine input to the striatum and other processes (for reviews, see [11,40]). This 

opioid peptide has been shown to be upregulated by chronic exposure to a variety of 

psychostimulants, in rodents but also in primates and human cocaine addicts [11,13]. Our 

present findings show that our repeated oral MP+FLX treatment regimen, which induces 

upregulated dynorphin expression throughout the striatum and nucleus accumbens [41], 

produces enhanced cocaine consumption in the self-administration model.

The present findings are very important in the context of several theories on addiction 

including the Gateway theory, which suggests that exposure to certain drugs at an early age 

can lead to abuse of other harder drugs later in life [42]. This is somewhat of a nuanced 

area of research because addiction and motivations for drug use can be influenced by 

many other factors including social, environmental, and genetic. See previous research on 

strengths and weaknesses of this theory: [43,44]. Research has been shown that MP can be 

a “gateway” drug because as a psychostimulant it engages similar mechanisms as “harder” 

stimulants such as cocaine [45]. In addition, our results show that combining MP with an 

SSRI like FLX produces greater molecular changes, mimicking cocaine effects [13]. The 

gateway theory also helps explain why individuals with ADHD have an accelerated and 

increased risk of future illicit drug abuse during their adulthood [46]. Studies have found 

that the earlier the exposure to MP occurs, the more likely this will lead to neurobehavioral 

consequences such as reduction of sensitivity to the drug and possible difficulties with 

self-control, leading to addictive behaviors [9].

Reward Deficiency Syndrome (RDS) involves a hypodopaminergic state of the brain caused 

by both genetic and epigenetic factors [47,48]. Previous research on RDS has described 

that those diagnosed with ADHD have hypodopaminergic state and share many phenotypes 

and molecular attributes with patients with substance use disorder, i.e., deficits in dopamine 

receptors and other changes [49]. Therefore, the chronic use of MP may help counter 

aspects of the hypodopaminergic state [50]. However, combining MP with SSRIs appears to 

induce greater or other molecular changes that may become maladaptive, for example, by 

increasing the risk of substance use disorder or other neuropsychiatric disorders, [22,51].

In summary, this study demonstrated that chronic (1 month) oral treatment with MP or 

MP+FLX in adolescent rats increased cocaine self-administration behavior. Specifically, 

while the MP-treated animals displayed faster acquisition (week 1), the MP+FLX-treated 

rats showed a 198% increase in cocaine lever presses, as well as an 84% increase in cocaine 

consumption in comparison to controls.

Conclusion

The current study investigated the effects of chronic oral treatment with MP, FLX or the 

combination of MP and FLX in adolescent rats on cocaine self-administration. The results 

showed that the MP+FLX combination led to an 84% increase in cocaine consumption 
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by the end of the second week. These findings support the notion that combining 

psychostimulants with an SSRI drug may increase the risk for future cocaine abuse. Future 

clinical research will have to investigate whether these preclinical findings translate to 

treatments with the combination of MP and FLX in patients.
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Fig. 1. 
Project Timeline During weeks 0 through 28, daily oral drug treatment was administered 

for 8 h daily (0900–1700). After 4 weeks of drug treatment, Food administration training 

began (days 28–31). Utilizing the self-administration paradigm, food training continued until 

95% efficiency and 4 days of training were completed. Once proficient, the animals were 

operated on and received the jugular vein catheter. After surgery and post-operative care 

(days 31–35), the animals began cocaine self-administration (days 35–49).
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Fig. 2. 
Active lever responses during 14 days of cocaine self-administration. (A) Mean (+/− SEM) 

number of cumulative active lever responses over 14 days, and (B) average number per 

day (mean +/− SEM) of active lever presses for the 14 days, in rats that had previously 

received water, methylphenidate (MP), fluoxetine (FLX) or methylphenidate plus fluoxetine 

(MP+FLX) in their drinking water for 28 days. Mean (+/− SEM) number of cumulative 

active lever responses during week 1 (C) and week 2 (E), and average number per day (mean 

+/− SEM) of active lever presses for week 1 (D) and week 2 (F) are also shown. *p<.05; 

**p<.01; ***p<.001.
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Fig. 3. 
Inactive lever responses during 14 days of cocaine self-administration. Mean (+/− SEM) 

number of cumulative inactive lever responses over 14 days (A), during week 1 (B) and 

week 2 (C) are given for rats that had previously received water, methylphenidate (MP), 

fluoxetine (FLX) or methylphenidate plus fluoxetine (MP+FLX) in their drinking water for 

28 days.
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Fig. 4. 
Cocaine infusions during 14 days of cocaine self-administration. (A) Mean (+/− SEM) 

number of cumulative infusions over 14 days, and (B) average number per day (mean 

+/− SEM) of infusions for the 14 days, in rats that had previously received water, 

methylphenidate (MP), fluoxetine (FLX) or methylphenidate plus fluoxetine (MP+FLX) 

in their drinking water for 28 days. Mean (+/− SEM) number of cumulative infusions during 

week 1 (C) and week 2 (E), and average number per day (mean +/− SEM) of infusions for 

week 1 (D) and week 2 (F) are also shown. *p<.05.
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