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Abstract Stochastic leaky integrate-and-fire models
are popular due to their simplicity and statistical
tractability. They have been widely applied to gain
understanding of the underlying mechanisms for spike
timing in neurons, and have served as building blocks
for more elaborate models. Especially the Ornstein—
Uhlenbeck process is popular to describe the stochastic
fluctuations in the membrane potential of a neuron, but
also other models like the square-root model or models
with a non-linear drift are sometimes applied. Data that
can be described by such models have to be station-
ary and thus, the simple models can only be applied
over short time windows. However, experimental data
show varying time constants, state dependent noise, a
graded firing threshold and time-inhomogeneous in-
put. In the present study we build a jump diffusion
model that incorporates these features, and introduce
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a firing mechanism with a state dependent intensity. In
addition, we suggest statistical methods to estimate all
unknown quantities and apply these to analyze turtle
motoneuron membrane potentials. Finally, simulated
and real data are compared and discussed. We find
that a square-root diffusion describes the data much
better than an Ornstein—Uhlenbeck process with con-
stant diffusion coefficient. Further, the membrane time
constant decreases with increasing depolarization, as
expected from the increase in synaptic conductance.
The network activity, which the neuron is exposed to,
can be reasonably estimated to be a threshold version
of the nerve output from the network. Moreover, the
spiking characteristics are well described by a Poisson
spike train with an intensity depending exponentially
on the membrane potential.

Keywords Statistical methods in neuroscience -
Membrane time constants - State dependent firing
intensity - Ornstein—-Uhlenbeck process - Square-root
model - Synaptic fluctuations

1 Introduction

When neurons receive intense and random synaptic
input, their post-synaptic potentials overlap and fuse,
such that the membrane potential becomes a stochastic
process. These fluctuations in the membrane potential
have often been modeled as an Ornstein-Uhlenbeck
(OU) process since it is the simplest stochastic leaky
integrate-and-fire (LIF) model. Also other LIF mod-
els have been proposed, like the square-root model
where a inhibitory reversal potential is introduced,
or models with non-linear drift terms to describe the
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spike-generating current. In spite of the popularity of
the OU process for neuronal modeling, there is little
data to support its validity. For this reason, we con-
ducted experiments on a real neuronal network mea-
suring the membrane potential fluctuations during a
well-characterized motor network activity. The analysis
of the fluctuations provide poor support for the OU
process as a proper model for the stochastic membrane
fluctuations. Instead, we suggest the square-root model,
since it describes our data remarkably well. The crucial
point is that the variance is not constant. We chose to
let the variance depend on the membrane potential and
not the input. Even if the synaptic drive is the primary
cause of changes in variance, instead we chose to let
it depend on the membrane potential for convenience,
since this is the variable we measure. The membrane
potential and the synaptic input are highly correlated,
and cannot be distinguished statistically. Extending this
to a global model, we suggest a time-inhomogenous
jump diffusion process, which also incorporates the
time-varying dynamics of the stimulus induced network
activity.

The main findings are the following. Under stimula-
tion, a square-root diffusion describes the data much
better than an OU process with constant diffusion
coefficient. The drift is linear in locally stationary
regimes during short time windows, but the membrane
time constant decreases with increasing depolarization.
Hence, the membrane time constant is given by a func-
tion of the membrane potential X, estimated to be ap-
proximately exponentially decreasing with depolarizing
membrane potential.

To model the spiking characteristics we introduce a
Poissonian firing intensity that depends on the mem-
brane potential. The relationship between spike fre-
quency and mean membrane potential has been ad-
dressed previously both analytically (Hansel and van
Vreeswijk 2002) and experimentally (Anderson et al.
2000; Carandini and Heeger 1994; Gabbiani et al. 2002).
In contrast to the spike frequency as a function of the
mean membrane potential, we propose a model for the
spike timing mechanism that directly provides the spik-
ing frequency for a given level of the membrane poten-
tial, as also proposed by Pfister et al. (2006). This way of
modeling the spiking mechanism is more flexible than
the ones used in the literature on LIF models, see e.g.
Burkitt (2006a) and Gerstner and Kistler (2002). More-
over, this approach avoids the difficult and crucial prob-
lem of defining a fixed excitation threshold, also dis-
cussed in Jahn (2009). For typical shapes of spikes and
the membrane potential fluctuations some 10 ms before
the spike maxima, an exact threshold for the spike is not
obvious and the notion even seems inadequate. This
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concern naturally leads to the assumption that the spike
probability depends on the state. After applying our
estimation method for the Poissonian firing intensity to
all of the data, we report an exponential increase of the
firing intensity with depolarizing membrane potential,
which is comparable with the quadratic shape reported
in previous studies (Anderson et al. 2000; Carandini
and Heeger 1994; Gabbiani et al. 2002).

Hip flexor nerve activity was recorded simultane-
ously with intracellular recordings of a spinal motoneu-
ron during network activity induced by a mechanical
stimulus. This activation leads to an intense synaptic
bombardment of the intracellularly recorded neuron.
It is of interest to characterize the network activity
to which the recorded neuron is exposed. Indeed, this
background signal, which may well be variable over the
course of the experiment, could be the main piece of
information to be extracted from the data available.
When the network activity is large enough to elicit
spikes in the spinal motoneurons, the network output
measured through the hip flexor nerve activity is a
proxy for the input to the recorded cell. Hence, we
test this hypothesis by estimating the input from the
recorded neuron without using the measured output
activity, and then compare the resulting estimate with
the output. We find that the unmeasured network activ-
ity, which the neuron is exposed to, can be reasonably
estimated and coincides with a threshold version of the
output from the network.

The stochastic LIF models provide a useful com-
promise between biophysical reality and mathemati-
cal tractability, see e.g. Burkitt (2006a, b), Dayan and
Abbott (2001), Gerstner and Kistler (2002), Ricciardi
(1977) and Tuckwell (1988). Most studies make theo-
retical analyses of the models, whereas studies where
experimental data are fitted to some of the stochastic
LIF models are less frequent (e.g. Jahn 2009; Lansky
et al. 2006). The data are typically either intracellu-
lar measurements of the membrane potential sampled
at high frequency, or extracellular measurements of
the spike times. Obviously there is more information
contained in the membrane potential than in spike
times alone. Some studies estimate intrinsic parameters
characterizing the neuron by assuming the neuronal
input known; references using intracellular recordings
are Clopath et al. (2007), Huys et al. (2006), Jolivet
et al. (2004), Jolivet et al. (2006), La Camera et al.
(2004), Paninski et al. (2005), Rauch et al. (2003) and
references using spike times are Paninski et al. (2004,
2005). Other studies identify the input signal from the
neuronal output, assuming the intrinsic neuronal pa-
rameters known; some references using intracellular
recordings are Hopfner (2007), Lanska and Lansky
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(1998), Lansky (1983), Lansky et al. (2006, 2009),
Picchini et al. (2008) and references using spike times
are Ditlevsen and Ditlevsen (2008), Ditlevsen and
Lansky (2005, 2006, 2007, 2008), Inoue et al. (1995),
Lansky and Ditlevsen (2008), Mullowney and Iyengar
(2008), Shinomoto et al. (1999) and Zhang et al. (2009).
In these last studies, two parameters characterizing the
neuronal input were estimated or statistical methods to
do so were proposed. Note though that more elabo-
rate biophysical models where OU-processes have been
used as building blocks, e.g. for the synaptic conduc-
tances, have been successfully fitted to experimental
data, see e.g. Piwkowska et al. (2008).

Nearly all of the above methods rely on determining
the model before the analysis is carried out, as well as
assuming some of the parameters known. In this paper
we construct a diffusion LIF model by non-parametric
methods from experimental data, thus letting the data
decide the best model within the class of stochastic
diffusion integrate-and-fire models. A time constant
is introduced, which is inversely proportional to the
conductance of the neuron and varies with the state of
the membrane potential. Further, the dynamics of the
process are allowed to depend on time by modeling a
non-stationary input caused by a stimulus that changes
during the course of the experiment. Finally, the spiking
intensity is estimated by fitting the observed spikes
to a Poisson random measure with a state dependent
intensity. All parameters and quantities of the model
are estimated from experimental data. The estimated
model is validated through computer simulations and
compared to the experimental data. The simulations
show a remarkable resemblance to the recorded data.

2 Materials and methods
2.1 Experimental methods

The experimental data are taken from a previous study,
where traces of 25 s of the membrane potential of a
motoneuron were measured during different current
injections under the same mechanical stimulation. The
network was permitted to relax for 5 min before a new
trace was recorded. In this paper we analyze 16 traces,
which were chosen from all traces being those that did
not spike or only rarely spiked, since a main purpose of
the present study is to model the subthreshold dynam-
ics. Sample traces are illustrated in Fig. 1(c) and (e).
Briefly, the experiments were performed in an inte-
grated spinal cord-carapace preparation from an adult
red-eared turtle (Trachemys scripta elegans). In the
integrated preparation the spinal cord remains in the

spinal canal with the tactile sensory nerves from the
carapace intact. The motor nerves are carefully tran-
sected to avoid muscle movements and dissected out for
electroneurogram recordings. The scratch reflex was
activated by mechanical somato-sensory stimulation of
selected regions on the carapace as described in Al-
aburda (2003) and Alaburda et al. (2005).

Intracellular recordings in current-clamp mode were
obtained from a motoneuron in segment D10. Record-
ings were accepted if the neuron had a stable mem-
brane potential more negative than —50 mV. Data were
sampled at 10 kHz, i.e. the time steps between observa-
tions were A = 0.1 ms. The voltage was measured with
an accuracy of 0.05 mV. Hip flexor nerve activity was
recorded using a suction pipette.

Mechanical stimulation was performed with the fire
polished tip of a bent glass rod mounted to the mem-
brane of a loudspeaker in the cutaneous region known
to elicit “pocket scratch” (Robertson and Stein 1988)
which results in a broad activation of cells (Berkowitz
2007). The duration, frequency, and amplitude of the
stimulus were controlled with a function generator
(Fig. 1(a)). This tactile stimulus induced the scratchlike
network activity, which was monitored by the suction
electrode nerve recordings from the hip-flexor nerve
(Fig. 1(b) and (d)). Further details on recording, sam-
pling, and experimental procedures are available in
Berg et al. (2007, 2008).

2.2 The model

A stochastic diffusion model 1In diffusion neuronal
models, the dynamics of the membrane depolarization
between two consecutive neuronal firings are repre-
sented by a scalar diffusion process X = {X;; t > 0} in-
dexed by the time ¢, and given by the Ito-type stochastic
differential equation (SDE)

where W = {W,; t > 0} is a standard Wiener process
(Brownian motion) and B(-) and o(-) are real-valued
functions (called the drift and the infinitesimal vari-
ance) of their arguments satisfying certain regularity
conditions to ensure the existence of a unique solution
to Eq. (1). The drift coefficient reflects the local aver-
age rate of displacement and local variability is repre-
sented by the infinitesimal variance. We will determine
non-parametrically the functions B(-) and o2(-) from
the experimental data.

Firing of the neuron is not an intrinsic part of model
(1), so a firing mechanism has to be imposed. Often
firing events are modeled by the crossing of the mem-
brane potential X, of a voltage threshold, which is
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modeled as a constant or as a time dependent func-
tion to account for refractory effects. In this work we
consider a more detailed firing mechanism with a state
dependent firing intensity, see below.

The most common diffusion model proposed to de-
scribe the membrane potential dynamics is the linear
diffusion LIF model, given by the SDE

1
dX, = —(a — X)dt + o (X,)dW,, @)
T

where 7 is the membrane time constant and a character-
izes the neuronal input with voltage units. Under mild
regularity conditions on the diffusion coefficient o (-)
the conditional mean of model (2) is

E(X,| X, = x0) = a+ (xo —a)e ", 3)

If o (X;) = o is constant then this is just the OU model
(Ditlevsen and Lansky 2005), which takes values on
the entire real line. This is the simplest mean-reverting
diffusion. When o (X;) = 0/ X; — V;, where V; is the
inhibitory reversal potential, this is the square-root

Fig.1 (a) Cutaneous
stimulation via sinusoidal
movements of a glass rod on
the hind-limb pocket skin.
(b) Electro-neurogram from
hip flexor nerve, recorded
simultaneously with trace 12.
(¢) Membrane potential from
intracellular recordings, trace
12. The injected current is

model (Bibbona et al. 2010; Ditlevsen and Lansky 2006;
Hopfner and Brodda 2006; Lansky and Lanska 1987,
Lansky et al. 1995), also called the Feller neuronal
model or the CIR process. It is required that 2(a —
V1) > o to ensure that X, only takes values larger than
V; and never hits V.

The data introduced in Section 2.1 show a cycling
behavior generated by the mechanical stimulation and
are thus time inhomogeneous, which is not reflected
by this simple model. Nevertheless, locally the data
might be considered approximately stationary. For the
spinal motor activity we consider three regimes: The
quiescent regime during the first five seconds of each
trace before the mechanical stimulation starts with little
or no synaptic input, the on-cycles with motor nerve
activity and occasional spike activity, and the off-cycles,
the lower regime in between the on-cycles (Fig. 2). The
analysis of Section 3 clearly shows that the membrane
time constant t is different in each of the three regimes,
decreasing for increasing activity in agreement with
previous findings (Berg et al. 2008). A biological ex-
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Fig. 2 A close-up of trace 12.
The red line is the moving
average after which we
numerically decide where on-
and off-cycles begin and end,
which is indicated by the
dashed lines
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planation is that when the mean synaptic conductance
increases there is a shortening of the effective integra-
tion time (Barrett 1975; Berg et al. 2007; Bernander
et al. 1991; Destexhe and Pare 1999; Destexhe et al.
2003), which may serve to facilitate rapid changes in
movements (Berg et al. 2008). Thus, it is necessary to
extend the model to a time inhomogeneous LIF model
since the time homogeneous LIF model is only locally
valid.

To allow t to depend on the level of the membrane
potential and to take the time inhomogenous input
from the background network activity caused by the
mechanical stimulation into account, the model is ex-
tended as follows.

A time-inhomogeneous dif fusion LIF model Assume
that the subthreshold dynamics of the membrane po-
tential between spikes X, can be described by the SDE

1

dX[ = —
(X))

(a+ g — Xpdt + o (X)dW,, 4)
where g(¢) is the time inhomogeneous input with volt-
age units, and a is the mean voltage during the quies-
cent period. We assume g = 0 in the quiescent period
before the mechanical stimulation is initiated and thus,
a characterizes a basal level which will depend on the
constant injected current. The dependence on the level
of the membrane potential of the time constant is mod-
eled as

* =YX

T(x)=1"e

®)

with 7*,y > 0. Here t* is the hypothetical time con-
stant when the membrane potential is 0, and thus only
represents a scaling of the membrane time constant,
and y represents a kind of rate with which the time con-
stant decreases with depolarizing membrane potential.

11
time (s)

Note that the time inhomogeneity of this model only
comes from the input function ¢ — g(¢).

In model (4), we have chosen to let the time constant
and diffusion coefficient be functions of the membrane
potential X; and not the input g(¢). Though the synaptic
drive g(¢) is the primary cause of changes in variance
and time constant, we chose to let it depend on X; for
convenience, since X; and g(¢) are highly correlated.

Spike generation 'The problem of finding a reasonable
excitation threshold § and a reset value x* for LIF
models is discussed in Jahn (2009). There S and x*
are estimated from interspike interval data. Due to the
time inhomogeneity of the data, this approach is not
convenient for our case. Hence we introduce a more
flexible mechanism of spike generation, based on the
idea in Hopfner and Brodda (2006), who introduced
a Poissonian firing according to an exponential clock
that measures how much time the membrane potential
X spends over a certain threshold S. Consider a spike
train to be a random sequence 0 < §; < §; < -+ < §; <
T on the time interval [0, T'] or equivalently written, to
be a random measure

i
() ==Y 8y (de) on ([0, T1, 2((0, T)),

i=1

(6)

where §(;) denotes the Dirac-measure at t and ([0, T)
the Borel o-algebra on [0, T]. We will now general-
ize the definition in Hopfner and Brodda (2006) of a
Poisson spike train that allows spatial flexibility of the
intensity.

Definition 1 The measure p given by Eq. (6) is called
a Poisson spike train if it is a Poisson random measure
with intensity measure A(X;_)dt, where X,_ denotes the
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left limit of X; and x +— A(x) is a piecewise continuous
function.

A Poisson spike train p generates points, identified
with the jumps, on the time axis [0, 7] with an intensity
that depends on the state of the membrane potential.
When a jump is generated the membrane potential X
is reset to a value x* assumed constant for simplicity.
Spikes are identified with the jumps.

A global jump diffusion model The model can be
represented as a jump diffusion process by adding a
jump term to the SDE in Eq. (4),

1
+ o (X)dW; + (x* — X, )u(X;—, dp), (7)

where u(X,_, dr) is a Poisson spike train with intensity
measure A(X;_)dt. The main goal of this work is to
estimate all unknown quantities of model (7) from
experimental data, including g(-), o(-) and A(-). If
has a jump at time ¢, the jump size of X at time ¢ is
X; — Xi— = x* — X,_, such that the process is reset to
x* right after a spike, which is associated with the jump.
For other jump diffusion neuronal models we refer to
Giraudo and Sacerdote (1997).

To ensure the existence of a unique solution to
Eq. (7) for the starting value X, =xo € R, it is con-
venient to assume that o(-) is Lipschitz and g(-) is
bounded. The drift term in Eq. (7) is mean reverting
and locally Lipschitz. Hence, we only need to worry
about a possible explosive behavior of jumps (see e.g.,
Jacod 2003, Ch.III, Thm. 2.32). Let 1 4(z) denote the
indicator function of the set A,i.e. 14o(z) =1ifze€ A
and 14(z) =0if z € A. To construct u we define

w(X;_,dr :=/

zeRy

Tioxx, ) (2) N(dz, df),

where N(dz, d¢) is an independent homogeneous Pois-
son random measure on R with intensity measure
dzdr. From this we see that the intensity measure of p
is given by

E[u(X,—, d)|X;-] = E[f Lioax,n(2)N(dz, di)| X;-]

ZER,
=/ Lo.ax, (z)dzdt = A(X,-)dt,
zZeR,

which is the desired intensity from above for Eq. (7).
Further, since X always jumps back to a fixed value x*
where the jump intensity is A(x*) < oo, X can only jump
finitely many times on a finite interval [0, T]. In fact, we
will estimate A(-) to be approximately 0 in the vicinity of
x*, which is reasonable from a biological point of view,
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since then a refractory period after a spike is accounted
for.

3 Estimation methods and results

Estimation of the diffusion coefficient To determine
the function o (-) in model (1), we use a nonparamet-
ric estimation method (Florens-Zmirou 1993; Hopfner
2007), which is reviewed in Appendix. Since this es-
timator only involves the quadratic variation of the
process and the data are sampled at high frequency, the
effects of time-inhomogeneity in the drift are negligible.
During all on- and off-cycles the squared diffusion
coefficient x > o%(x) turns out to be approximately
a linear function for each trace. We can therefore
perform a linear regression. This happens consistently
over all traces and is shown for traces 12 and 14 in
Fig. 3. Thus, we conclude that the best description
of the diffusion part in model (1), during the on-
and off-cycles, is a square-root process, where o (x) =
o+/x — V; and V; is the inhibitory reversal potential.
To ensure the Lipschitz condition, o(x) is set to be
bounded away from 0 by a small constant, which is
the estimate of o from the quiescent period. During
quiescence the noise is much lower than after stimula-
tion and close to the same order of magnitude as the
accuracy of the voltage measurement. Therefore, we
cannot expect reliable results for such low values. In
fact, in this regime x — o%(x) cannot be interpreted
as a smooth function anymore. Due to the relatively
small noise in the quiescent period, a constant noise is
suitable enough to explain the data. The estimate for
o? in the quiescent regime is the median value over the
nonparametric estimate of x — o2(x).

To obtain a common estimate of o2 of the cell over
all traces, we performed a linear regression of o> on
x, using the points from the non-parametric estimation
for all traces, illustrated in Fig. 3 for traces 12 and
14. The analysis was carried out using a linear mixed
model, where a random trace-specific component was
introduced that allowed adjusting for the intertrace
variations in slope and intercept. Note that all traces are
recorded from the same cell, the differences between
repetitions being different levels of injected current.
Thus, if the random trace-specific component is statisti-
cally significant, we conclude that variation in the noise
level is influenced by the injected current, as expected
since the driving force is modified when changing the
membrane potential with respect to the excitatory and
inhibitory synaptic reversal potentials. In effect, the
random trace-specific component was statistically sig-
nificant (p < 0.0001).
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Fig. 3 The non-parametric
estimates of o'2(-) during the (a) . . (b) .
on- and off-cycles and the l=—17nA .. l=0nA
corresponding linear - - o S - .
regression for trace 12 (a) and g N1 e g N1
trace 14 (b). The injected o el o .
current is indicated by I E 0 | ,.::/‘ '. E 0 | <.
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The estimate for the on- and off-cycles without in-
jected current was 62(x) = 0.071(x + 75.4). Thus, the
inhibitory reversal potential V; is estimated to —75.4
mV. The average estimate for the on- and off-cycles
over all traces, including those with negative injected
current was 62(x) = 0.047(x + 92.1). Note that this is an
average estimate for the cell, but varies from trace to
trace. A larger negative injected current hyperpolarizes
the membrane potential and the amplitude of the noise,
both in a linear fashion. Apart from the quiescent
regime, where o2(-) is estimated and modeled to be a
small constant, the final estimates for x — o2(x) are
plotted in Fig. 4(a).
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Fig. 4 (a) The colored lines are the estimated 2(-) for each trace
during on- and off-cycles. The cyan line is the estimate for trace 12
and the magenta line is the estimate for trace 14. The black curve
is the average estimate for all traces, 62(x) = 0.047(x + 92.1). (b)
The colored points are the trace-specific estimates of t during

Time constant The nonparametric method requires
stationary data. To analyze the time inhomogenous
input and the varying time constant, we will use a
different strategy. Since the data within each on- and
off-cycle and the quiescent period can be considered
as approximately stationary, we describe the membrane
potential X, within each of these regions and between
spikes by a time homogeneous SDE (1) where the drift
and the diffusion functions 3(-) and o (-) are not allowed
to depend on time.

To determine the on- and off-cycle intervals where
the process behaves approximately stationary, we apply
the following procedure. First the data are smoothed by

G

estimates of T (ms)
15 20 25 30
Il Il Il Il

10

©

} T T T T T 1

—110 —100 —90 —-80 -—-70 —60 —50
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quiescence, on- and off-cycles, where estimates from the same
trace are connected. The cyan curve is trace 12 and the magenta
curve is trace 14. The black curve is the final estimate 7(x) =
2.5¢0922¢ yalid for all traces
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a moving average of 2,001 points (radius of 1,000 time
steps, corresponding to 100 ms, around every point).
Then the local maxima and minima in each on- or off-
cycle are found after indicating roughly the intervals.
Finally, the interval bounds are chosen to be the closest
time points to the maximum or minimum where the
smoothed trajectory exceeds a 3 mV distance to the
corresponding maximum or minimum (Fig. 2). This
procedure is applied to all traces.

The nonparametric estimation reviewed in
Appendix requires large sample sizes to work properly.
Due to the high frequency sampling it is possible to
apply the nonparametric estimation method to the
on- and off-cycles and the quiescent period separately
and estimate for each regime the corresponding
homogeneous drift functions Bon(-), Borr(-), Bq(-). All
the estimated functions are approximately linear
(Fig. 5), which leads to the diffusion LIF model (2).
Hence, we perform a linear regression where the
inverse slopes of the fitted lines correspond to the
different time constants t,,, Torr and 4. Results are
reported in Fig. 4(b). Except for one trace the time
constant is decreasing from quiescence over off-cycles
to on-cycles. Hence, the neuron reacts faster for
more depolarized levels of the membrane potential as
previously shown (Berg et al. 2008).

To estimate the parameters t* and y in the func-
tion t(-) given in Eq. (5) of the time-inhomogenous
diffusion LIF model Eq. (4), we performed a linear
regression of log(t) on x, using the points (7on, Eon[ X1),
(Toft, Eoff[ X1), and (4, Eq[X]), where E,[X] is the es-
timated mean in the given regime. The analysis was
carried out using a linear mixed model, where a random
trace-specific component was introduced that allowed
adjusting for the intertrace variations in slope and in-

tercept. Likelihood ratio tests were applied to assess
statistical significance, and neither the random effect
on the slope y nor the intercept resulted statistically
significant (p > 0.1). Thus, as an approximation we
take that the time constant only depends on the level
of the membrane potential. Previous investigations
have found that the decrease in the time constant is
caused by an increase in mean synaptic conductance,
whereas an increase in membrane potential fluctuations
is caused by an increase in synaptic conductance vari-
ance (see e.g., Destexhe and Pare 1999; Kuhn et al.
2004). Thus we find indirectly that both the synaptic
conductance mean and variance are empirically linked
to the level of the membrane potential during this
particular network activity (in agreement with Berg
et al. 2007, 2008).

The final estimates were 7*=25ms and y =
0.022mV~!, and thus 7(x) = 2.5¢ %922 which is the
black curve in Fig. 4(b). That gives a time constant of
12.4 ms when the membrane potential is at its resting
level of —71.5 mV, which is the level during quiescence
for traces 14 and 15 that had no injected current. All
other traces had negative injected currents, and thus
more hyperpolarized levels during quiescence. When
the level is —45 mV, where the neuron has a high firing
intensity, the time constant is approximately 6.9 ms.

Spike intensity Let Y = {Y;} be the entire data set with
all traces appended one after the other, such that i
runs from 1 to M = 16(N + 1), where M is the total
number of observations from all 16 traces, and N + 1 is
the number of observations in each trace, N = 250,000.
Thus, Y, ..., Yas0001 are the observations from trace
1, Ya2s50002, - - -» Ys00003 are the observations from trace
2, and so forth. Let / € N be the number of observed

(a) ®) 1. © .
o 7=8.1 ms O 1=9.7 ms ] 1=235 ms
231 s 2| o 2y
T T £ . £31
> o ¢ > 7 e L. > .
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Fig. 5 Estimates of the drift coefficient A(-) in model (1) during the on-cycles (a), the off-cycles (b), and quiescence (¢) of trace 12. The

slope is —1/7
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spikes and s; < §5; < --- < s be the time points of Y
where the spikes were initiated. In the 16 traces / =
364 spikes occurred. Our aim is to estimate the firing
intensity function A(-) of the Poisson spike train pu,
defined in Definition 1, which is allowed to depend
directly on the voltage level. First we partition the state
space in intervals of length 4, and study each interval of
the form [x — g, X+ %’], where x runs from some value
Xmin to some value xmax in steps of 4. The bounds
Xmin and x,.¢ are chosen such that all / measured values
of the membrane potential at the initiation of a spike,
Y, ..., Yy, lie in the interval [Xmin, Xmax]. For the data
set at hand we chose xp;, = —60 mV and x, = —35
mV. For a given x we then count the number of spikes
that were initiated in [x — %,x—f- %] by the quantity
le:] ﬂ[x,g,Hg](Ys,-). Recall that 1 4(z) denotes the in-
dicator function defined above. The time the process
spent in [x — %,x—}- %] is then estimated by counting
the number of observations that fell in the interval and
multiplying it by the time step between observations,
i.e. by the quantity ZZZI Al 1y (Y, where A =
0.1 ms is the time step between observations. Finally,
we estimate the spike intensity at x by

!
Z/’:l ]]'[x—g,x+%](YSj)
i s
Zi:l A]l[x—%,x-k—%](yi)

A(x) = (8)

which is simply the number of spikes initiated in an
h/2-neighborhood of x divided by the time X spent in

this neighborhood. For x < xp, — g we estimate i(x) =

0, since no spikes were emitted when the membrane
depolarization was that low, and thus the numerator in
Eq. (8) is zero. To improve reliability, we only consid-
ered estimates A(x) if [x — ’%, X+ %] was visited at least
for 20 ms.

Fig. 6 In (a), all 364 spikes of
the 16 traces centered at 0. In (a)
(b) the standard deviation at
every time point in (a) is
computed. The dashed line
indicates 4 ms before the
spike maximum, where the
membrane potential becomes
less random than before. This
can be interpreted as the time
when the spike was initiated
and its upturn begins

-30

X (mV)
-50

-70

In the literature nonparametric estimators for jump
intensity functions do exist, see e.g. Andersen et al.
(1993), Helmers and Manku (2009), O’Sullivan (1993),
Patil and Wood (2004) and the references therein.
These references mostly consider the Cox-model from
survival analysis and some assumptions are not fitting
our requirements. The essential difference is that we
consider the intensity A to be a quite general function
of the state of a stochastic process (cf. Definition 1),
such that our estimator A from above is depending on
the number of visits (or local time) of this process.

Figure 6(a) shows superimposed data traces 10 ms
before and after each spike, centered at the observed
spike maximum. It seems that there is a large range
of the membrane potential from where spikes can be
initiated. To apply the estimator (8) it is necessary
to determine where the spikes were initiated, i.e. to
find the points sy, ..., s;. These should be time points
right before the spike maxima, where the membrane
potential is belonging to the upturn of the spike, but has
not yet left the diffusion regime. Figure 6(b) shows the
standard deviation at each time point of Fig. 6(a). The
increase during the spike upturn is due to the high slope
of a spike and the fact that we centered at the observed
spike maximum, which is not the true maximum, since
it can occur between two observation points. At around
4 ms before the spike maxima the standard deviation
starts decreasing, which also agrees with the analysis of
the effective synaptic integration time (eSIT) in Berg
et al. (2008). Hence, the time points s; = ™ — 4 ms are
fulfilling our requirements, where #"* denotes the ob-
served time of the maximum of the ith spike. With this
choice and 4 = 1 mV, all spikes of the 16 traces were
used to estimate A(-). As an example, over all traces
28 spikes were initiated at a membrane voltage level
between —55.5 and —54.5 mV, measured 4 ms before

time (ms)

time (ms)
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Fig. 7 Estimated intensity
function (a), in (b) plotted on
logarithmic scale. The full
drawn cyan curve is the result
from the linear regression
estimating

):(x) =exp(15.3 + 0.4x)

A (1/ms)

—0—=0

log(L)

-5

the spike peak. Further, all traces spend an overall time
of 19,070 ms within this interval, giving a spike intensity
estimate of A(—55mV) = 28/(1,907 ms) = 0.00147 ms™!
at a voltage level of —55 mV. The resulting A (-) is shown

in Fig. 7(a).

Fig. 8 (a) The black line is
the estimated input function
g(-) for trace 14, the cyan line
is the squared smoothed and
rescaled measured network
activity from (b), and the
magenta line is the simulated
output from a network of
1,000 neurons, each receiving
an input proportional to the
estimated input g(-), where
the proportionality factor is
drawn from a uniform
distribution on [0.2,1]. (b)
Network activity recorded
from the hip-flexor nerve
during the recording of trace
14. (¢) The number of spikes
elicited from simulations of
1,000 neurons against the
activation level of the input,
i.e. the proportionality factor
drawn from a uniform
distribution on [0.2,1]
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On a logarithmic scale, A(-) has a linear shape
(Fig. 7(b)). A regression leads to i(x) = exp(15.3 +
0.4x). This is in agreement with the proposed in-
tensity function by Pfister et al. (2006) of A(x) =
exp(16.7 + 0.33x), and thus the present study supports
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experimentally the theoretical considerations of that
paper.

The spiking frequency is thus estimated to 77 Hz at
a membrane potential of —45 mV, giving a mean inter-
spike interval of 12.9 ms. At —71.5 mV the frequency is
0.002 Hz with a mean interspike interval of 479,000 ms,
thus in practice the neuron is silent. For an intermediate
level of excitation of —55 mV, the frequency is 1.5 Hz,
with a mean interspike interval of 684 ms.

An essential advantage of this estimation method is
that it is robust to the choice of 51, ..., 5;. As long as X
belongs to the diffusion regime, the estimated intensity
adjusts the model to the observed spiking behavior.

Input function Finally we have to treat the estima-
tion of g(r) at the observed time points t; = Ai, i =
0,1,..., N, where N = 250,000 is the sample size of
the observed trace. We define X; := X, and note that
when ignoring spikes, we derive from Eq. (3) the
approximation

E[X; | Xi] &~ Xiem 870 + (g(6) + a)(1 — e /700,

The approximation would be exact if g(r) and t(X;)
were constant between observations at times #; and ;.
This is justified because A = f;4; — t; = 0.1 ms is small
compared to the time constants of the system. We then
replace E[X;|X;_;] by X;, and t(-) and a with their
corresponding estimates 7 (-) and a estimated above. An
estimator of the input function is derived by solving
for g(1),

Xy — Xiem /050

(1 — e=A/E(XD) —a, i=0,1,...,N.

gt =

From the substitution of E[X;|X;—{] by Xi, {g(t)} is
an extremely noisy sequence. Nevertheless, since A
is small, (E[X;|X;_1] — X}), i=1,..., N are approxi-
mately independent Martingale increments and normal
distributed around 0. To balance out these errors we
smooth g(-) by a smooth spline g(-) which will be our
final estimate for g(-). In Fig. 8(a), () is shown in black
for trace 14.

4 Input—output relationship

In the previous Section, we estimated the unmeasured
network activity resulting from the mechanical cuta-
neous stimulation on the hind-limb pocket skin of
the turtle represented by g(-) in model (4). This net-
work activity is the input to the entire pool of spinal
motoneurons, and was estimated from the intracellu-

larly recorded membrane fluctuations in a single mo-
toneuron that contributes to the output nerve activity
recorded in the electro-neurogram. We estimated g(-)
in Eq. (4) without using the data from the electro-
neurogram recorded from the hip-flexor nerve, shown
for one trace in Fig. 8(b). The network activity from the
hip-flexor nerve is the output from the spinal cord, and
represents the activity of maybe 100 motoneurons. This
quantity is scale free, since the strength of the signal
depends on the exact location where it is measured.
Moreover, only activity from spikes in the network
are detectable. Thus, when the input is too weak to
cause spikes, the electro-neurogram measures no ac-
tivity, even if the network does receive some input. A
natural assumption is that the hip flexor nerve activity
is a threshold version of the input, where more neurons
become activated the higher the input, depending on
their distance to the emitted signals. To test this hypoth-
esis we compared the estimated input to the measured
hip-flexor nerve activity. To compare input and output,
the observed network activity was squared, smoothed
in the same way as g(-) and scaled to the same order of
magnitude as g(-). The occasional negative values are
an artifact of the smooth spline procedure. The result is
the cyan curve shown for one trace in Fig. 8(a). We also
tried the absolute value instead of squaring, but it made
practically no difference (results not shown).

To test if the output could be a threshold version
of the input, we simulated the spike times from 1,000
neurons receiving the estimated input g(-). To incor-
porate varying distances from the input, a proportion-
ality factor was drawn from a uniform distribution on
[0.2,1], which was multiplied onto the input. This ap-
proximation is of course rude, and does not take the
specific network structure into account, which we have
no information about. At each time point, spikes from
the pool of neurons were added. Finally, this signal was
smoothed and scaled as g(-). The result is the magenta
curve shown for one trace in Fig. 8(a).

It is seen that a simulated output from a pool of
neurons, induced by the estimated input, reproduces
main characteristics of the measured output, like zero
values during low input and peaks during high input,
and larger variation between amplitudes of waves. We
conclude that the synaptic input can be estimated from
the fluctuations in the membrane potential recorded in
just one of the motoneurons.

In Fig. 8(c) the number of spikes emitted from
each simulated neuron is shown as a function of the
activation level of the input, i.e. the proportionality
factor drawn from a uniform distribution on [0.2,1]. The
number of spikes appear to grow exponentially with the
input level.
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Fig. 9 (a) Simulation with
the estimates of trace 12. The
simulation should be
compared to the
experimental data depicted in
Fig. 1(c). (b) Simulation with
the estimates of trace 14. The
simulation should be
compared to the
experimental data depicted in
Fig. 1(e) _
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—40
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5 Model validation

To see how the different features of the model work
and to compare it to the experimental data, we simulate
the jump diffusion (7) with the corresponding estimated
quantities. The trace specific quantities are a, 6 (-) and
g(-). The quantities, estimated over all 16 traces, are
the membrane time constants 7(x) = 2.5¢%922% the
Poissonian firing intensity Ax) = exp(15.3 + 0.4x) and
the reset value after a spike x* = —68.2 mV, which
is the mean value of the membrane potential 1.2 ms
after the spike maximum (Fig. 6(a)). The only value
in the simulation that is directly used from the original
data is the starting value X, = x. Figure 9 shows the
corresponding simulated traces for traces 12 and 14.

Fig. 10 A close-up of trace
12 and the corresponding
simulated trace. To
distinguish the two traces one

is vertically shifted by 20 mV data

model

10 15 20 25

time (s)

Figure 10 shows a close-up of only 2 s of both the
simulated and the measured trace 12, which reveals
a remarkable correspondence between simulated and
experimental subthreshold fluctuations. In Fig. 11 the
corresponding illustration is shown for trace 14 with
a further close-up to 0.5 s, to study how the model
behaves in the spiking regime. Also the spiking char-
acteristics are captured well by the model. The only
noticeable difference is that right after the spike the ob-
served membrane potential depolarizes faster than the
simulated one. This is because the increased conduc-
tance caused by the spike is not included in the model,
and thus the model is not convenient to describe the be-
havior directly after a spike. The membrane time con-
stant is estimated from fluctuations at least 10 ms away

10 mv

8.0 8.5
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Fig. 11 A close-up of trace
14 and the corresponding

simulated trace. Spikes were 20 mV
truncated at =20 mV. To

distinguish the two traces one

is vertically shifted by 50 mV data

model W

9.0 9.1

from any spike, and is thus overestimated during the
immediate after-spike dynamics. This problem could be
solved if one incorporates the increased conductance
and thus a lower time constant after the spike into the
model. For simplicity we omit this extra feature. Note
that the model does not pretend to reproduce the exact
timings of the spikes, but rather the statistics, and thus,
number of spikes should more or less coincide.

To justify the use of model (7) instead of using a
simpler OU type model with constant 7 and o we
choose trace 14 and simulated from the two models. We
compared the infinitisimal behavior of the trajectories
informally by inspection of plots. Moreover, the num-
ber of spikes generated from each model were com-
pared. The OU-model was fitted to data by maximum
likelihood (ML). This requires stationarity, and hence,
we applied the ML-estimator to the quiescent period.
The results were: 7 = 8.28 ms and 6 = 0.155 mV/,/ms.

1,000 trajectories from the OU-model and from
model (7) were simulated. For both models the same
spiking mechanism and the same input function were
used. As expected, during on- and off-cycles, where o-
values larger than one were estimated (cf. Fig 4(a)),
a constant value of ¢ = 0.155 mV//ms is too low to
describe the observed infinitesimal behavior in the data
(not shown), whereas model (7) reproduces the data
well judged by visual inspection, see Figs. 10 and 11.

The number of spikes produced by each model are
visualized in the two histograms that are overlayed in
Fig. 12. The left histogram shows the number of spikes
for the OU-model, and the right histogram the number
of spikes of each trajectory of model (7). The vertical
dashed line is the number of spikes of trace 14, which is
68. Since [46, 67] is the 99%-interval of the distribution
for the OU-model, we can reject on a 1%-level the

I I I |
9.2 9.3 9.4 9.5

time (s)

hypothesis that the OU-model will produce 68 spikes as
in trace 14. By contrast, the 80%-interval of the distrib-
ution for model (7) is [55, 68], and hence, we accept the
corresponding hypothesis (p > 0.2). If a higher level of
the constant noise term is used, the spiking statistics of
the two models are not statistically different, though the
OU-model with constant high noise level spikes slightly
more (results not shown). In this case, the subthreshold
fluctuations vary much more than the observed data.

model (7) | __

relative frequency
I

[ T T T T 1

T
45 50 55 60 65 70 75
number of spikes

Fig. 12 Histograms of number of spikes produced from simula-
tions from model (7) (right, cyan) and from an OU-model (left,
magenta), with parameters estimated from trace 14. Number of
spikes produced by traces 14 was 68, and indicated by the dashed
vertical line
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6 Discussion

In the present study, we have analyzed membrane po-
tential fluctuations from a motoneuron embedded in a
spinal network which is performing a real motor func-
tion (scratching) (Figs. 1 and 2). This is a non-stationary
activity pattern and since most neuronal activities are
non-stationary, we suggest our analytical advance as a
good approach to investigate the neuronal activity in
general.

We find that the non-stationary membrane poten-
tial fluctuations observed during network activity are
poorly described by the classical OU process, in spite
of its popularity in the literature. Instead, we suggest a
slightly more complicated stochastic model, the square-
root model, Eq. (4) where the variance is allowed to de-
pend on the depolarization. This model appears natu-
rally when an inhibitory reversal potential is introduced
into the OU model (Lansky and Lanska 1987). More-
over, to characterize the experimental data we extend
the model to a time-inhomogeneous jump diffusion
model, where the jumps represent spikes, Eq. (7). This
is a descriptive model, though, and since the level of the
membrane potential and the input are highly correlated
and cannot be distinguished statistically, we make no
claim of the membrane potential X; being the cause
of changes in variance. The synaptic drive g(¢) is most
probably the main cause, and could be substituted in
the diffusion coefficient without changing the behavior
of the model.

Few studies have compared mathematical models to
experimental data, and often parts of the parameters
have been assumed known, only estimating some of
the unknown quantities from the study. The remaining
parameters have then been taken from literature from
similar studies or otherwise determined. In the present
paper all parameters and the synaptic input have been
estimated directly from experimental data (Figs. 3, 4
and 5). This is possible because it is still a simple model
ignoring many biological mechanisms. Despite the sim-
plicity of the model it shows a remarkable resemblance
to data.

The parametric specification of the model has also
been derived from the observed data. We find that
the variance of the subthreshold fluctuations is pro-
portional to the depolarization, and that locally the
drift is linear. The membrane time constant is then
given by the inverse of the slope in the linear drift
(Fig. 5). Nevertheless, globally the drift is not linear
because the membrane time constant decreases with
increasing depolarization since it is inversely related to
the conductance. We find that an exponential decrease

@ Springer

of the membrane time constant as a function of the
depolarization agrees with data.

Nonlinear integrate-and-fire neuron models are not
new, see e.g. Badel et al. (2008), Fourcaud-Trocme and
Brunel (2005), Fourcaud-Trocme et al. (2003), Richard-
son (2007) and references therein. They are given by
model (1) with the drift

1
Bx) = - (a—x+vx)

where ¥ (x) is a non-linear term, which models the
spike-generating current and dominates the dynam-
ics for large depolarizations. Thus, it extends the LIF
model to include the initiation of spikes without having
to impose a threshold. In the exponential integrate-
and-fire model ¢ = pe~*7)/# where x7 is the potential
level at which the exponential term starts dominating,
and is thus a substitution of the standard threshold in
LIF models. The sharpness of the spike is modeled
by p. The quadratic integrate-and-fire model is given
by ¥ = p ((x — x7)/p)?, where the parameters have a
similar interpretation as in the exponential model. The
aim in our study has been different, and only the sub-
threshold dynamics with no influence from spikes have
entered the specification of the model of the membrane
fluctuations.

To estimate the time constant of the cell, i.e. the com-
mon function of the membrane potential over all traces,
and the trace-specific diffusion coefficients, we applied
a mixed model, common in biomedical research, where
repeated measurements are taken over a series of ex-
perimental units, in our study corresponding to sample
traces. This is reasonable when it can be assumed that
responses follow the same model form over repetitions
of the experiment, but model parameters vary ran-
domly among repeated experiments. In this way the
total variation of the quantity of interest is split into
two components, one corresponding to the variation of
each trace (intra-variation) and one corresponding to
the variation from trace to trace (inter-variation). This
increases the statistical power, compared to separate es-
timation on each trace, and the average estimate for the
cell is improved in the sense of decreased variance of
the estimator. We found that the random effects of the
time constant function were not statistically significant,
and the model could be reduced to one common func-
tion for the cell. On the contrary, the random effects of
the diffusion coefficients remained significant.

When studying intracellularly recorded traces of
membrane fluctuations the exact moment of spike initi-
ation is ambiguous. We therefore proposed a model for
the firing mechanism, where the instantaneous proba-
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bility of firing depends on the depolarization by intro-
ducing a Poissonian firing intensity. The advantage is
that, due to characteristics of the Poisson distribution,
the intensity directly provides the spike frequency and
its variability. The analysis showed an empirical expo-
nential increase in the spike frequency depending on
the membrane potential. Other studies have reported
an x> dependency on the mean membrane potential
(Anderson et al. 2000; Carandini and Heeger 1994;
Gabbiani et al. 2002; Hansel and van Vreeswijk 2002),
which is somewhat in good agreement since these two
functions have a similar shape.

Previous statistical analysis of fluctuations in mem-
brane potentials and variations in the membrane time
constant during high intensity network activity revealed
that spike timing was well described by a stochastic
process with a memory shorter than 10 ms (Berg et al.
2008). Here we show that the experimentally observed
fluctuations in the membrane potential, the rhythmic
waves of depolarization and the spike pattern during
network activity are features captured by our present
model. This strongly supports the idea that spiking dur-
ing network activity is driven by depolarizing transients
produced by the concurrent inhibitory and excitatory
synaptic input (Berg et al. 2007, 2008). In addition we
find that the spiking activity in the entire pool of hip
flexor motoneurons can be approximately predicted
from the fluctuations in membrane potential recorded
from a single member of the pool. This shows that
subthreshold non-linear intrinsic membrane properties
of the motoneurons make no detectable contribution to
spike timing. More importantly, it also suggests that the
synaptic input to each individual motoneuron can be
described as a function that predicts the global motor
behavior of the motor pool. To our knowledge this is
the first direct evidence for population coding in the
synaptic input to motoneurons (Pouget et al. 2000).

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.

Appendix: Nonparametric estimation of diffusion
and drift coefficients

This method was proposed in Hopfner (2007) and is
based on the results of Florens-Zmirou (1993). Con-
sider a diffusion process X defined by

To estimate the drift coefficient x — S(x) and the
squared diffusion coefficient x > o%(x), we infer from
discrete time observations X;a, ip < [ < i; Where iy, [ €
N and A > 0. The kernel estimators are given by

S K (K7 (R
i K (%57)

3@%=EAMm@)=

)

and

. 2
-M Xin— X —-X;
Y K () (Rene)
i—M Xia—

T K ()

02(x) == 02 (s, M (X) =

(10)

where K is a positive kernel. The bandwidth 4 > 0
and the number M € N of A-time steps are suitable
constants. Evidently, the choice of /& depends on the
accuracy of the data. The drift and diffusion coefficients
are only estimated at points x visited many times by X,
such that

|
OT(x) := Z Lpen gy (Xin)

=iy
is ’large’ (e.g. > 100). We call OT (x) occupation time
at x because it measures how often the process visits
a vicinity of x. The choice of M depends on A which
is given by the data. A suitable choice can help to
compensate for measurement errors and microstruc-
ture noise. If accuracy of measurements in the data set
is poor but A very small, the estimator will produce
huge values if M is not suitably large. If M is large, the
time scale might be too large to determine infinitesimal
behavior. So we have to determine empirically from
the data in which range of M the results remain stable
under variation of M. Since

1
Uz(Xt) = ;T}) EE[(XH& - Xt)2|Xt]v

1
,B(Xt) = gl_f)l(l) SE[(XH“S - Xt)|Xz]

holds, a moderate variation of M should not change the
result of the estimator much. From the theory of non-
parametric estimation and the assumption S(-),o(:) €
C'(R), it is necessary to choose M and & such that the
quantities AM and h/(AM)'/? are small. This fact is
also discussed in Hopfner (2007).

All estimates of this work are based on the choices
M =35, h=0.1 mV and a triangular kernel, K(y) =
(I —|yDLcin(y). Also a rectangular kernel, K(y) =
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%1(,1,1)(y) was used to evaluate the estimator, which
basically made no difference. To increase the number
of observations for the drift estimate at points x of the
state space, we pooled on-cycle and off-cycle intervals,
respectively, that are on the same level. We evaluated
the drift estimator only at points x where OT'(x) > 200.
For the estimate of the diffusion coefficient the whole
trace was used, and thus more data were available,
and only points with OT(x) > 500 were considered.
To ensure that the discrete observations used for the
estimators (9) and (10) were not influenced by a spike,
a fixed broad neighborhood around every spike was cut
away. In Berg et al. (2008) the analysis showed that it is
convenient to cut away a neighborhood with a radius
of 10 ms. For every segment used in the estimation,
nominator and denominator of Egs. (9) and (10) are
computed separately. Finally, the corresponding terms
are added up before the ratio is computed.
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