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A B S T R A C T

The challenge of automatically screening for potential school shooters involves several difficulties. In this paper,
we present a simple and interpretable methodology for screening for potential school shooters through (1) the
psychological textual signature of the shooter and (2) Jaynes approach for measuring the weight of evidence. We
have tested our proposed approach on a dataset of texts written by shooters and non-shooters alike (N ¼ 5047).
Our major finding is that the methodology can successfully support the screening for potential shooters in
interpretable way. The major implication for stakeholders is that there is great potential in developing screening
systems for improving the safely of schools. However, developing such a system is a project that must be actu-
alized within an integrated system of “command and control”.
1. Introduction

There are certain practical contexts where we may be interested in
screening for an event whose incidence in the population is extremely
low. In the United States, the incidence of school shooting is extremely
low, but the salience of these rare events in the media, and the anxiety
they evoke, is relatively high. For example, in 2019 the total injuries and
fatalities resulted from school shootings was 128.1 In comparison, sta-
tistics indicate that 310 people are shot in the United States every day.2

Since schools are supposed to provide students with a safe environment,
it is clear why school shooting attracts disproportionate attention and
why despite the low actuarial prevalence of school shooting, there is a
place to offer new directions for preventing this form of violence.

The default response to school shooting may be to deploy more se-
curity personnel and improve surveillance methods within schools (e.g.
cameras). However, preventive measures seem to be the most proactive
means of improving safety of schools because “targeted prevention” of a
potential shooter might save the efforts of neutralizing him in real-time
without taking the risk involved in the unexpected attack.

Since solo perpetrators sometimes produce a text (i.e., a manifesto)
that accompanies or precedes the violent act (e.g. Knoll, 2010), it may be
).
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worthwhile to examine whether such texts bear a tell-tale signature, or
early warning signs, that may be identified automatically and used to
screen for the shooter in advance. Indeed, it is reasonable to hypothesize
that such warning signs may appear long before the violent act is
perpetrated (e.g. Simons and Meloy, 2017), and may therefore be iden-
tified in advance. We use the term “texts” in the widest possible sense to
include visual images uploaded to Instagram but here we focus on
written texts only. Since the texts produced by the perpetrator may be
accessed through social media, analyzing them for early-warning signs
and the adoption of preventive steps appears to be a reasonable
approach. For instance, Eric Harris—one of the perpetrators of the
famous Columbine High School Massacre—kept a journal that included
some disturbing signals (Neuman, 2016a). In hindsight, such warning
signs could have been used, if not for prediction, then at least for (1) risk
analysis; (2) putting in place preventive legal measures; and (3) the
application of psycho-therapeutic tools, if possible. Therefore, identi-
fying a potential “signature” of a shooter, may be an important step for
identifying potential shooters in advance.

Manual screening of a massive number of subjects in a bid to spot
early warning signs is practically unfeasible, and therefore automatic
approaches must be used (Neuman, 2016b). However, with a few
sent/.
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exceptions (e.g. Neuman et al., 2015), the challenge of automatically
identifying the signature of “lone-wolf” perpetrators, such as school
shooters, has rarely been addressed even by using tools of Machine
Learning (ML) and Natural Language Processing (NLP). This challenge,
and its attendant difficulties, may be better clarified within the general
context of diagnosis and screening (Streiner, 2003), and by highlighting
what appears to be the proverbial problem of finding a needle in a
haystack, and the price of false positives (Neuman et al., 2019).

The aim of diagnosis is to confirm, or rule out, the hypothesis that a
given individual has a certain attribute—such as posing a risk to others.
In contrast, screening is broadly used to determine which member of a
large group of individuals has the attribute in question. In the case of solo
perpetrators, given the low prevalence of mass-shootings, automated
diagnosis is highly problematic, and is almost inevitably accompanied by
a high rate of false positives (e.g. Neuman et al., 2019). Given the low
prevalence of the event, it is difficult to identify an informative signature
that can be efficiently used for diagnosis. This point is critically important:
while some psychological characteristics may be attributed to shooters
(e.g. Knoll, 2010; Neuman et al., 2015), they are not necessarily infor-
mative for real-world and practical interventions. For example, a recent
report by the National Council for Behavioral Health, titledMass Violence
in America,3 suggests that while mass violence is a rare event, perpetra-
tors share certain characteristics—such as a feeling of hopelessness.
However, feeling hopeless in and of itself cannot serve as an informative
marker for diagnostic purposes, since the vast majority of people who feel
this way do not commit acts of violence against others. Thus, although
the perpetrators probably share the attribute of feeling hopeless, its
presence does not contribute to the diagnosis of a potential perpetrator.
In other words, the issue is not whether or not the perpetrators share a
certain attribute, or whether there is a difference between perpetrators
and non-perpetrators in that regard, but what is the probability that given
that attribute (such as a feeling of hopelessness), a given individual is a
perpetrator, and whether that probability enhances the detection of such
perpetrators with an acceptably low rate of “false alarms.”

Another recent report—prepared by the United States Secret Service,
and titled Protecting America's Schools4—argues that while there is no
profile of a student attacker, a grievance with classmates is reportedly the
most common motivation. Again, since the vast majority of individuals
who experience such grievances do not resort to extreme violence, this
data is of no informative value in the diagnosis or screening of potential
offenders. This important methodological point, which is grounded in a
long tradition of Bayesian reasoning (e.g., Fenton and Neil, 2012) and
methodologies for computing the weight of evidence (e.g., Good, 1985),
has been reiterated both in the scientific literature (e.g. Neuman et al.,
2019) and in the popular media,5 but ignored by many studies and
practical applications.

If there is an informative signature of a perpetrator, it is probably a
high-dimensional one, whose exact pattern cannot be easily identified by
human experts and manual analysis. Therefore, the screening of school
shooters can benefit from the development of automatic screening
methodologies leaning on ML and NLP. However, given the low preva-
lence of the event, even the most powerful tools of ML, such as Deep
Neural Networks (DNN), and methodologies for handling imbalanced
sets such as the Synthetic Minority Oversampling Technique (SMOTE)
cannot easily be used to address this challenge, as there are (1) not
enough cases to train the model and attune the parameters, and (2) to
validate the model through n-fold cross-validation.
3 https://www.thenationalcouncil.org/wp-content/uploads/2019/08/Mass-V
iolence-in-America_8-6-19.pdf.
4 https://www.secretservice.gov/data/protection/ntac/usss-analysis-of-targe

ted-school-violence.pdf.
5 https://www.vox.com/science-and-health/2018/2/22/17041080/predict-
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Moreover, DNN cannot provide yet easily interpretable results, which
are critical to justifying the use of preventive measures. While the “black
box” approach of DNN may be adequate for the classification of visual
images, it may not be acceptable when applied to the screening of in-
dividuals, or for taking preventive measures that require easily inter-
pretable justification. When choosing a subject for in-depth inspection,
we must judge the weight of evidence in favor of the hypothesis that the
subject is a potential risk. In such instances, the evidence must be clearly
interpretable, and must not hide within the “black box” of the neural
network. This argument is the main justification for the measurement
approach which is proposed in this paper.

Given this challenge and its attendant constraints and difficulties, as
we have described, the question is whether there is a simple, practical
and interpretable methodology that may be used for the specific task of
screening a population and ranking potential suspects by their respective
“risk factor,” in order to establish priorities for an in-depth inspection.
Positively answering this question is the major aim of the current study.
For example, in instances such as the Eric Harris case, local FBI officers
might use OSINT (i.e. Open Source Intelligence) tools to screen social
media texts for potential offenders. A helpful automated screening
methodology might “flag” texts of potential perpetrators as top-priority
candidates for in-depth inspection. The basic working assumption of
such a procedure is that by analyzing and ranking the texts (and images)
published by individuals in social media, the analyst, as an expert, can
validly and reliably identify those who should be priority subjects of in-
depth inspection, as they present certain early-warning signs. It is very
important to emphasize that by moving from the task of classification to
the task of ranking, we may bypass the problem of false positives. This is
a context, where a sharp criterion doesn't exist and the problem of false
positives is replaced by a softer version of decision making and its
benefits.

An automated screening methodology may therefore save the
screening efforts of the human analyst, and allow for analysis of massive
data sets in a short time. In this real-world context, the success of such a
methodology should be measured mainly by its practical success in saving
screening efforts (Neuman et al., 2015), rather than by conventional
measures of ML performance—such as AUC, precision, or recall. There-
fore, such a screening procedure should involve the ranking of in-
dividuals according to their potential risk, as identified through their
psychological-textual signature, the identification of the top-k subjects,
and their selection for secondary, in-depth inspection. Top-k ranking
methodologies have been intensively studied in Information Retrieval
(e.g. Niu et al., 2012; Zehlike et al., 2017), and appear to be particularly
relevant to the challenge of screening for shooters. Such a top-k lear-
ning-to-rank methodology should be judged by its ability to identify
top-k-ranking potential shooters, and by the screening efforts saved for
the human analyst. Moreover, it should be judged by the interpretability of
its results, and its ability to provide the human analyst with simple evi-
dence-based justification for marking a given subject for in-depth inspec-
tion. In sum, to gauge the usefulness of such a screeningmethodology, we
may measure the extent in which texts written by a school shooter are
prioritized by the system, in a manner that saves such efforts by a human
analyst and by providing him with a simple methodology for measuring
the weight of evidence that the person is a shooter. The aim of the present
paper is to introduce such a methodology.

A search on Google Scholar for papers at the intersection of “school
shooters” and “machine learning” and/or “natural language processing”
produces very few studies that used indirect measures of risk, rather than
the texts of actual shooters, did not focus on school shooters, used a
limited number of comparative texts, or a limited number of texts pro-
duced by a few shooters (Neuman et al., 2015). With very few exceptions
(Neuman et al., 2019), the overwhelming majority of the papers on
lone-wolf perpetrators ignore the needle-in-the-haystack problem, or the
real-world constraints facing an analyst.
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2. Materials and methods

2.1. Data

We downloaded all of the available personal written texts of school
shooters (N ¼ 18) from a site devoted to studying this subject.6 The
reason for using personal texts rather than other forms of texts, is that
personal texts expose the inner world of the individual and may be used
for psychological profiling (Neuman, 2016a). Following Neuman et al.
(2015), and for comparative analysis, we also used the texts from the
Blog Authorship Corpus (Schler et al., 2006). For maximizing the overlap
with the shooters’ set, and as women are not shooters, we used the texts
of male bloggers only aged between 15 and 25. The texts written by each
subject were merged into a single file; subjects who produced fewer than
100 words were removed from the analysis. Overall, the final dataset we
used for the analysis featured the texts written by 5047 subjects, 18 of
whom (i.e. 0.003%) are shooters.
2.2. Pre-processing

The texts produced by each individual were automatically analyzed
by means of Natural Language Processing tools. For all NLP tasks, we
used the Natural Language Toolkit—NLTK 3.4.57. Lemmatization and
POS tagging were carried out, leaving only nouns, verbs, adjectives, and
adverbs for analysis. Next, the tf-idf score was calculated for the words
used by each subject. Each subject was represented by the 100 highest-
scoring words. Thus, and irrespective of the number of texts produced by
the individual and their length, each individual was represented by a
vector of 100 words that best represented his text. The data used in this
study (plus the code used for the analysis) is available in the following
link: https://github.com/YoavLevR/ScreeningForShooters.

Next, a topic analysis tool was applied. To this end, we used the
Empath tool (Fast et al., 2016), which is a free topic analysis tool, and
translated each of the 100 words into a normalized (i.e.
percentage-based) distribution of topics. This way, each individual was
ultimately represented by a normalized vector of length 194, reflecting
the distribution of the 194 topics evident in the 100 selected words.
Among the topics that can be identified by Empath are: violence, shame,
pain, love etc. Our procedure is based on the idea that shooters can be
screened through the signature of their topics, as evident in the topics’
distribution.
2.3. Measuring the weight of evidence

We adopted the measure developed by the physicist E.T. Jaynes
(1996) to compute the weight of evidence in favor of hypothesis H, as
opposed to the alternative hypothesis, -H. In our case, we compared the
weight of evidence that a subject is a shooter against the evidence for a
non-shooter. The weighted-evidence approach is interpretable, and ap-
pears to relate naturally to how sensory information is integrated in the
nervous system (e.g. Gold and Shadlen, 2001). As such, it provides a
simple and interpretable approach for integrating evidence that exists in
the text, and directs a learning process that may be used for the ranking
and screening of individuals.

It is important to emphasize that our use of Jayne's idea does not
purport to compete with common ML approaches to classification and
ranking, but rather to present a different approach that may have some
benefits. Further below, we explain the justification for using Jaynes'
proposal, and compare our results to those gained by ML algorithms for
classification and anomaly detection.
6 https://schoolshooters.info/original-documents.
7 https://www.nltk.org.

3

Jaynes proposed to compute the posterior odds in favor of hypothesis
H (e.g. being a shooter) given certain evidence D (such as writing about
revenge). The posterior odds are:

Posterior Odds¼ PðH=DÞ
Pð � H=DÞ (1)

The posterior odds are equal to the prior odds in favor of H:

Prior Odds¼ PðHÞ
Pð � HÞ (2)

multiplied by the Likelihood Ratio:

Likelihood Ratio¼ PðD=HÞ
PðD=� HÞ (3)

which is called the Bayes Factor (BF) (Goodman, 1999; Kass and Raftery,
1995). In the context of hypothesis testing, the Bayes Factor is the ratio
between the likelihood of the data given H, and the likelihood of the data
given the alternative hypothesis -H. Therefore, the odds in favor of hy-
pothesis H given evidence D is calculated as follows:

PðH=DÞ
Pð � H=DÞ¼

PðHÞ
Pð � HÞ*

PðD=HÞ
PðD=� HÞ (4)

Jaynes (1996) proposed measuring the weight of evidence in favor of
hypothesisH by translating this equation into a decibel system, where the
prior evidence for hypothesis H is:

eðHÞ¼ 10log10

�
PðHÞ

Pð � HÞ
�

(5)

the evidence for H, given D is:

eðHjDÞ¼ eðHÞ þ 10*log10

�
PðDjHÞ

PðDj � HÞ
�

(6)

and when the process involves several pieces of evidence:

eðHjDÞ¼ eðHÞ þ 10
XN
i¼1

log 10

�
PðDijHÞ

PðDij � HÞ
�

(7)

We describe e (H|D) as the Jaynes score (i.e. Jaynes(e)). Following
Neuman et al. (2019), our basic idea is that by using Jaynes(e), we may
screen for potential shooters using the topical evidence that exists in their
texts, where each piece of evidence corresponds to the existence of a
specific Empath category in the text. Integrating this weight of evidence
across all the topics mentioned by the subject may give us a tool for
screening for the shooters.

What are the justifications for using Jaynes' measure, rather than
common ML algorithms for classification? Jaynes(e) has several
appealing properties. First, we are not simply measuring the probability
of a given individual being a shooter or non-shooter given the evidence
D. As explained earlier in the case of shooters, P(H/D) is known to be
extremely low. What we are actually measuring are the odds—i.e., the
ratio of favoring one hypothesis over the other—and how it improves our
inference beyond the prior odds given by P(H)/P (-H). While, for prac-
tical reasons, this may not provide an advantage over other ML algo-
rithms (such as Naïve Bayes) that use the same underlying logic of
Bayesian inference, it may provide analysts with a more intuitive and
easily interpretable way to work with the results—because when they
must decide whether or not to send a subject for in-depth inspection, it
provides a score that can be interpreted much more easily. In other
words, the Jaynes(e) seem to be much more appealing to human judg-
ment, because it provides results whose meaning can be easily inter-
preted both in terms of odds and the ten-based decibel system (Jaynes,
1996), and where a threshold for decision can be identified more effec-
tively: a score above 1 provides some odds in favor of the hypothesis. In

https://github.com/YoavLevR/ScreeningForShooters
https://schoolshooters.info/original-documents
https://www.nltk.org


Table 1. Attributes selected by the three procedures.

Jaynes InfoGain CfSubset

Prison Negative emotion Negative emotion

Government Death Death

Kill Kill Kill

Legend Sadness Neglect

Neglect Traveling Traveling

War Weather Weather

Weapon Weapon Weapon

Exasperation Pet Hate
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contrast, a ML classifier may produce predicted probabilities that a per-
son is a shooter, but determining the cut-point of decision is less intuitive
than the odds-based and decimal score proposed by Jaynes. Moreover,
Jaynes’ measure has been proposed in the context of hypothesis-testing
and inference, while the ultimate context of ML is one of optimization
(Battiti and Brunato, 2014). While this subtle difference may be practi-
cally irrelevant in terms of improved screening for shooters, it is relevant
to achieving interpretable results, since by definition optimization fo-
cuses more on minimizing a cost function, while inference through
weight-of-evidence is more attuned to revealing a valid chain of
reasoning in support of a given decision-making process.

3. The experiment

To test the proposal procedure of using the Jaynes(e) for screening
subjects, we ran an experiment on the dataset. First, however, we
informally presented and detailed the procedure. The pseudo-code ap-
pears in Appendix 1. To test our methodology, we first divided our
experiment into two phases: learning and testing.
3.1. The learning-phase

In the learning phase, we randomly sampled 70% of the shooters, and
70% of the comparison group (non-shooters). Next, we measured the
median score (Mi) for each of the Empath categories (i.e., Di) produced by
a subject: if the subject scored above the median in a given Empath
category (i.e. Di >Mi), their score was 1— in all other instances, it was 0.
The median score was chosen as an arbitrary cut-point. (Optimizing the
cut-points for each Empath category is possible, but beyond the scope of
this paper.)

Next to be calculated was the Bayes Factor for Di, given the hypothesis
that the individual is a shooter (i.e. H), versus a non-shooter (i.e. -H):

BFDi ¼ PðDi=HÞ
PðDi=� HÞ (8)

In line with common norms (Kass and Raftery, 1995), we considered a
BFDi to be significant only when it was equal to, or higher than, 3 (BFDi �
3): if so, we selected that particular Empath category for the next phase of
the analysis. The topical categories that scored 3 or above on average
over 50 runs (i.e. folds) of the learning phase were:

(1) Prison (including words such as torture, kill, escape)
(2) Government (e.g. poverty, tyranny, unjust)
(3) Kill (e.g. exterminate, massacre, hunt)
(4) Legend (e.g. occult, magic, hero)
(5) Neglect (e.g. fear, suffer, humiliation)
(6) War (e.g. destroyer, assassination, enemy)
(7) Weapon (e.g. gun, pistol, sniper), and
(8) Exasperation (e.g. outraged, disgust, loathing)

These content categories have face validity and are clearly inter-
pretable in the context of shooters. To test the extent to which this pro-
cedure identifies the informative attributes (i.e., Empath categories), we
tested several other procedures of attributes selection, using a 10-fold
cross-validation procedure. Using the Weka platform,8 we tested two
methods of attributes selection: InfoGain and CfSubset. The top eight at-
tributes identified by our procedure, and the two attributes selection
procedures, are presented in Table 1.

This shows that among the top-eight attributes identified by our
procedure, two of them—Kill and Weapon—correspond to those identi-
fied by the InfoGain and by the CfSubset. However, the simple procedure
we used seems to have a clear face validity.
8 https://www.cs.waikato.ac.nz/ml/weka/.

4

After identifying the Empath categories that can serve as evidence in
favor of the hypothesis that the subject is a shooter, and computing the
BF associated with each of these pieces of evidence, we calculated a
“noise factor” associated with each given BFDi.
3.2. Calculating the noise factor η

We assumed that calculating the BF of each piece of evidence is not
free of noise, and therefore calibrated the Jaynes score by adding a noise
factor η to it. The noisier is the feature the less we trust it and the less
weight we give it in calculating the final Jaynes score. Inspired by the
models of multisensory cue integration (Rohde et al., 2016), the procedure
for measuring the noise factor ηwas as follows: we performed 50 runs, in
each of which we randomly sampled 50% of the learning set, and
calculated the BF of each Empath category. At the end of this procedure,
we had a distribution of the BF scores for each of the Empath categories.
Next, we calculated the variance σ2 of each BFDi. The noise factor of BFDi
was then calculated as:

ηi ¼
1

variance of BFDi
(9)

3.3. The test-phase

We completed the learning phase by identifying the BFDi for all
Empath categories that might signal a shooter, and the noise factor
associated with each BFDi. We then moved to the test set, which
comprised 30% of the shooters and 30% of the non-shooters. For each
subject, we measured the score of each Empath category (i.e. Di) that had
been identified in the learning phase: if the score was higher than the
median score of the test set it was replaced by:

BFDi ¼
�

PðDijHÞ
PðDij � HÞ * ηi

�
(10)

which had been calculated at the learning phase. The final Jaynes score
for each subject in the test set was then computed as follows:

JðeÞ¼ eðHÞ þ 10
XjEj
i¼1

Log10ðBFDi * ηiÞ (11)

The final test file comprised a list of subjects tagged as “shooter” or
“non-shooter,” and their respective Jaynes scores. The J(e) measures the
weight of evidence for the hypothesis that the subject is a shooter. To
validate the screening performance of the Jaynes score, we ran the above
procedure (from the learning to the test phase) 50 times with random
sampling, according to the pre-defined split preferences (70/30). At the
end of each run, we ranked the subjects in descending order of their
respective Jaynes scores (i.e. high-to-low), and analyzed the percentage
of shooters in the top N% of the ranked texts. For example, we examined
how many shooters were found in the top 1% of the ranked texts; in the
top 2% of ranked texts; in the top 3% of ranked texts; and so on. The final
results were averaged over the 50 runs.

https://www.cs.waikato.ac.nz/ml/weka/
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4. Analysis and results

4.1. Analysis 1

The aim of analysis 1 was to gain a better understanding of the dif-
ficulty in screening for shooters. To address this challenge, we trained
several ML models on the complete dataset of all 5047 subjects. All
models were trained through a 10-fold cross validation procedure, with
the aim of correctly identifying the shooters.

Among four tested classifiers (i.e., Naïve Bayes (NB), k-NN, Random
Forest and Logistic Regression) only the Logistic Regression and the
Naïve Bayes gained some classification results: The NB gained 1% Pre-
cision and 28% Recall—i.e., that the classifier was able to identify 28% of
shooters, but when it classified a subject as a shooter, it was correct only
1% of the time. The Logistic Regression classifier gained 10% Precision
and 22% Recall—namely it, too, offered low precision and recall rates.
Examining the Threshold Curve produced by the NB classifier, and recall
as a function of sample size, we found that in order to identify half of the
shooters by the NB algorithm, we needed 37% of our subjects’ popula-
tion, which is quite unhelpful. The major implication of these results is
that they increase our awareness to the difficulty of automatic diagnosis
through ML and point to the need to consider an alternative screening
procedure, such as the one we propose. We then returned to the results
gained by our procedure.
4.2. Analysis 2

Our test set comprised 1515 subjects, only five of which were tagged
as shooters (p ¼ 0.003)—i.e., an extremely low prevalence of shooters in
each test set. We ranked the subjects according to their average J(e)
across the 50 runs of the experiment, and analyzed the percentage of
shooters of different percentages up to the top 20% of the ranked texts. In
other words, the main results of this paper are the results gained over the 50
runs of the full experiment.

The major aim of analysis 2 was to test the performance of our pro-
cedure in ranking potential shooters. If the procedure is effective, then
we should find at the top-ranked subjects, a higher percentage of shooters
than the one predicted by chance.

The percentages of shooters identified within the top-ranked subjects
are presented in Figure 1.

Result 1. The majority of the shooters (i.e., 53.2%) were identified within
the top 8% percent of the highest-ranking cases.
Figure 1. The percentage of shooters (Y-axis) identified within

5

The major implication of this finding is that given this result, an an-
alyst conducting a top-down screening of the subjects based purely on
their Jaynes scores would be able to identify the majority of shooters
within the top 8% of the dataset—a significant reduction in the analyst's
workload. Similarly, if we round up the averages, 60% of the shooters
may be identified within the top 10% of the cases, and 80% of them may
be identified within the top 20% of the cases.

As we have previously argued, the performance of our procedure
should be basically compared to the one gained by chance. For this
comparison, we have conducted the third analysis.

4.3. Analysis 3

If our methodology has a practical benefit, then in each of the N% of
the top-ranked cases we should expect to find more shooters, on average,
than expected by chance. The aim of analysis 3 was to test this hypoth-
esis. Figure 2 presents the expected number of shooters within a given
percentage of the ranked cases (e.g., the top 1%), and the actual average
number of shooters identified by our procedure.

The ratio between the expected number of shooters and the actual
number of shooters is indicative of the procedure's utility. For example,
the ratio between the observed number and the expected number of
shooters in the top 1 percent of ranked cases, is 16—whichmeans that, by
using our methodology, the analyst's performance is increased by a factor
of 16. This is the major implication of our analysis. Figure 3 presents the
ratio for all percentiles.

We can see that the ratio ranges between 16 and 4.36—namely, that
in the worst-case scenario, we can improve our identification of the
shooter by a factor of ~4.

4.4. Analysis 4

Following the previous results, we may examine the performance of
our procedure when compared to the performance of various ML clas-
sifiers. It must be remembered that our procedure is a procedure of hy-
pothesis testing and not a ML classifier. Therefore, we didn't expect it to
outperformed ML classifiers but just examined how far is the perfor-
mance from the one gained by ML classifiers.

For performing this comparative analysis, we trained several ML
classifiers on 2/3 of the data, tested them on the rest, and produced the
predicted probability score that a given subject is a shooter. For each
classifier, we ran the procedure three times, by using three different
folds, ranking the subjects from high to low according to the predicted
each of the top percentages (1–20) of ranked cases (X-axis).



Figure 3. The ratio between the actual and expected number of shooters (Y-axis) for the top 20 percentiles of top-ranked cases (X-axis).

Figure 2. Actual (black) vs. expected (gray) number of shooters for each of the top 20 percentiles of ranked cases (X-axis).
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probability score that they are shooters, and averaged the identified
percentage of shooters of the k-top cases.

To this end, we used the Scikit-Learn platform (https://scikit-learn.or
g/stable/) and the following classifiers: Random Forest, Gradient
Boosting, Gaussian Naïve Bayes, and AdaBoost. The results for the top
ranked percentages (5, 10, 15, and 20 percent) appear in Figure 4.

As evident from this chart, the best results were gained by the
Gradient Boosting classifier—although our very simple hypothesis
testing procedure fares well compared with other, much more powerful,
classifiers. For example, for the top 5% of the ranked texts it performed
better than the AdaBoost, the NB and the Random Forest. The second
main result of the paper is that:

Result 2. The Jaynes hypothesis testing procedure performs well even
when compared with some common ML algorithms (e.g. AdaBoost).

However, here the issue of interpretability, that we mentioned earlier
as a justification for using the Jaynes approach, comes into the picture.
The next analysis aims to test the interpretability of the scores produced
by our procedure as compared to those scores gained through the use of
the ML classifiers.
6

4.5. Analysis 5

Table 2 presents the ranking of the three top-ranked shooters in the
three test-folds, and the predicted probability (calculated by the Gradient
Boosting that gained the best performance) that a given subject is a
shooter.

This reveals that in test fold 1, the first identified shooter ranks No. 8,
but his predicted probability of being a shooter according to the Gradient
Boosting classifier is only 0.04! With the exception of one case, where the
predicted probability is high (p ¼ 0.96), in all other cases the probabil-
ities are extremely low.

If we consider the probability produced by the classifier as the degree
of belief that the subject is a shooter, this is a problem, regardless of the
subjects’ rankings, as it means that possibly none of the ranked subjects is a
shooter, and yet the procedure would still rank them among the top
scorers, along with the shooters! In other words, the relative ranking
score may not be enough and a low probability might produce enormous
difficulties in interpreting the results and making a decision. In contrast,
the Jaynes score provides us with more easily interpretable results.
Table 3 presents the rankings and Jaynes scores of the top-ranked
shooters, in three randomly selected test folds.

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/


Figure 4. Percent of identified shooters (Y-axis) within the top-ranked cases (top 5%, 10%, 15%, and 20%) (X-axis).

Table 2. Three top-ranked shooters in the three test-folds, and their probability of being a shooter, according to the Gradient Boosting classifier.

Test Fold 1 Test Fold 2 Test Fold 3

Rank Prob. Rank Prob. Rank Prob.

8 0.04 2 0.96 19 0.05

43 0.002 32 0.025 37 0.02

64 0.001 37 0.012 46 0.01

Table 3. Ranking of the top three identified shooters, and their respective Jaynes scores.

Test Fold 1 Test Fold 2 Test Fold 3

Rank J(e) Rank J(e) Rank J(e)

3 43 5 33 9 26

26 26 39 17 27 16

106 8 40 17 141 -0.7
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Here, we can see that for the majority of the top-ranked shooters, the
Jaynes score is considerably higher than 1—meaning that they are more
likely to be shooters than non-shooters, which makes it much easier to
interpret the results, irrespective of their relative ranking. Therefore, the
third main result of the paper is that:

Result 3. When comparedwith theML classifiers, the Jaynes procedure
produces better interpretable results.

5. The utility of the proposed procedure

We now return to the results gained by our proposed procedure. A
simple and practical illustration of the practical benefits of the method-
ology is to plot the percent of identified shooters against the work saved
by the analyst—as presented in Figure 5.

With our dataset, the analyst can avoid engaging in in-depth exami-
nation of 80% of the cases: by focusing on only the top 20% of the
rankings, approximately 80% of the shooters can be identified. Similarly,
reducing the workload by 90% by focusing on the top 10% of the rank-
ings would lead to the identification of 60% of the shooters. The trade-off
is clear—and so, too, are the benefits. Using Linear Regression analysis,
we may try to measure the model fit of predicting the percentage of
identified shooters by means of the independent variable of work saved.
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Among several regression models, the Linear Regression model
exhibited the best fit with the data (R2¼ 0.92, p< 0.001): the fewer cases
that are screened and the more work one wants to save, proportionally
the fewer shooters can be identified. The linear model fit is important, as
it shows that the percentage of identified shooters is proportionate to the
work saved—an understanding that may be useful for practical real-
world applications of our proposed screening methodology.

6. Discussion and conclusions

The challenge of automatically identifying solo perpetrators is
extremely difficult, and for good reasons. However, people's loss of pri-
vacy online, and their voluntary self-exposure on social media, can pro-
vide a rich source of information when designing a screening process
based on the subjects' own personal “texts” from his written documents to
images and music files. The problem is that manual screening of such
massive amounts of data is practically unfeasible. A practical combina-
tion of automated analysis and human expertise is therefore required, but
there is, as yet, no silver bullet that may fully address this challenge.
Increasing the safety of school students is a challenging task that requires
a system with multiple levels of protection. In this study, we have
highlighted the importance of taking preventive steps, and proposed that



Figure 5. Percent of shooters identified (Black) against the percent of work saved (Gray) for top-ranked cases (percentages 1–20) (X-axis).
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by screening various sources from OSINT, and by identifying a signature
of early warning signs, we may improve the process of screening for
school shooters. It is difficult to precisely measure the expected utility of
our proposed approach, as there no ready consensus on the cost of human
lives and the benefits of targeting a shooter before an attack. Neverthe-
less, at least in terms of human labor, the proposed approach appears to
offer added value to the human analyst, both in terms of saved screening
efforts, and in terms of easily interpretable results. In practice, the
methodology can probably be significantly improved by applying better
tools to the identification of content categories in a given text; by opti-
mizing the cut-points to include a content category that is indicative of a
shooter; by experimenting with various Top-k approaches and ML algo-
rithms; by incorporating the “impostors' cues” (Neuman et al., 2019) and
combining it with other ML approaches; and by merging together various
sources of information (such as criminal records).

As recognized by various agencies, from the NSF to DARPA, one of the
current computing challenges is the development of real-time learning,
prediction, and decision-making by ML. The real-time aspect of ML may
significantly improve the identification of potential shooters but such a
real-time systemmust have a layer of incoming data-stream arriving from
heterogenous OSINT sources. Gaining access to high-quality OSINT
sources in real-time is not a trivial task as it involves both legal, ethical
and technical considerations. A near future challenge may therefore be to
identify alternative data sources that are more easily available and can be
fed into the system in real-time. In addition, such as system must have an
architecture that not only integrates real-time data from heterogenous
sources, but a decision-making component designed as a part of an in-
tegrated Command and Control (C2) center which is in charge of oper-
ating in a case where a strong warning signal appears. In sum, building a
real-timeML system nurturing from incoming high-quality OSINT signals
and integrated with a decision-making component of a C2 center, may
significantly advance our ability to protect schools. This is a complex
engineering project while our paper only modestly points to one possible
academic direction that may be used in such a project.
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In sum, the present paper should be considered more as a proof-of-
concept only, which is based on a single selected approach that may be
useful in the unique and sensitive context of screening for shooters. Since
the modest aim of this paper is to incrementally enhance the safety of
schools by harnessing the power of ML for screening for shooters, we
leave all other improvements to real-world applications.
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Appendix 1. The pseudo-code

The learning-phase

Randomly sample 70% of the shooters and 70% of the non-shooters group.
Input: The set L includes subject's texts.
For i ¼ 1 to 194 (number of Empath categories).

For j ¼ 1 to |L|

D [j][i] ¼ Empath categoryi (of textj).

Find the Median score Mi of Empath category i.
For j ¼ 1 to |L|

IF D [j][i] > Mi
THEN D [j][i] ¼ 1.
ELSE D [j][i] ¼ 0.

Calculate the Bayes Factor (BF) for each Di (noted as BFDi).
IF BFDi � 3.
THEN add i to E.

Outputs:

E is the set of evidence indexes to be used in the test phase.
BFDi is the Bayes Factor for Empath category i.

Sub-procedure: Computing the noise factor.
For each i 2 E.

For k ¼ 1 to 50.

Randomly sample 50% of L
calculate the corresponding BFDi
Set [i][k] ¼ BFDi

calculate the variance σ2 of each BFDi from Set [i].
The noise factor of BFDi is:

ηi ¼
1

variance of BFDi

Output: ηi is the noise factor of BFDi
The test-phase

Use the test set T composed of 30% of the shooters and 30% of the non-shooters.
The set T includes subject's texts (|T| ¼ 1509).
For i ¼ 1 to 194 (number of Empath categories).

For j ¼ 1 to |T|

D [j][i] ¼ Empath categoryi (of textj).

Find the Median score Mi of Empath category Di
For j ¼ 1 to |T|

IF D [j][i] > Mi
THEN D [j][i] ¼ BFDi
ELSE D [j][i] ¼ 0.

Calculate the Jaynes score:

JðeÞ¼ eðHÞ þ 10
XjEj
i¼1

Log10ðBFDi*ηiÞ

END.
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