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Brain state decoding or “mind reading” via multivoxel pattern analysis (MVPA) has become a popular focus of functional magnetic
resonance imaging (fMRI) studies. In brain decoding, stimulus presentation rate is increased as fast as possible to collect many
training samples and obtain an effective and reliable classifier or computational model. However, for extremely rapid event-related
experiments, the blood-oxygen-level-dependent (BOLD) signals evoked by adjacent trials are heavily overlapped in the time
domain. Thus, identifying trial-specific BOLD responses is difficult. In addition, voxel-specific hemodynamic response function
(HRF),which is useful inMVPA, should be used in estimation to decrease the loss ofweak information across voxels and obtain fine-
grained spatial information. Regularizationmethods have beenwidely used to increase the efficiency ofHRF estimates. In this study,
we propose a regularization framework called mixed L2 norm regularization. This framework involves Tikhonov regularization
and an additional L2 norm regularization term to calculate reliable HRF estimates. This technique improves the accuracy of HRF
estimates and significantly increases the classification accuracy of the brain decoding task when applied to a rapid event-related
four-category object classification experiment. At last, some essential issues such as the impact of low-frequency fluctuation (LFF)
and the influence of smoothing are discussed for rapid event-related experiments.

1. Introduction
In the last decade, multivoxel pattern analysis (MVPA) has
become a widely used analysis method in cognitive neu-
roscience especially in decoding brain activities at different
states [1–4]. MVPA mainly focuses on single-trial blood-
oxygen-level-dependent (BOLD) responses to identify differ-
ent brain states. In some experiments, to obtain an effective
and reliable classifier or computational model, numerous
samples should be collected using rapid event-related designs
[3]. However, for rapid event-related designs, the overlap-
ping of BOLD signals in the time domain encumbers the
extraction of a real trial-specific BOLD response, which is
important for MVPA. Hence, the accurate estimation of a
trial-specific BOLD response is a challenging problem in
rapid event-related MVPA.

Traditional estimating approaches are mainly classi-
fied into two groups. Model-based methods involve prior
hemodynamic response function (HRF), whereasmodel-free
methods have no assumptions on the shape of HRF. Model-
based methods differ in the assumptions of the shape of HRF,

such as the canonical double gamma function [5], Poisson
function [6], radial basis function [7], and inverse logit
function [8]. Previous reports revealed the capability of HRFs
in the traditional univariate statistical analysis especially in
activation-based analysis. However, most brain state decod-
ing experiments or information-based analysis aim to obtain
fine-grained spatial activation patterns that can help improve
the performance of our decoding model [9]. Therefore,
an accurate estimation that reflects real neural activities
is necessary to obtain more fine-grained spatial activation
patterns. In these cases, we cannot ignore the high variation in
the temporal responses of different voxels across individuals
as well as across tasks, regions of the brain, and different days
within individuals [10]. Hence, model-free methods that are
more sensitive and accurate have been widely used [11, 12].

For a model-free method, a voxel-specific HRF contains
one free parameter for each time point. Thus, an HRF of
arbitrary shape of each voxel that provides much more flex-
ibility in data analysis can be obtained. In a model-free
method, the first step is always to estimate a voxel-specific
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HRF and use this HRF to deconvolve BOLD signals [13].
When estimating a voxel-specific HRF, the BOLD response
is often assumed to be a linear time-invariant (LTI) system
[14]. Then, one of the main solutions is to represent the
HRF with a linear combination of basis functions [15, 16].
Another solution is to treat the HRF at each point as a free
parameter [17]. This paper alternatively focuses on the latter
one. Modeling low-frequency fluctuation (LFF) is another
problem inHRF estimation that should be addressed [18].The
linear drift in the obtained images is a challenging problem
in fMRI data analysis because of the poor HRF estimates. A
simple strategy for removing linear drift is to detrend time-
series data as a preprocessing step [19, 20]. Alternatively, LFF
may be modeled in a nuisance matrix consisting of some
basis functions as regressors. This strategy enables not only
linear detrending but also LFF removal to some extent [21],
resulting in a more flexible and efficient detrending model.

Given that BOLD images have high noise, regulariza-
tion is a popular technique that allows constraints to be
imposed on HRF estimates to suppress the impact of noises
when employing a parameter-free model. The smooth finite-
impulse response (FIR) method [22] is a good example of
regularization to smooth estimates. Tikhonov regularization
may also be used to impose smoothness [23]. In [24, 25],
Tikhonov regularization is combined with generalized cross-
validation (GCV) to reduce the computational burden
involved in parameter selection. Accordingly, Tikhonov reg-
ularization is also used in this paper. However, smoothness
is only one of the local features of a signal, which could
not reflect the global structure of a signal. Therefore, in
extremely rapid event-related experiments, considering only
smoothness is not enough to suppress the overlapping of
different events, resulting in deformed HRF shape. Hence,
we add an additional L2 regularization component into the
estimationmodel with Tikhonov regularization, calledmixed
L2 norm (MN) regularization. Using this regularization
method, we cannot only retain the smooth feature of HRFs
but also prevent the significant overlapping of adjacent
events. Furthermore, this method is a parameter-free model,
indicating that it is adaptive to the variability of HRFs across
voxels and individuals.

We first outlined the HRF and response estimation
methods, especially the proposed MN estimation method
and the classification approach used to assess their perfor-
mances. All methods were applied to four-category object
classification data to compare the classification accuracy.
We also compared the classification performances between
object responsive (OR) voxels and voxels in the early visual
cortex. Finally, we discussed the role of LFF and the impact
of smoothness in MVPA.

2. Materials and Methods

2.1. Subjects. Ten healthy subjects (six males and four
females) participated in this fMRI study. The study was
approved by the Institutional Review Board of China
National Digital Switching System Engineering and Technol-
ogy Research Center. All subjects provided written informed
consent and had normal vision.

2.2. Stimuli. The stimuli consisted of four categories (car,
animal, building, and human face) of color images, including
50 different images in each category. All images were cropped
to the center (700 pixels× 700 pixels) and placed onto a gray-
scale background.

Visual stimuli were rear-projected onto a screen in the
scanner bore using a luminance-calibrated LCD projector
driven by a PC.The subjects viewed the screen from amirror.
The display resolution was 1024 × 768, and the stimulus
presentation script was written using MATLAB (The Math-
works) and Psychtoolbox 3.0 (http://psychtoolbox.org/).

2.3. Experimental Design. Each subject participated in three
task runs, four localizer runs, and one retinotopic mapping
run. In the task runs, images were presented in a 4 s stimulus
trial. In each trial, an image was first presented for 2 s, and
the gray background was presented for the last 2 s. Each
presentation consisted of an image being periodically flashed
ON-OFF, where ON corresponds to the presentation of the
image for 200ms and OFF corresponds to the presentation
of the gray background for 200ms. The first two task runs
consisted of 70 distinct images randomly presented once for
each time. The last task run consisted of 60 distinct images
also randomly presented once for each time. After every five
stimulus trials, a blank trial that lasted for 4 s was conducted
as a break.

In localizer runs, the subjects were presented with blocks
of images for each category. Each run consisted of 12 blocks,
with 6 task blocks and 6 control blocks. The task block lasted
the same time as the control block for 30 s. Each localizer
run consisted of six images randomly selected from the same
image category. Each task block consisted of an image being
periodically flashed ON-OFF, where ON corresponds to the
presentation of the image for 200ms andOFF corresponds to
the presentation of the gray background for 200ms. The OR
voxels were a set of voxels that were strongly activated in at
least one localizer run (t-test, 𝑃 = 0.005, family-wise error
corrected).

Another standard retinotopic mapping run with polar
stimuli was performed to delineate the early visual areas on
a flattened cortex.

2.4. Data Acquisition. Thedata were collected using a 3-T GE
Discovery 750 (General Electric, Fairfield, CT, USA) scanner
with a standard head coil at the Imaging Center of Henan
Province. For each subject, a standard gradient-echo-planar
imaging series was used to collect functional images with the
following parameters: repetition time (TR), 2000ms; echo
time (TE), 30ms; field of view, 220mm× 220mm; matrix
size, 64× 64; 39 slices; slice thickness, 3.5mm; flip angle (FA),
80∘; and voxel size, 3.4mm× 3.4mm× 3.5mm. In addition,
a high-resolution three-dimensional T1-weighted anatomical
image was acquired (TR, 8.268ms; TE, 3.24ms; FA, 12∘).

2.5. Data Preprocessing. All fMRI data were preprocessed
with SPM8 (Statistical Parametric Mapping, http://www.fil
.ion.ucl.ac.uk/spm/software/spm8/) and REST (http://www
.restfmri.net/). The first 10 volumes of each run were dis-
carded because of the instability of initial magnetic resonance
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http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.restfmri.net/
http://www.restfmri.net/


Computational and Mathematical Methods in Medicine 3

imaging signal and adaptation of subjects to the circum-
stance. Then, slice timing was performed on all functional
images. The images were realigned to the first image in the
first run for motion correction. We used REST to remove the
linear drift in each run.

For retinotopic mapping analysis, FreeSurfer (http://
surfer.nmr.mgh.harvard.edu/) was used to reconstruct a T1-
weighted anatomical image. Then, the realigned retinotopic
mapping images were registered to the anatomical image to
obtain the registration file. The following retinotopic analysis
was consistent with [26].

2.6. HRF Estimation

2.6.1. BasicModel. In ourmodel, the BOLD signal is assumed
to be an LTI system with respect to the stimulus. Then, the
measured BOLD time series is modeled as the convolution
of an input signal. The hemodynamic response function is as
follows:

𝑦 (𝑡) = ℎ (𝑡) ∗ 𝑠 (𝑡) =

𝐿−1

∑

𝑘=0

ℎ (𝑘) 𝑠 (𝑡 − 𝑘) , (1)

where 𝑦(𝑡) represents the fMRI time series, ℎ(𝑡) represents
the HRF, 𝑠(𝑡) represents the stimulus vector, and 𝐿 indicates
the discrete time length of the HRF. This model can also be
rewritten in matrix form:

y = Sh, (2)

where y is a column vector of length𝑁 (𝑁 being the number
of time points of the fMRI time series), S is the stimulus
convolution matrix with a dimension of 𝑁 × 𝐿, and h is a
column vector of length 𝐿. The stimulus convolution matrix
consists of shifted versions of a binary sequence, where ones
indicate event occurrences.

Considering LFF and other noises, additional nuisance
parts should be added to the above model. In this case, a set
of Legendre polynomials of degrees 0 through 3, which are
pairwise orthogonal, is used as regressors to compensate for
LFF [21]. An autoregressive stochastic process of order one
is also added [27]. Upon the incorporation of the nuisance
parts, the HRF estimating model can be written as follows:

y = Sh + Pb + 𝜖, (3)

where P represents the nuisance matrix of dimension𝑁 × 𝐵
consisting of Legendre polynomials of degrees 0 through 3,
b is a column nuisance parameter vector of length 4, and 𝜖
represents the stochastic noise.

2.6.2. Least-Square Estimation with AR (1) (LSAR) Noise
Model. The LSAR of the HRF estimation problem can be
achieved through the following steps (details can be found
in [28]):

(1) perform the ordinary least squares (OLS) method on
=W[h b]T + 𝜖, whereW = [S P], to obtain 𝜖;

(2) use 𝜖 to create a transformation matrix L with auto-
correlation coefficients. Then, transform the original

regression model y = W[h b]T + 𝜖 using L to Ly =
LW[h b]T + L𝜖;

(3) conduct an OLS regression on the transformed for-
mulation ỹ = W̃[h b]T + �̃� to obtain the real ̂h.

2.7. MN Estimation. Regularization is a common scalariza-
tion method for solving problems such as in the above-
mentioned basic model. The most common form of regular-
ization is called Tikhonov regularization, which results in a
convex optimization problem [29]:

minimize ‖Ax − b‖2 + 𝛿‖x‖2. (4)

For various values of 𝛿 > 0, this problemhas the following
analytical solution:

x = (ATA + 𝛿I)
−1
ATb. (5)

This optimization problem can be extended in several
ways. One useful extension is to add a regularization term
with the form of ‖Dx‖ in place of ‖x‖. In many cases,
the matrix D represents an approximate differentiation or
second-order differentiation operator; so ‖Dx‖ represents a
measure of the variation or smoothness of x. In the HRF
estimation, we assume that it is smooth; so the second-order
differentiation operator D is used in the regularization term
to achieve a smooth result:

minimize ‖Ax − b‖
2
+ 𝛿‖Dx‖

2
. (6)

Another problem in the HRF estimation of rapid event-
related experiments is the overlapping of adjacent events.
When the interstimulus interval (ISI) is extremely short (e.g.,
2 s), overlapping encumbers the calculation of the hemo-
dynamic response function because the BOLD responses
evoked by different events could not be separated successfully.
To address the instability of the estimate, we also assume
that the BOLD responses evoked by pulsed stimuli quickly
return to the baseline. In this study, we assume that the
BOLD responses return to the baseline 10 s after pulsed
stimuli. In addition, the HRF should start from zero. Based
on these assumptions, we can use a regularization term to
constrain the solution. In our study, we aim to suppress the
impact of overlapping, retaining the profile of HRF. Thus, to
depict the character of the hemodynamic response, we use a
regularization term as follows:

minimize ‖Ax − b‖
2
+ 𝛾 ∑

𝑖=1,𝑖>10

𝑥(𝑖)
2

. (7)

This formulation can bewritten inmatrix form as follows:
minimize ‖Ax − b‖

2
+ 𝛾‖Cx‖

2
, (8)

where

C =

[
[
[
[
[
[
[
[
[

[

1

0

d 0
0

0 1

d
1

]
]
]
]
]
]
]
]
]

]

. (9)
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Figure 1: Simulation results of the HRF estimates using Tikhonov regularization. The 𝑥-axis indicates the time relative to the event onset
(TR= 2 s), and the 𝑦-axis indicates the BOLD signal. Each HRF estimate was normalized by dividing it by its maximum value.

Considering the above-mentioned regularization terms,
the mixed L2 norm (MN) regularization could be written as

minimize 

Sh + Pb−y



2

2

+ 𝛿
2

‖Dh‖2
2

+ 𝛾
2

‖Ch‖2
2

. (10)

Then, the HRF estimator derived is

̂
ℎ = (STJS + 𝛿2DTD + 𝛾2CTC) STJy, (11)

where J = (I−PPT
). 𝛿 and 𝛾 are trade-off parameters to adjust

the weight of the different regularization terms.
Using this new regularization term, smoothness and prior

information about the HRF shape can be added to the
estimation process. Hence, the noise caused by short ISI is
removed.

2.8. Simulation Study: Tikhonov Regularization versus MN
Regularization. To understand the difference between Tik-
honov regularization and MN regularization, we first com-
pared the HRF estimation result in a simulation study.
Figure 1 shows the result of this simulation study using Tik-
honov regularization, where the ISI was set to 2 s and the
duration of stimuli was also set to 2 s. Time series was
produced by convolving the stimulus vector with canonical
double gamma HRF. Then, the Gaussian white noise of
different signal-to-noise ratios (SNRs) was added to it. The
result implied that with decreasing SNR, the overlapping

increasingly destabilized the tail of the HRF estimates. Fig-
ure 2 shows the result of the same simulation study usingMN
regularization. Compared with Figure 1, the result shows that
when an additional regularization term was employed, most
of the instability in the HRF estimates was suppressed. Based
on this simulation study, the MN regularization method
showed a great improvement in estimating HRF in a rapid
event-related experiment.

2.9. Response EstimationMethod. When voxel-specific HRFs
are computed, we should deconvolve the time-series with
the HRFs to obtain the real trial-specific BOLD responses.
Reference [13] compared many deconcolving methods for
multivoxel pattern classification analysis, such as FIR, ridge
regression, partial least square, and support vector regression.
In the following section, we will focus on the least square
separate (LS-S) model.

In a rapid event-related fMRI data analysis, the traditional
general linearmodel (GLM) suffers from collinearity induced
by the correlation between trial-specific regressors. This
collinearity could result in highly variable and unreliable
estimates because of the lack of information that is unique
to specific trials [13]. To reduce collinearity, we can modify
the strategy of regressor construction or use regularization
methods such as ridge regression [30] and partial least square
[31]. In this paper, we use a regressor construction strategy
called LS-S [13], which runs a GLM for each trial. The trial
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Figure 2: Simulation results of the HRF estimates using mixed-norm regularization. The 𝑥-axis indicates the time relative to the event onset
(TR= 2 s), and the 𝑦-axis indicates the BOLD signal. Each HRF estimate was normalized by dividing it by its maximum value.

Trial 1 Trial 𝑁

𝛽 𝛽· · ·

· · ·

𝛽1 𝛽𝑁𝛽Nuis 𝛽Nuis
( ) ( )

𝑋𝑇1 𝑋𝑇𝑁

Figure 3: LS-S model. The design matrix has two regressors, one for the trial of interest and another for all other trials simultaneously. 𝑋
𝑇1

aims to obtain the activation estimate for trial 1.Therefore, a regressor is conducted for trial 1, and a second regressor is conducted for all other
trials. The estimate for 𝛽

1

based on this design is the estimate activation for trial 1. This method is repeated𝑁 times to obtain the estimates
for all𝑁 trials.

is modeled as the regressor of interest, and all other trials are
combined into a single nuisance regressor. Thus, if we have
𝑁 trials, we need to run the LS-S model 𝑁 times to obtain
each trial-specific response. The LS-S model is illustrated in
Figure 3.

2.10. Classification Method and Statistical Analysis. As a
widely used linear classifier, linear support vector machine
(SVM) has been proved efficient in handling high-
dimensional data. In our study, we also used the linear
SVM based on LIBSVM [32] to compare the classification
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Table 1: Mean number of voxels across all subjects used in different
methods. Unselected voxels were all located in OR areas or early
visual areas. Voxels were selected from the unselected voxel set
based on the selection criterion. Object responsive (OR) voxels were
strongly activated in localizer runs (𝑡-test, 𝑃 = 0.005, familywise
error corrected). Retinovoxels were located in the early visual area,
which was delineated via retinotopic mapping analysis.

OLS LS-AR (1) MN
OR

Unselected 2682 2682 2682
Selected 387 ± 127 425 ± 163 1334 ± 246

Retino
Unselected 1290 1290 1290
Selected 221 ± 103 276 ± 112 721 ± 175

performances of the different estimation methods. The
dataset was divided into five parts, and a fivefold “leave-
one-out” cross-validation was applied to obtain the average
classification accuracy. Lastly, the classification performances
of the different methods were statistically compared using
Wilcoxon signed-rank pair test.

3. Results and Discussion

This study aims to find an efficient method for estimating
voxel-specific HRFs in a rapid event-related design fMRI
study, which could deconvolve the BOLD time series to
obtain the real BOLD activation signals associated with
specific stimuli. The three task runs are divided into two
parts. The third task run with 60 images is used to estimate
voxel-specific HRFs and the other two task runs are used for
classification analysis. In the following, we present the results
of the analysis. Some essential aspects of this problem are also
discussed.

3.1. Comparison of Different HRF Estimation Methods. To
evaluate the performance of different HRF estimation meth-
ods in decoding brain states, we compared the classification
accuracy of OLS, LS-AR (1), MN, and canonical double
gamma HRF. Given the noise of the fMRI BOLD signals, we
found that not all of the estimated HRFs of the voxels are
acceptable. Considering this problem, we proposed a voxel
selection criterion based on the prior knowledge about the
BOLD responses. We assumed that ℎ(0) was near zero and
that the minimum value of normalized ℎ(𝑡) could not be
less than −1. Furthermore, after 12 s, the BOLD responses
should fall to the baseline. In other words, the voxel should
be removed if it satisfies the following condition: |ℎ(0)| > 0.3,
max(ℎ(𝑡 | 𝑡 > 12 s)) > 0.4, and min(ℎ(𝑡)) > −1, where ℎ(𝑡) is
the estimated HRF of a voxel.

Table 1 shows the mean number of voxels across all
subjects before and after selection. The result indicates that
good HRF estimates for all voxels could not be obtained in
OR areas or early visual areas because of the noise in the
time series. Therefore, invalid voxels were eliminated under
the above-mentioned selection criterion. In addition, owing

to the regularization, we obtained more voxels using the new
MN estimation method.

In the simulation study, the MN method showed its
capability in rapid event-related experiments. Here, the HRF
estimation of the different methods was compared using real
data. Figure 4 shows one of the subjects’ estimated HRFs in
the OR areas. Figures 4(a) and 4(b) show the significant
overlapping of the time series and a fake peak in the end of the
estimatedHRF using theOLS or LS-AR (1)method.However,
in the MN estimation method, the fake peak was strongly
suppressed because of the additional regularization term, as
shown in Figure 4(c). Figure 4(d) shows the canonical double
gamma function [33].

The shape of the estimated HRFs intuitively showed the
difference of the investigated methods. However, the shape
could not be used to quantify this difference. Therefore,
the classification accuracy based on real data was used
to compare quantitatively the different methods. Figure 5
shows the mean classification accuracy of the different HRF
estimation methods across all subjects. For the different
estimation methods, the classification results were 80.96%,
72.25%, 69.76%, 72.74%, 72.25%, and 71.51%. The results
indicate that MN performed significantly better than the
other five methods (Wilcoxon signed-rank pair test, 𝑃 =

0.01).
The number of voxels after selection by different methods

was different. The effect of the size of voxel set should there-
fore be considered.We appliedMN to the voxel set selected by
OLS or LSAR to investigate the impact of the size of voxel set.
Figure 6 shows that MN also performed significantly better
thanOLS and LSARusing the voxels selected by LSARorOLS
(Wilcoxon signed-rank pair test, 𝑃 = 0.01). For the different
estimation methods, the classification results were 80.96%,
72.25%, 69.76%, 79.59%, and 78.88%. This result indicates
that the MN estimation method improved the classification
accuracy and not the number of voxels.

Recent studies have illustrated the shape of HRF [5]. As
a widely known model, the canonical HRF has been success-
fully used in fMRI studies, especially in univariate analysis
or activation-based analysis. However, with the development
of high-resolution fMRI, information-based analysis was
applied for brain decoding [34]. In the present study, when
voxel-specific HRFs were used, the classification accuracy
significantly increased.

Many studies suggested that the fMRI time series has tem-
poral autocorrelation between residual errors [27]. However,
the present results indicated no significant differences in the
classification accuracy between the least-square models with
and without AR (1).

In ourMN estimationmethod, no assumption ismade on
the noise model, and the only task is the selection of regular-
ization parameters. Considering that the selection of proper
regularization parameters is one of the most important steps
in solving regularization problems, many articles focused on
the regularization parameter selection strategy to improve
the performance of regularization, such as generalized cross-
validation (GCV) [35], Bayesian information criterion (BIC)
[36], and Akaike information criterion (AIC) [37]. In the
present study, to simplify the problem, we selected the best
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Figure 4: Inspection of the HRF estimates of the different methods. The lines in different colors represent the different HRF estimates of the
voxels. The 𝑥-axis indicates the time relative to the event onset (TR= 2 s), and the 𝑦-axis indicates the BOLD signal. Each HRF estimate was
normalized by dividing it by its maximum value.

one from a set of parameters. Although this strategy might
not identify the best parameters, this method also performed
significantly better than the other methods.

3.2. Impact of Smoothing on Brain Decoding. We compared
the classification accuracy of the smoothed and unsmoothed
data to investigate the impact of smoothing on brain
decoding. Figure 7 shows the classification accuracies of
the different HRF estimation methods. For the smoothed
data, the classification results were 81.03%, 69.74%, 67.23%,
74.39%, 72.49%, and 70.3%. For the unsmoothed data, the
classification results were 80.96%, 72.25%, 69.76%, 72.74%,
72.25%, and 71.51%. The results implied no significant differ-
ence between the smoothed and unsmoothed data in brain
decoding (Wilcoxon signed-rank pair test, 𝑃 = 0.01). This
conclusion is consistent with the finding of a previous study
[38].

Smoothing is a standard preprocessing step in traditional
activation-based or univariate analysis. However, in MVPA,

whether smoothing should be conducted is unclear [38–
40]. Many studies smooth the fMRI data before analysis
to increase the SNR [41–43]. However, considering that
smoothingmay blur data, some studies omitted smoothing in
analysis [1–3]. To preserve fine-grained pattern information,
[39] suggested that smoothing should be omitted or strongly
reduced.

Our result in this study implies that smoothing may not
decrease the sensitivity and performance of brain decoding.
However, this result does not mean that smoothing does
not blur the fine-grained weak spatial information across
voxels. A detailed explanation is given by [40]. If a study does
not focus on subvoxel information sources or fine-grained
information, smoothing would not matter.

3.3. Effect of LFF. The LFF compensation model is widely
used in estimating voxel-specific HRFs. Figure 8 shows a
comparison of the estimated HRF using LS-AR (1) with and
without the LFF model in one of our subjects. Based on the
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Figure 5: Bars show the classification accuracies of the different
HRF estimation methods (cHRF-MN, canonical HRF with voxels
selected by MN; cHRF-LSAR, canonical HRF with voxels selected
by LSAR; and cHRF-OLS, canonical HRF with voxels selected by
OLS). Error bars show the standard error of the mean classification
accuracy across subjects.
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Figure 6: Effect of the size of voxel set. MN-LSAR, mixed-norm
estimation was applied to the voxel set selected by LSAR; MN-OLS,
mixed-norm estimation was applied to the voxel set selected by
OLS. Error bars show the standard error of the mean classification
accuracy across subjects.

results, LFF had a large impact on HRF estimates. However,
when we deconvolved the BOLD response from the fMRI
time series, the impact of LFF was ignored. By contrast, in
the MVPA analysis, wherein one of our goals is to exploit
the information of weakly activated voxels, LFF significantly
reduced the classification accuracy.

In the current study, we compared the classification
performances of the response estimation method with and
without the LFF compensation component. Figure 9 illus-
trates the effect of LFF in brain decoding. For the model with
LFF, the classification results were 80.96%, 72.25%, 69.76%,
72.74%, 72.25%, and 71.51%. For the model without LFF, the
classification results were 73.81%, 65.04%, 63.3%, 72.09%,
71.1%, and 69.23%.These results indicated that themodelwith
LFF compensation performed significantly better than that
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Figure 7: Comparison of smooth and unsmooth data. Classification
accuracies estimated with fivefold leave-one-out cross-validation.
Each method was applied to both unsmooth and smooth data to
investigate the impact of smoothing. cHRF-MN, canonical HRF
with voxels selected by MN; and cHRF-LSAR, canonical HRF with
voxels selected by LSAR; cHRF-OLS, canonical HRF with voxels
selected by OLS. Error bars show the standard error of the mean
classification accuracy across subjects.

without LFF compensation (Wilcoxon signed-rank pair test,
𝑃 = 0.01). Interestingly, no significant difference was found
between the models with and without the LFF compensation
component using canonical HRF. Our results implied that
LFF plays an important role not only in HRF estimation but
also in response estimation.

3.4. Classification Performances of Different Masks. For each
subject, we defined a mask of OR voxels in the occipital
and temporal cortex that responded strongly in at least
one of the four localizer runs. Then, nearly 3000 voxels
were selected for each subject. The voxels in these areas
were previously shown to provide information about object
category [1, 44]. We also tested the classification accuracy
in early visual areas, which were delineated by retinotopic
mapping [26]. The classification accuracies in both masks
are summarized in Figure 10. The classification results for
the OR voxels were 80.96%, 72.25%, 69.76%, 72.74%, 72.25%,
and 71.51%.The classification results for the retinovoxels were
79.99%, 65.59%, 64.67%, 68.83%, 66.24%, and 66.05%. The
results showed that the OR voxels performed better than the
retinovoxels in all six cases (significantly better in LSAR,OLS,
cHRF-MN, cHRF-LSAR, and cHRF-OLS. Wilcoxon signed-
rank pair test, 𝑃 = 0.05).

These results demonstrated that the object category
information has a distributed representation in the occipital
and temporal areas. This information could improve the
performance of classification. Therefore, localizer runs are
necessary in object-related brain decoding experiments. Fur-
thermore, in a brain-computer interface system with visual
information, the spatially distributed information in large
areas should not be ignored to obtain a better result.
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Figure 8: Comparison of HRF estimates with and without LFF. The lines in different colors represent the different HRF estimates of the
voxels. The 𝑥-axis indicates the time relative to the event onset (TR= 2 s), and the 𝑦-axis indicates the BOLD signal. Each HRF estimate was
normalized by dividing it by its maximum value.
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Figure 9: Comparison of classification accuracies with and without
the LFF compensation component. Classification accuracies esti-
mated with fivefold leave-one-out cross-validation. Each method
was applied to bothmodels with and without LFF data to investigate
the impact of LFF. cHRF-MN, canonicalHRFwith voxels selected by
MN; cHRF-LSAR, canonical HRFwith voxels selected by LSAR; and
cHRF-OLS, canonical HRF with voxels selected by OLS. Error bars
show the standard error of the mean classification accuracy across
subjects.

4. Conclusions

In this paper, we propose a new HRF estimation method
that uses Tikhonov regularization and additional shape reg-
ularization term to address the HRF estimation problem in
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Figure 10: Comparison of classification accuracies in object respon-
sive (OR) or early visual areas. OR voxels were strongly activated
in localizer runs (t-test, 𝑃 = 0.005, family-wise error corrected).
Retinovoxels were located in the early visual area, which was delin-
eated via retinotopic mapping analysis. Classification accuracies
estimated with fivefold leave-one-out cross-validation. cHRF-MN,
canonical HRF with voxels selected by MN; cHRF-LSAR, canonical
HRF with voxels selected by LSAR; and cHRF-OLS, canonical HRF
with voxels selected by OLS. Error bars show the standard error of
the mean classification accuracy across subjects.

rapid event-related experiments and suppress the overlapping
of adjacent events. To test its performance, we applied this
method to four-category object classification data.The results
showed a significant improvement in classification perfor-
mance, which proved that the new MN regularization HRF
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estimation method was more efficient than the others. Some
essential issues in MVPA were also discussed in this paper,
including the role of LFF in response estimation, the effect
of data smoothing, and the differences in the classification
accuracy between OR voxels and retinovoxels. Based on this
work, we conclude that LFF compensation is necessary in
MVPA analysis and that smoothing is an alternative. More-
over, spatially distributed information should be considered
to obtain the best classification performance.
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