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It is widely thought that the tumor microenvironment (TME) provides the “soil”

for malignant tumors to survive. Prior to metastasis, the interaction at the host

site between factors secreted by primary tumors, bone-marrow-derived cells,

with stromal components initiates and establishes a pre-metastatic niche

(PMN) characterized by immunosuppression, inflammation, angiogenesis and

vascular permeability, as well as lymphangiogenesis, reprogramming and

organotropism. Ferroptosis is a non-apoptotic cell death characterized by

iron-dependent lipid peroxidation and metabolic constraints. Ferroptotic

cancer cells release various signal molecules into the TME to either suppress

or promote tumor progression. This review highlights the important role played

by ferroptosis in PMN, focusing on the relationship between ferroptosis and

PMN characteristics, and discusses future research directions.
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Introduction

It is well-established that tumor cells spread from the primary to other single or

multiple sites nearby or far away via blood vessels and lymphatic vessels by separation,

migration, invasion and adhesion (1). Notably, tumor metastasis is difficult to cure once

it occurs. Metastasis accounts for about 90% of all cancer-related mortality (2). Therefore,

early detection, accurate diagnosis and personalized treatment strategies before the onset

of metastasis are warranted to cure malignant tumors.

As early as 1889, British surgeon Stephen Paget put forward the “seed” and “soil”

hypothesis, whereby cancer cells are analogous to the “seed” and metastatic sites to the

“soil” (3). As the “soil” of tumor metastasis, the complex tumor microenvironment

(TME) at the metastatic site is closely related to the malignant behavior of tumor cells.

Primary tumor cells can create a microenvironment that promotes colonization and
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growth before metastasis. Prior to metastasis, the metastatic site

forms a pre-metastatic niche (PMN) with immunosuppression,

inflammation, angiogenesis and vascular permeability, as well as

lymphangiogenesis, reprogramming and organotropism

characteristics. Functionally, the PMN promotes tumor cell

metastasis through four stages, namely priming, licensing,

initiation, and progression, to facilitate tumor cell colonization

and growth (4). During this spatial time course, tumor cells

recruit tumor-mobilized bone marrow-derived cells and various

inhibitory and regulatory immune cells by secreting multiple

tumor-derived secreted factors (TDSFs) and extracellular

vesicles (EVs). Moreover, they interact with the host matrix to

form PMN characterized by immunosuppression and

extracellular matrix (ECM) remodeling, a phenomenon that

enables circulating tumor cells (CTCs) to not only evade the

body’s surveillance and pursuit but also take root, sprout and

grow in the “fertile soil” (5).

In 2012, researchers discovered that certain lethal

compounds could induce a new mode of cell death. This type

of cell death, termed ferroptosis, manifests as iron-dependent

and reactive oxygen species (ROS) accumulation and is

morphologically, genetically, and biochemically distinct from

necrosis, apoptosis, and autophagy (6). An increasing body of

evidence suggests that ferroptosis is not only closely linked to

cancer-acquired drug resistance and immune evasion but also

has dual effects (7, 8).

Epithelial-to-mesenchymal transition (EMT) in tumors

refers to the dynamic changes in cellular organization from an

epithelial to a mesenchymal phenotype, which cause functional

changes in cell migration and invasion. Previous studies have

shown that EMT plays an irreplaceable role in tumor metastasis

(2), can also lead to metastatic spreading of tumors and confer

drug resistance to clinical treatment (9). Interestingly, EMT

signaling is closely related to ferroptosis (7). Ferroptosis

induced via inhibition of the lipid peroxidase signaling

pathway is a feature in therapy-resistant cancer cells of various

mesenchymal cell states (10). This pathway, which centers

around the metabolism of long-chain polyunsaturated fatty

acids (PUFAs), is regulated by the EMT-inducible

transcription factor zinc finger E-box homeobox 1 (ZEB1).

Moreover, glutathione-dependent antioxidant enzyme

glutathione peroxidase 4 (GPX4) dissipates reactive peroxides

produced by the metabolism of PUFAs and prevents ferroptotic

cell death (10). Combination treatment, comprising the

ferroptosis inducers (FINs) beta-elemene and cetuximab have

been reported to sensitize KRAS-mutated colorectal cancer cells

by inhibiting EMT and lymph node (LN) metastasis and induce

ferroptosis (11). Furthermore, epigenetic reprogramming of

EMT is associated with ferroptosis (12). Although the role of

ferroptosis in PMN is currently unclear, there appears to be a

link between ferroptosis and PMN. This review focuses on the

relationship between ferroptosis and PMN characteristics

(including immunosuppression, inflammation, angiogenesis
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and vascular permeability, as well as lymphangiogenesis,

reprogramming and organotropism), and highlights potential

areas and directions for future research.
Immunosuppression

Cancer cells metastasize by evading immune surveillance. The

primary tumor either forms TME or PMN through recruitment

and expansion of immunosuppressive cell populations. It also

transforms the phenotype and function of normal immune cells,

from a potential immune response to a tumor-promoting state.

Notably, tumor-promoting immune cells not only enhance

immune evasion by suppressing antitumor immune responses,

but also promote tumor cell invasion by inducing an

immunosuppressive microenvironment, promoting EMT, and

inducing vasculature at the primary tumor or metastatic site to

establish PMN. Collectively, these phenomena eventually lead to

tumor metastasis (13).

Cell death can be divided into two types, namely tolerogenic

cell death (TCD) and immunogenic cell death (ICD), depending

on whether an immune response is induced. In TCD, phagocytes

efficiently eliminate cellular debris, via endocytosis, critical for

preventing inflammatory and autoimmune diseases. ICD entails

the release of intracellular molecules or they are exposed to dead

or dying cells, a phenomenon that elicits adaptive immunity that

subsequently induces immune responses to tumor-associated

antigens (14). Among them, damage-associated molecular

patterns (DAMPs) and cytokines released during cell death are

critical for initiating immune responses (15, 16). The high

mobility group box 1 protein (HMGB1), an essential protein

required for cancer cell immunogenicity, is a crucial DAMP that

promotes antigen presentation by dendritic cells (DCs) to T cells

(17). Cancer cells with compound-induced ferroptosis were

found to release HMGB1 in an autophagy-dependent manner

(18). Remarkably, ferroptosis was recently identified as a type of

ICD. Additional evidence showed that the GPX4 inhibitor RSL3

induced early ferroptotic cancer cells was ICD and was

accompanied by the production of DAMPs, such as purine

adenosine triphosphate (ATP) and HMGB1. Functionally,

these components not only trigger in vitro maturation of DCs

but also elicit vaccination-like effects in immunocompetent mice

(19). In breast cancer, patrolling monocytes establish early

interactions with metastatic tumor cells, clear tumor material

in blood vessels, and promote recruitment as well as activation of

natural killer cells (NK cells), thereby inhibiting tumor cells

metastasis (20, 21). Studies have associated hypoxic features in

the TME with PMN formation, while TDSFs generated by

hypoxia in primary tumors can recruit immunosuppressive

cells and reduce NK cells cytotoxicity in PMN (22). Peripheral

blood mononuclear cells (PBMCs) have the potential to

differentiate into various types of immune cells, under
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physiological and pathological conditions, while erastin (a FIN)

plays an immunomodulatory function, where it promotes

proliferation and differentiation of human PBMCs into B and

NK cells (23). Another study showed that interferon g (IFNg),
which is mainly produced by T lymphocytes or NK cells,

sensitizes hepatocellular carcinoma cells to ferroptosis by

activating the JAK/STAT signaling inhibitory system xc-

activation, and promoting lipid peroxidation associated with

mitochondrial damage (24). Interestingly, activation of CD8+ T

cell activation has been documented to induce ferroptosis in

cancer cells. Notably, activation of CD8+ T cells by nivolumab-

based immunotherapy mediated downregulation of solute

carrier family 3 membrane 2 (SLC3A2) and solute carrier

family 7 membrane 11 (SLC7A11) by releasing IFNg. This
phenomenon inhibited uptake of cystine by tumor cells and

promoted occurrence of lipid peroxidation and ferroptosis in

cancer cells (25). IFNg from CD8+ T cells and arachidonic acid

(AA) from the tumor microenvironment mediate tumorigenic

ferroptosis through acyl-CoA synthetase long-chain family

member 4 (ACSL4) while targeting tumor ACSL4 reportedly

improved immune checkpoint blockade treatment sensitivity

(26). On the other hand, exposure to immune-activated cells to

ferroptosis may impair their antitumor ability. Notably,

conditional deletion of Gpx4 induced ferroptosis by lipid

peroxidation in mouse T cells (27), while CD36 reportedly

mediated AA uptake by CD8+ T cells, thereby causing lipid

peroxidation and ferroptosis, as well as impairing the antitumor

function of CD8+ T cells (28). DCs selectively induced by RSL3

undergo ferroptosis and cannot induce CD8+ T cells to produce

IFNg (29). Impaired toxicity of NK cells isolated from the

ovarian cancer microenvironment and peripheral blood NK

cells exposed to the tumor-derived ascites microenvironment

showed cell morphology consistent with ferroptosis (30).

Antitumor activity of NK cells could be restored by activation

of the nuclear factor E2-related factor 2 (NRF2) antioxidant

pathway (30, 31).

There is ample evidence that myeloid-derived suppressor

cells (MDSCs) and tumor-associated macrophages (TAMs)

suppress antitumor immune responses in PMN (32, 33).

MDSCs can be induced to differentiate into TAMs under

inflammatory stress and hypoxic niche (33). As optimal

partners of tumor cells, MDSCs are a population of immature

myeloid cells that emerge and accumulate in PMN, where they

support tumor cell colonization into PMN during metastasis

(34). Induction of ferroptosis in MDSCs may be an effective

therapy to inhibit the accumulation of MDSCs during cancer

immunotherapy (35). The chemotherapeutic drug gemcitabine

(Gem), a FIN, can effectively deplete MDSCs. For instance, a

previous study showed that Gem nanoparticles could promote

anti-melanoma immunity, effectively deplete MDSCs and

regulatory T cells (Tregs), and polarize TAMs to antitumor

M1 phenotype, and also improve CD8+ T cell immune response,

thereby inhibiting tumor growth (36). Furthermore, activating
Frontiers in Oncology 03
transcription factor 4 (ATF4) reportedly upregulated expression

of heat-shock 70kDa protein 5 (HSPA5) in pancreatic ductal

adenocarcinoma (37). HSPA5 binds to GPX4 and avoids GPX4

protein degradation and lipid peroxidation, thus limiting Gem’s

anticancer activity. However, promoting ferroptosis was found

to enhance Gem sensitivity (37). Similarly, combining FINs and

apoptosis activators was shown to significantly improve the

cytotoxic effect of Gem in pancreatic cancer (38). Notably, N-

acylsphingosine amidohydrolase 2 (ASAH2) suppresses the p53

pathway to protect MDSCs from ferroptosis by destabilizing p53

protein in TME (35).

Macrophages are a vital factor in the progression of cancer

metastasis, owing to their effect on PMN formation and CTCs

adhesion, as well as extravasation, and colonization (39). Studies

have shown that tumor-derived exosomes promote tumor

metastasis by stimulating macrophage development in PMN to

an immunosuppressive phenotype through glycolytic-dominant

metabolic reprogramming (40). ICD induced triggered by FINs

has been reported to polarize TAMs to a pro-immune antitumor

phenotype, thereby enabling ferroptosis and immune regulation

to act synergistically (41, 42). Additional evidence has shown

that macrophages can efficiently clear ferroptotic cancer cells by

phagocytosis (43), while ferric citrate effectively induces

ferroptosis in macrophages (44). Furthermore, different subsets

of macrophages have various sensitivities to ferroptosis.

Particularly, the M1 type exhibits higher levels of resistance to

drug-induced ferroptosis compares to the M2 type, while tumor

suppressor M1-type macrophages are more resistant to FINs

than tumor-promoting M2-type macrophages. This

phenomenon may be attributed to the higher inducible nitric

oxide synthase (iNOS) content in M1 than M2 macrophages.

The lower iNOS content makes M2 macrophages produce less

NO free radicals, a phenomenon that reduces their inhibitory

effect on lipid peroxidation, thus rendering them sensitive to

ferroptosis (45). Interestingly, different B cell subsets also differ

in their sensitivity to ferroptosis. For instance, B1 and marginal

zone B cells display higher lipid metabolism and are more

sensitive to lipid peroxidation as well as ferroptosis compared

to follicular B2 counterparts (46). Tumor-evoked regulatory B

cells (tBregs), which are phenotypically similar to activated but

less proliferative mature B2 cells, reportedly promote breast

cancer metastasis by converting quiescent CD4+ T cells into

Tregs (47). Moreover, tBregs can also directly activate the

regulatory functions of MDSCs-derived monocytes and

granulocyte subsets, while activated MDSCs have been shown

to improve production of ROS and NO, and more effectively

inhibit CD4+ T and CD8+ T cells, thereby promoting tumor

metastasis (48). Tregs activation and suppression of antitumor

immunity are maintained by GPX4 by preventing lipid

peroxidation and ferroptosis (49). Taken together, findings

from studies demonstrate that ferroptosis is closely associated

with various immune factors in PMN, especially the complex

crosstalk between ferroptosis and tumor cells and immune cells.
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The sensitivity of different immune cells and tumor types to

FINs appears to determine the fate of PMN formation;

nonetheless, further research explorations are needed to

answer this question (Figure 1).
Inflammation

Overwhelming evidence substantiates that chronic

inflammation transforms susceptible cells into tumors,

subsequently driving tumor development and metastasis (50,

51). Establishing an inflammatory microenvironment at the host

site facilitates the seeding, survival and proliferation of CTCs in

PMN (4). In addition, balancing ROS production and

antioxidant defenses is critical for tumor cell survival and

growth, owing to the fact that high ROS levels cause

cytotoxicity. In contrast, low or moderate ROS levels have

been implicated in DNA damage and mutation, as well as

development of inflammatory responses and ultimately

carcinogenesis (52). Accordingly, ferroptosis plays an essential

role in the inflammatory process, representing a new therapeutic

target in many inflammatory diseases (53, 54).

The crosstalk between chronic inflammation and various

immune and inflammatory cells promotes tumor cell metastasis

(55). In peri-tumor-associated inflammatory cells, GPX4

deletion in myeloid cells mediated an increase in ROS

production, which was accompanied by secretion of excess

H2O2, transforming intestinal epithelial cells (IECs) by

triggering DNA mutations (56). H2O2 also induces secretion
Frontiers in Oncology 04
of chemokines and cytokines by IECs through the tumor

necrosis factor a (TNFa) autocrine loop to recruit myeloid

cells and promote tumor invasion (56). Neutrophils in TME can

display opposing phenotypes: tumor-fighting effector cells (N1)

and tumor-promoting effector cells (N2). Studies have shown

that neutrophil recruitment is critical for PMN formation. In

fact, neutrophils can spontaneously migrate during tumor

progression (57). Chronic nicotine exposure has been shown

to recruit tumor-promoting N2-type neutrophils, induce

pulmonary PMN formation, and promote tumor cell

colonization as well as metastatic growth (58). A previous

study found that primary tumor-derived exosomes could

activate lung epithelial cell Toll-like receptor 3 (TLR3) to

initiate neutrophil recruitment and pulmonary PMN

formation (59). An antitumor effect was observed in N1-

polarized neutrophils induced by cisplatin-mediated non-small

cell lung cancer ferroptosis (60). As found in another study,

platinum prodrug nanoparticles induced ferroptosis by

concurrent chemoradiotherapy to inhibit tumor recurrence

and metastasis (61). Moreover, neutrophil infiltration in

glioblastoma necrotic sites induces ferroptosis (62). There is

ample evidence suggesting that sulfasalazine, an inhibitor of

system xc-, can induce tumor ferroptosis (63, 64). Interestingly,

sulfasalazine-induced accumulation of oxidized phospholipids

in activated neutrophils could promote neutrophil extracellular

traps-induced specific death mode NETosis (65, 66). Notably,

NETosis is well-established to promote tumor growth and

metastasis (67–69), suggesting that complex linkages between

cell death pathways influence disease progression. Given the
FIGURE 1

Crosstalk between ferroptosis and immunosuppression and inflammation in PMN. The ingredients that promote the formation of PMN include
TDSFs, EVs, MDSCs, M2-like TAMs, tBregs, Tregs and N2-like neutrophils. The components that inhibit the formation of PMN include IFNg, DC
cells, NK cells, M1-like TAMs, N1-like neutrophils and CD8+ T cells. The ingredients that promote ferroptosis include RSL3, erastin, gemcitabine,
sulfasalazine, cisplatin, IFNg, ACSL4 and arachidonic acid. The components that inhibit ferroptosis include GPX4 and system xc-. ACSL4, acyl-
CoA synthetase long-chain family member 4; ASAH2, N-acylsphingosine amidohydrolase 2; DAMPs, damage-associated molecular patterns; DC
cells, dendritic cells; EVs, extracellular vesicles; FINs, ferroptosis inducers; GPX4, glutathione peroxidase 4; HMGB1, high mobility group box 1
protein; IFNg, interferon g; MDSCs, myeloid-derived suppressor cells; NK cells, natural killer cells; NRF2, nuclear factor E2-related factor 2;
PBMCs, Peripheral blood mononuclear cells; PMN, pre-metastatic niche; TAMs, tumor-associated macrophages; tBregs, tumor-evoked
regulatory B cells; TDSFs, tumor-derived secreted factors; Tregs, regulatory T cells.
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complex crosstalk between different forms of cell death (70), it is

essential to fully understand and elucidate which form of cell

death dominates in a given physiological or pathological setting.

Pro-inflammatory cytokines secreted by tumor cells or

stromal cells, such as interleukin 6 (IL6), IL1b and C-C motif

chemokine ligand 2 (CCL2), can induce phenotypic changes in

tumor cells, recruit bone marrow-derived cells and form an

inflammatory environment. Collectively, they constitute PMN

and facilitate colonization of metastatic cells (71). Studies have

shown that chronic inflammatory cytokines can also work

synergistically with immunosuppressive cells, such as TAMs,

to build an immunosuppressive microenvironment (72).

Ferroptotic cells have been reported to induce aggregation and

chemotaxis of macrophages through CCL2 and secrete

cytokines, such as IL6 and IL1b , thereby triggering

inflammation and enhancing tissue damage (73). In addition,

ferroptosis-related genes play a crucial role in formation of

inflammation, and ruptured ferroptotic cells can cause

necrotizing inflammation and release pro-inflammatory

DAMPs. Moreover, GPX4 controls lipoxygenase (LOX) and

prostaglandin internalization through peroxide elasticity

activity of prostaglandin-endoperoxide synthase enzymes

involved in ferroptosis at multiple levels (74). As DAMPs,

modulating HMGB1 activity in inflammation, immune

response and tissue repair could generate invaluable treatment

strategies for various diseases, including cancer (75). A previous

study found that LPS could induce acetylation of HMGB1 in

colon cancer cells, thereby promoting its interaction with GPX4,

and regulating ROS levels and inflammation (76).

Macrophages are “gatekeepers” whose diversity and

heterogeneity are critical in maintaining iron homeostasis (77).

M1 macrophages, also known as inflammatory macrophages,

c an be a c t i v a t ed by IFN g , TNFa , HMGB1 and

lipopolysaccharide (LPS), whereas M2 macrophages, also

known as anti-inflammatory macrophages, can be activated by

IL4, IL10, IL13, colony-stimulating factor 1 (CSF1) and

transforming growth factor b (TGFb) (78). Both have different

phenotypes and functions (33). In contrast to the iron-chelating

phenotype of inflammatory macrophages induced by pro-

inflammatory cytokines and DAMPs, anti-inflammatory

macrophages and lymphocytes exhibit an iron-releasing

phenotype that not only contributes but also distributes iron

in the TME (79). In lung cancer, iron-loaded TAMs enhance

ROS production and pro-inflammatory cytokines (TNFa and

IL6) to induce tumor cell death (80). Macrophage polarization is

highly plastic, and its phenotype is primarily influenced by its

current microenvironment, independent of the previous

polarization state (81). TAMs actively release iron to the TME

in hyper-inflamed tumors, thereby enriching the TME with iron

and promoting both cancer development and immune escape.

Notably, excess iron predisposes macrophages to a pro-

inflammatory phenotype (79). Interestingly, M2 macrophages

are more sensitive to ferroptosis (45). Therefore, harnessing the
Frontiers in Oncology 05
selective sensitization of macrophages to ferroptosis may

improve a tumor’s inflammatory microenvironment. Given the

complex crosstalk between ferroptosis and iron metabolism with

tumor inflammation and immune cells, it is critical to investigate

the impact of immune cell heterogeneity and plasticity, such as

TAMs, on iron homeostasis as well as the balance in the

inflammatory microenvironment. Inducing iron overload to

promote ferroptosis and remodel the inflammatory

microenvironment represents a potential therapeutic strategy

to improve PMN formation (Figure 1).
Angiogenesis and vascular
permeability

Multiple factors have been shown to affect angiogenesis in

the TME, including various peritumoral cells, ECM, tumor

metabolism, and tumor-derived extracellular vesicles (82).

Increased angiogenesis and permeability in PMN can

reportedly promote metastasis (4). At the pre-metastatic stage,

primary tumors upregulate angiopoietin 2 (ANGPT2), matrix

metalloproteinase 3 (MMP3) and MMP10 in the lung,

increasing pulmonary vascular permeability and extravasation

of CTCs, thereby promoting lung metastasis (83). A previous

study found that TAMs-derived vascular endothelial growth

factor (VEGF) improved vascular permeability, thereby

promoting cancer cell invasion and metastasis (84). Another

study showed that cancer-derived exosomal miR-25-3p

participates in PMN formation and promotes colorectal cancer

metastasis by inducing angiogenesis and permeability (85).

Notably, ferroptosis has been closely associated with regulation

of angiogenesis and permeability. As a crucial regulator of

angiogenesis, ATF4 overexpression reportedly conferred

resistance to sorafenib and erastin in glioma cells. Moreover,

ATF4-induced angiogenesis was effectively inhibited by erastin

and RSL3 (86), while another study demonstrated that GPX4

acts as an essential regulator of tumor angiogenesis and vascular

maturation by controlling the activity of 12/15-LOX (87).

Dysregulation of glutamate transport can enhance the

function of Tregs and promote anti-VEGF treatment

resistance in glioblastoma. Notably, blocking and eliminating

Tregs using CD25 before anti-VEGF treatment reportedly

restored production of IFNg by CD8+ T cells, thereby

improving the antitumor response of anti-VEGF therapy (88).

Dihydroartemisinin, a semi-synthetic derivative of artemisinin,

has been reported to exhibit antitumor activity in head and neck

cancer cells by inhibiting angiogenesis, and also inducing

ferroptosis and apoptosis (89). Apatinib, an anti-angiogenic

drug for the treatment of metastatic gastric cancer, is a highly

selective inhibitor of VEGFR2 that induces ferroptosis by

reducing cellular glutathione levels and increasing levels of

lipid peroxidation (90). Conversely, the application of erastin
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reportedly activated vascular endothelial cells to a leakier pro-

metastatic phenotype, thereby promoting breast cancer cell

adhesion and transendothelial migration (91). As the main

characteristics of malignant tumor PMN, angiogenesis and

vascular permeability represent essential steps that precede

metastasis. Although FINs can inhibit angiogenesis, FINs may

also increase the permeability of vascular endothelial cells,

thereby triggering entry of tumor cells into blood vessels to

facilitate hematogenous metastasis. To date, however, it is not

known whether ferroptosis can alter this characteristic and

interfere with PMN formation, necessitating further research

explorations. In addition, the effects of FINs on this

charac ter i s t i c may be heterogeneous in d i ff e rent

malignancies (Figure 2).
Lymphangiogenesis

Tertiary lymphoid structures, composed of LNs and

lymphatic vessels, are involved in PMN formation and tumor

metastasis (92). Before metastatic spread, the primary tumor

promotes lymphangiogenesis and high endothelial venule
Frontiers in Oncology 06
remodeling by secreting soluble factors or releasing EVs

transported by lymphatic vessels, forming PMN in the LNs,

leading to subsequent survival and growth of metastatic cancer

cells (93). It has been established that lymphangiogenic growth

factors VEGFC and VEGFD, secreted by a primary tumor, can

promote lymphatic metastasis (94). VEGFD can down-regulate

the 15-hydroxyprostaglandin dehydrogenase (HPGD) that

degrades prostaglandins, and cause secretion of a large

number of prostaglandins from the collecting lymphatic

endothelial cells. Consequently, this promotes the entry of

tumor cells into primary lymphatic vessels and induces

collecting lymphatic vessels’ expansion to facilitate the transfer

of tumor cells to distant metastases (94). Additional studies have

shown that specific lymphoid tissue and immune response

signatures contribute to PMN formation in sentinel LN in

early-stage cervical cancer (95), while fatty acid oxidation

(FAO) is a driver of LN metastasis (96). It is well-recognized

that the LN microenvironment is rich in lipids, while fatty acids

are a preferential energy source for LN metastatic tumor cells.

Notably, LN metastasis requires tumor cells to undergo a

metabolic transition to FAO (97). In pre-metastatic LN,

melanoma-derived EVs fuse with subcapsular sinus CD169+
FIGURE 2

Relationship between ferroptosis and angiogenesis and vascular permeability and lymphangiogenesis. Factors that inhibit angiogenesis and
promote ferroptosis include RSL3, erastin, dihydroartemisinin and apatinib. Erastin can also promote vascular permeability. ATF4 and GPX4 can
promote angiogenesis and inhibit ferroptosis. Metastatic tumor cells escape ferroptosis through lymphatic vessels in low ROS and high oleic
acid lymph node microenvironment. ATF4, transcription factor 4; ECs, endothelial cells; GPX4, glutathione peroxidase 4; ROS, reactive oxygen
species.
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macrophages to avoid immune recognition, while the

destruction of subcapsular sinus CD169+ macrophages allows

EVs to enter the LN cortex to interact with B cells and activate

pro-inflammatory cells tumor B cell immunity (98).

Communication between EVs and LN was found to contribute

to PMN formation and suppression of tumor immunity (99).

Interestingly, melanoma cells experience less oxidative stress,

owing to higher glutathione and oleic acid levels coupled with

less free iron in the lymphatic microenvironment. Among them,

tumor cells are protected from ferroptosis, a phenomenon that

improves the ability to form metastatic tumors (100) (Figure 2).

Additionally, as a vital feature of TME, the hypoxic environment

affects the phenotype of various types of cells around the tumor

cells (101). Moreover, angiogenesis and lymphangiogenesis are

dependent on a hypoxic environment (102), while hypoxia

reportedly improves resistance of malignant mesothelioma

cells to ferroptosis (103). Similarly, studies have also shown

that mitochondrial ferritin (FT) and FT heavy chain

synergistically protect macrophages from RSL3-induced

ferroptosis under hypoxic conditions (104). Therefore, the role

of ferroptosis in angiogenesis and vascular permeability, as well

as lymphangiogenesis in PMN warrants further study in the

hypoxic environment. Future studies are expected to determine

whether induction of ferroptosis can potentiate efficacy of anti-

angiogenic or lymphangiogenic therapy for inhibition of

tumor metastasis.
Reprogramming

Stromal and metabolic reprogramming has been associated

with PMN-promoted tumor metastasis (4). Notably, tumor

stroma not only promotes cancer growth, survival, and

invasion but also modifies the behavior of stromal cells,

including fibroblasts and immune cells, to drive metastasis and

resist therapy (105). As an important part of TME stromal cells,

cancer-associated fibroblasts (CAFs) are the “architects” of

matrix remodeling and are closely related to the poor

prognosis of solid tumors (106). Previous studies have shown

that CAFs can interact with tumor and immune cells by

releasing various regulatory factors, synthesizing and

remodeling the ECM, as well as inducing EMT and drug

resistance (107). CAF-derived EVs reportedly induced lung

PMN formation in mice, thereby improving the lung

metastatic ability of salivary gland adenoid cystic carcinoma

(108). Disseminated breast cancer cells induce an inflammatory

phenotype in lung fibroblasts , thereby creat ing a

microenvironment that supports metastasis (109). Another

study found that CAF-derived exosomal miR-522 not only

inhibited ferroptosis but also promoted acquired cisplatin and

paclitaxel resistance in gastric cancer (110). Collectively, these

studies substantiate that CAFs and PMN formation is closely

associated with ferroptosis, suggesting the importance of CAFs
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in matrix reprogramming. It is unknown whether CAFs undergo

ferroptosis and inhibit PMN formation, nor is it clear whether

targeting CAFs can enhance the sensitivity of tumor cells to

ferroptosis. Accordingly, further research is essential to elucidate

these questions.

Metabolic reprogramming is a hallmark of malignancy,

while metabolic properties and preferences of tumors change

during cancer progression (111). Generally, metastatic cancer

cells selectively and dynamically adjust their metabolism at each

step in the metastatic cascade. To adapt to a new environment,

for survival and growth, many metastatic tumors exhibit

metabolic profiles that differ from those at the primary site

(112). Several review articles have shown that metabolic

pathways, such as glucose metabolism, lipid metabolism, iron

metabolism, amino acid and glutathione metabolism, are closely

related to ferroptosis (113–115). AMP-activated protein kinase

(AMPK), a central regulator of energy homeostasis and cellular

metabolism, has been shown to play a tumor-promoting or

antitumor effect under different circumstances. Notably, AMPK

activation reportedly endows tumor cells with a growth

advantage by modulating their metabolic plasticity, thereby

adapting to metabolic stress (116). Mitochondrial ROS is a

physiological activator of AMPK. Notably, AMPK negative

feedback limits ROS production, while mitochondrial ROS-

activated AMPK can regulate the stability of hypoxia-inducible

factor 1a (HIF1a) (117). Similarly, AMPK plays a dual role in

regulation of ferroptosis, mainly by blocking system xc-

activation (118). In contrast, energy stress-mediated AMPK

activation inhibits ferroptosis (119). Moreover, ROS also plays

a dual role in cancer prevention and treatment (120). The

relationship between metabolic homeostasis and ferroptosis is

not static, and critical metabolic regulators may play opposite

roles in differential tumor progression. Complex network

communication between reprogramming and ferroptosis can

promote PMN formation, and how tumor cells avoid ferroptosis

through reprogramming deserves further study. Given that

ferroptosis is closely associated with many metabolic pathways,

exploiting metabolic fragility might be critical in unraveling

therapeutic loopholes for inducing ferroptosis to inhibit tumor

PMN formation (Figure 3).
Organotropism

Features of organotropism may be innately associated with

PMN, owing to the fact that some cancer types tend tometastasize

to specific organs with selective microenvironments (4). Intrinsic

properties of tumors, coupled with unique characteristics of host

organs, circulation patterns, and interactions between tumor cells

and the host microenvironment, jointly determine organ-specific

metastatic behavior. Studies have shown that major metastatic

target organs, such as bone, liver, lung, and brain, among others,

have their specific PMN (121) (Figure 3). Moreover, researchers
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have documented the role of ferroptosis in many cases of

pathological cell death, especially in tissues such as the liver and

brain (122). Notably, iron-rich tumors, such as hepatocellular

carcinoma and non-small cell lung cancer, maybe particularly

responsive to FINs (7). Furthermore, different ferroptosis

regulators have distinct gene expression levels throughout the

tumor. SLC7A11 inhibitors have been reported to be particularly

effective against certain types of cancer that overexpress this target,

such as esophageal cancer and glioblastoma (7). Although no

studies have demonstrated the relationship between ferroptosis

with organotropism during PMN formation, iron-rich organs

(more nutrient-rich “soil”) may be more susceptible to PMN

formation. Moreover, ferroptosis may have particular effects on

prevention and treatment of organotypic metastases in certain

tumors, such as breast and lung cancer brain metastases, due to

tissue specificity of ferroptosis and the high sensitivity of specific

types of tumors to FINs.
Conclusions and perspectives

Formation and maturation of PMN guarantee successful

extravasation, colonization and growth of metastatic tumor cells.

This complex spatiotemporal process relies on interactions

between tumor cells at the primary site and the colonization

site microenvironment. Notably, vascular stabilization and

immune regulation represent promising pathways to

deconstruct the complexity of PMN (123). This review
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addresses the potential link between ferroptosis and PMN,

harnessing our knowledge of PMN characteristics and

information from published articles. Although no direct and

precise links have so far been established, this information

provides a new frontier for discovery of interventions in PMN

formation and maturation via ferroptosis to overcome cancer

metastasis. In the future, more in-depth studies are needed to

identify and characterize the key molecules as well as

mechanisms underlying ferroptosis in PMN, as such

information will guide development of safe and effective

anticancer therapies. This review did not cover various topics,

such as tumor cell dormancy characteristics, inter-tumor and

intra-tumor heterogeneity, and cancer stem cells. Indeed,

epigenetic regulation plays an integral role in malignant tumor

progression (124), while ferroptosis mediates various epigenetic

regulators and metabolic changes. Studies have shown that

epigenetic regulation of ferroptosis may serve as a novel

anticancer therapeutic strategy (12, 125). Future studies,

seeking to elucidate the role of ferroptosis in PMN, should

focus on epigenetic regulation.

In summary, the aforementioned six PMN characteristics

not only comprehensively function from different aspects to

ensure colonization and metastasis of tumor cells, but also are

closely related to ferroptosis, suggesting that ferroptosis may

play an essential role in PMN and modulation of ferroptosis to

predict or treat tumor metastasis is an attractive strategy.

However, its toxic and side effects should be borne in mind,

including an elevated risk of neurodegeneration and acute tissue
FIGURE 3

Relationship between ferroptosis and reprogramming and organotropism. ECM remodeling, CAFs, and EMT are closely associated to stromal
reprogramming and ferroptosis. Multiple metabolic pathways are closely related to ferroptosis, such as glucose metabolism, lipid metabolism,
iron metabolism, amino acid and glutathione metabolism. Several organs are the host parts of metastasis and are prone to ferroptosis, such as
brain, lung, liver and bone. CAFs, cancer-associated fibroblasts; ECM, extracellular matrix; EMT, epithelial-to-mesenchymal transition.
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damage, or ineffective therapeutic effects leading to tumor

progression. Therefore, researchers need to conduct sufficient

preclinical studies to ascertain its safety and efficacy.

Future studies are expected to not only elucidate the

mechanism underlying ferroptosis in PMN but also identify

and distinguish the effect of ferroptosis on different PMN

characteristics during tumor metastasis. Such research

endeavors are expected to employ advanced technologies, such

as organoid technology, single-cell and spatial transcriptome

sequencing platforms, and nanomedicine approaches, to study

the effect of ferroptosis on the interaction between tumor cells

and peritumoral stromal cells and immune cells, as well as the

initiation of ferroptosis in PMN priming, licensing, initiation,

and progression roles in various spatiotemporal stages. Findings

from these explorations will provide valuable insights to guide

future development and utilization of new prevention and

treatment strategies against cancer metastasis.
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