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Over the last century, the alarming surge in allergy and autoimmune disease has led

to the hypothesis that decreasing exposure to microbes, which has accompanied

industrialization and modern life in the Western world, has fundamentally altered the

immune response. In its current iteration, the “hygiene hypothesis” suggests that reduced

microbial exposures during early life restricts the production and differentiation of immune

cells suited for immune regulation. Although it is now well-appreciated that the increase

in hypersensitivity disorders represents a “perfect storm” of many contributing factors,

we argue here that two important considerations have rarely been explored. First, the

window of microbial exposure that impacts immune development is not limited to early

childhood, but likely extends into the womb. Second, restricted microbial interactions

by an expectant mother will bias the fetal immune system toward hypersensitivity. Here,

we extend this discussion to hypothesize that the cell types sensing microbial exposures

include fetal hematopoietic stem cells, which drive long-lasting changes to immunity.

Keywords: hygiene hypothesis, hematopoietic stem cell, immunity, fetal-maternal, immune training

INTRODUCTION

In this review, we will explore a body of work that demonstrates howmaternal exposure tomicrobes
during pregnancy has a significant impact on the development of the immune system in offspring.
We will also review a growing body of literature that demonstrates how adult hematopoietic
stem cells (HSCs) can sense diverse immune stimuli, thereby impacting the production, and
sometimes function, of immune cell progeny. Furthermore, we will reconcile these two bodies
of literature to suggest that maternal inflammation and infection are perceived by fetal HSCs
to shape the immune system in the neonatal period and beyond. The consequences of these
perturbations are underexplored but are likely to impact propensity for hypersensitivity disorders
and resistance to certain infections as neonates. Thus, in addition to the passive transfer of
maternally derived antibodies, the mother affords a separate mode of immune transfer, one that
is driven by inflammation but acts upon a receptive HSC compartment during fetal development.
The resultant training, or biased cell output, will have long ranging effects on neonatal and
adult immune function. We argue that the hygiene hypothesis should encompass how microbial
exposure during pregnancy fosters immune development through “training” immune output at
the stem cell level.
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WHAT IS THE HYGIENE HYPOTHESIS?

Thirty years have passed since the inception of the hygiene
hypothesis, which attempted to reconcile an inverse correlation
between birth order and incidence of allergic disease observed in
British families (1). It was reasoned that in larger families with
more children, communicable disease had a higher likelihood of
being passed during early life. The immune education thereby
afforded by enhancedmicrobial exposure in the youngest siblings
was posited to be favorable for increased immune tolerance
as compared to older siblings. Numerous similar observations
have since been made for a variety of environmental conditions
favorable to enhanced microbial exposure early in life, which
include enrollment of newborns (6–11 months) in daycare
centers (2) and growing up on farms (3). Conversely, the
correlations between industrialization and conditions such as
atopy (4) and type 1 diabetes (5) have been used to underscore
the hygiene hypothesis. Industrialization in the latter half of
the twentieth century in the United States accompanied major
demographic changes which dramatically dropped infection
intensities (6, 7). This shift included factors such as smaller
household sizes (4.1 in 1930 to 2.5 in 2004 kids per family),
fewer people living on farms (12.2% in 1950 to 2.6% in 1990
of the US population living on farms), increased household
plumbing (50% in 1940 to 99% of houses with complete plumbing
in 1990) (7), and prevalent antibiotic use and vaccination, all
of which have worked to create a more “sterile” environment.
According to the Centers for Disease Control, 1 in 10 kids in
the United States will suffer from asthma and 1 in 4 suffer from
some type of allergic disorder in Europe (8), leading some to label
allergy as an epidemic (9). Even within countries from different
continents, higher incidences of hypersensitivity disorders can
be observed in urban compared to rural environments (10–12).
Given the rapid increase in hypersensitivity disorders in the latter
half the twentieth century, public commentary and interest in
the connection between hygiene and hypersensitivity has not
waned (13).

Beyond Th1/Th2 Dichotomy
The primary focus of the hygiene hypothesis, from a mechanistic
perspective, has been on immunological mechanisms that shift
CD4T helper (Th) cell differentiation profiles due to microbial
exposures in the first years of life. The original view was
that early infection skewed development of Th cell repertoire
toward “proinflammatory” Th1 responses, which in general
antagonize “allergy promoting” Th2 immunity and allergic
disorders (14–16). The absence of early microbial exposure
in overly hygienic environments would therefore bias the
T cell repertoire toward Th2 responses, which are normally
favored early in life (17–21). However, simple antagonism
between Th1 and Th2 failed to explain why propensity for
autoimmune diseases, induced by tissue-destructive Th1/Th17
pro-inflammatory immune responses and Th2-mediated atopic
diseases, characterized by IgE production and mast cell
degranulation to environmental antigens, were both increasing
in western nations (6, 22). For example, house dust mite
(HDM) allergen-specific IgE is observed at similar frequencies

in populations from high and low-income countries, suggesting
equal induction of antigen-specific Th2 responses in both locales.
Yet, immediate hypersensitivity allergic skin reactions to HDM
is several-fold greater in the westernized countries, suggesting
immunological tolerance was readily achieved in low-income
settings (23). This led to the hypothesis that repeated infections
support a state of immune tolerance by inducing an “immune
regulatory network” underpinned by the function of T regulatory
cells and immuno-suppressive cytokines, like TGF-β and IL-
10 (23). Additionally, hypersensitivity disorders are not simply
driven by aberrant T helper cell responses, but also by multiple
cells of the innate immune system including innate lymphoid
cells (ILCs) (24, 25), tissue resident macrophages (26), and
epithelial cells (27), all of which potentially serve as targets for
immune modulation by microbial infection. Importantly, many
of these cells have early developmental origins, and as we will
explore later, are likely to be targeted by inflammatory cues
during in utero development.

Which Microbes or Stimuli Are Missing in a
Hygienic Environment?
When considering what type of microbial interactions may be
missing in hygienic environments of the west, both helminths
and the microbiota have garnered the most attention. The inverse
correlation between helminth infection rates and hypersensitivity
disease intensity in tropical locals has long been suspected as a
causal in nature (5, 28, 29). In mouse models, helminth infections
or their products can suppress experimental autoimmune
encephalomyelitis (EAE) induction (30, 31), collagen-induced
arthritis (32), CD8T cell immunity to viruses (33, 34), and
allergy (35, 36). Among multiple strategies (37), helminths use
excreted products (38) to down-modulate immune responses
including specific induction of T regulatory cells through the
TGF-β pathway (39), blocking TLR-induced DC maturation
thereby favoring Th2 development (40–43), suppressing ILC2
activation by inhibiting epithelial release of IL-33 (44) and
induction of alternative macrophages (45). In humans, profiling
of children exposed to helminths revealed the strong presence
of critical immunomodulatory cytokines, including IL-10 (46)
and enhanced frequencies of regulatory T cells in the blood (47).
Together, these data support a role of helminths as immune
modulators (48).

Helminths are not the only microbial interaction capable
of eliciting immune tolerance (49). Even in the west, where
helminth infections are less frequent if not rare, Italian cadets
seropositive for orally acquired pathogens such as Toxoplasma
gondii,Hepatitis A, andHelicobacter pylori, but not for pathogens
acquired by different routes, were much less likely to have
atopic disease, especially when seropositive for at least two
(50). Children on farms are exposed to a higher diversity of
bacteria and fungi species, and these exposures correlated with
lower atopic disease (51). In this setting, childhood exposure to
gram negative endotoxin appears to be an important component
of atopic disease protection (52). Certainly, exceptions have
been reported for the role of microbial diversity and endotoxin
exposure on atopy (53) and in several cases, helminth infections
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can exacerbate hypersensitivity disease (54), illustrating that the
hygiene hypothesis cannot serve as a generic explanation for
all inflammatory diseases with complex etiologies. However,
as noted in both farm environments and mouse models, the
microbial environment experienced early in life is an important
factor driving multiple immune disease outcomes.

In addition to pathogens, it is now appreciated that microbial
composition of the neonatal gut is an important variable
impacting relative risk for atopic disease (7), prompting several
revisions to the hygiene hypothesis best stated as a “microbial
diversity hypothesis” (53). The microbiome of the mother has a
direct impact on the infant microbiome, and maternal-derived
sources include exposure to the vaginal canal (55) and breast
milk (56). Cesarean births, formula feeding, and disruption of
the infant microbiota by antibiotic use by both mother (57)
and child can contribute to aberrant microbial colonization of
the infant gut and distinctly impact bacterial diversity (58).
These disruptions to microbial seeding are correlated with
increased susceptibility to obesity (57), asthma (55, 59), and
atopic dermatitis among others (60). There is now evidence that
early colonization of the airway microbiome can be modulated
at birth (61), and this may also impact disease outcomes. For
example, at birth, both term and preterm infants displayed a
more diverse airway microbiome compared to older preterm
infants with established bronchopulmonary dysplasia (62), while
asymptomatic colonization with Streptococcus in the infant
nasopharynx during the first year of life was found to correlate
with increased asthma susceptibility (63). Finally, there has been
considerable debate as to the existence of a placental microbiome
and whether it could influence offspring immunity. Studies
utilizing DNA sequencing (64) and culturing of placental tissues
and amniotic fluid (65) indicate that infant gut colonization is
initiated in utero. However, recent work has demonstrated that
placental contamination through labor or even laboratory regents
accounted for a majority of identified bacteria with the exception
of group B Streptococcus (66). The diversity of the microbiome
during early life no doubt shapes the trajectory of the immune
system, but the cellular mechanisms and signals that influence
early life immune training are not well-established.

HYGIENE HYPOTHESIS REVISITED—A
PRENATAL WINDOW INTERSECTED BY
FETAL HEMATOPOIESIS

At the root of the hygiene hypothesis is the concept of a
sensitive or “critical” period of development, during which the
phenotype of the adult immune system can be shaped by extrinsic
or intrinsic inputs. While the hygiene hypothesis has mostly
considered early postnatal exposure, accumulating evidence
suggests that this critical window extends prenatally. For
example, exposure to farm animal shed during pregnancy is also
a major factor in modifying immune function and reducing risk
of allergic disease in offspring (3) and correlates with enhanced
induction of cord blood T regulatory cells (67). When modeled
in mice, in a maternal TLR-dependent manner, endotoxin
exposure during pregnancy ameliorates allergic sensitivities in

the progeny of exposed dams (68) and increases tracheal T-
reg percentages (69). Conversely, anti-helminth therapy given
during pregnancy correlates with increased allergic eczema in
newborns, suggesting immune training afforded by the maternal
environment impacts immunity to unrelated antigens (70).
Similarly, maternal antibiotic exposure during early pregnancy
is associated with an increased risk of allergic disease, although
this association could also be explained by greater maternal
susceptibility to infection (71). Collectively, these and similar
observations have suggested a revision to the hygiene hypothesis,
mainly that the critical window be extended into the womb
(72). Below, we consider evidence to suggest that susceptibility
to hypersensitivity and autoimmunity may be driven by fetal
hematopoietic stem cells that sense maternal inflammatory cues,
resulting in an altered immune trajectory.

Prenatal Exposure to Infection Shapes
Early Immunity
A growing body of evidence suggests that maternal exposure—
both to non-infectious stimuli and infectious microbes—shapes
the fetal and subsequent neonatal immune response (Figure 1).
The most studied mode of influence of the maternal immune
system on fetal and neonatal immunity is the transfer of
maternally derived immunoglobulin (Ig) to the offspring, or
passive immunity (Figure 1I). This transfer can occur both
prenatally through the placenta, or postnatally in breastmilk,
mediated by the neonatal Fc receptor, FcRN (73), and provides
critical protection to the newborn. Importantly, transplacental
transport of maternal IgG-antigen complexes by FcRn can also
result in direct “priming” of antigen-specific immune responses
in fetal cells (74–76) (Figure 1i). The FcRN mechanism may
underscore antigen-specific responses to parasitic antigens by
newborn lymphocytes in the context of maternal infection with
schistosomiasis, placental malaria, Chagas’ disease, and HIV
(77). Importantly, fetal infection itself (Figure 1IV) is not a
requirement for in utero priming of the fetal immune system (77).
Indeed, multiple human studies and experimental systems have
reported lymphocyte proliferation or cord blood IgM reactivity
to vaccine antigens that are present at birth from vaccinated
mothers (78). Maternal transfer of antigen can induce the
presence of antigen-specific Tregs (79). However, whether these
maternal-derived antigen specific fetal Tregs that are generated in
the fetal thymus (nTregs) or periphery (pTregs) is unclear (80).

Beyond antigen-specific response driven by maternal-
mediated antigen exposure, the maternal immune response
also evokes antigen-non-specific responses in the developing fetal
immune system (e.g., Figure 1ii,iii). For example, maternal
vaccination during pregnancy is broadly associated with reduced
mortality to unrelated pathogens in offspring (78), suggesting
that generalized and protective neonatal immune responses
can be elicited. Conversely, prenatal exposure to infection in
the context of HIV, malaria, and a cross section of helminth
infections correlates with increased susceptibility to diverse
infections in neonates and poorer responses to vaccination
postnatally (77). Whether the outcome of maternal exposure
is protective or deleterious may depend on the nature of the
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FIGURE 1 | Understanding the mechanisms that impact fetal immune development in response to maternal immune perturbation. The maternal immune response to

infection and inflammation is necessarily perceived by the fetus at the fetal-maternal interface. The fetus may perceive the maternal immune response through: I. Direct

transfer and exposure to maternal antigen (i) via antibody-antigen complexes mediated by neonatal Fc receptor (FcRn); II. Receptors on the maternal side responding

to PAMPs (Pathogen-Associated Molecular Patterns) produced by pathogens and maternal cytokines that signal to the fetal side (ii) through TLRs (Toll-Like Receptors)

and specific cytokine receptors, respectively; III. Direct passage of cytokines across the fetal-maternal interface interacting directly with receptors on the fetal side that

may evoke a different cellular response on the fetal side (iii); or IV. Vertical transmission of infection from mother to fetus, causing immune cells to directly perceive and

respond to infection (iv). Fetal HSCs can respond to these signals of maternal infection and inflammation by direct changes to their function, including changes in cell

proliferation or quiescence that alter the persistence of progenitors, and changes to differentiation potential and cellular output. Such changes at the HSC level can

alter the trajectory of the immune system in a way that impacts immune homeostasis and function throughout the lifespan. Figure created using Biorender.com.

maternal immune response, severity of disease, or mechanism
of action. As an example, uninfected infants born to mothers
with more advanced HIV disease experience a greater risk of
perinatal morbidity and mortality (81). On the other hand,
adverse pregnancy and infant outcomes associated with maternal
infection can be attenuated if the maternal inflammatory
response is experimentally controlled by administration of a
microbial immunomodulatory agent (82). These data suggest
that the degree of maternal inflammation can directly influence
fetal outcomes.

Mounting evidence suggests that the fetal innate immune
system can be “trained” during pregnancy (83, 84), by which
maternal infection induces generalized and persistent changes
to the function of the fetal innate immune system. Some of
the best evidence for this comes from studies of infants born
exposed to but uninfected with HIV [for review see (85)].
In utero exposure, but not vertical transmission with HIV,
results in enhanced neonatal cytokine profiles of monocytes
stimulated with various TLR agonists (86). Similarly, infants
exposed prenatally to malaria demonstrated reduced basal levels

of innate cytokines in cord blood, but higher responsiveness to
stimulation with specific TLR agonists (87, 88). Human infants
exposed to Hepatitis B Virus (HBV) in utero have higher levels
of anti-viral cytokines in cord blood and exhibit evidence of
greater activation and maturity of monocytes (89). Maternal
vaccination during pregnancy can also heighten the innate
immune response in offspring, as evidenced by an association
between maternal Bacille Calmette-Guérin (BCG) scar size and
infant pro-inflammatory cytokine production elicited by TLR
stimulation (90). Training of the innate immune system in infants
that occurs in the absence of vertical transmission underscores
the ability of the fetal immune system to respond in an indirect
manner to maternal infection or inflammation (Figure 1).

The neonatal adaptive immune response may also be
intersected by a fetal trained innate immune system, and
its response would depend on how and to what degree the
developing innate immune system is evoked by maternal
inflammation. For example, when mothers are infected with
helminth pathogens during pregnancy, their newborns generally
exhibit blunted Th1 responses to BCG vaccination (91, 92)
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and lower antibody titers following diphtheria toxin (DT) and
Haemophilus influenzae (Hib) vaccination (93). In some cases,
enhanced leukocyte production of the immunosuppressive
cytokines, TGF-β and or IL-10, when stimulated with
homologous vaccine antigen (i.e., “recalled”), correlates
with poor vaccine responses due to antenatal helminth infections
(91, 94). Additionally, HIV exposed but uninfected newborns
have blunted humoral responses to measles (95), BCG (96),
TT, and hepatitis B vaccination (97), and antenatal malaria
also correlates with reduced neonatal vaccine responses to
Hib and DT (93). In contrast, maternal infection with the
kinetoplastid Trypanosoma cruzi, causes heightened neonatal
adaptive immune response to BCG vaccination (98). Thus,
antigen-non-specific changes to fetal immunity may additionally
impact the adaptive immune response and trajectory toward
immune homeostasis in newborns and possibly adults.

Unknown Mechanisms of Fetal Immune
Training by Maternal Inflammation
The mechanism underlying the response of the fetal immune
system in the absence of overt fetal infection is unknown, and
how indirect “training” of the fetal immune system by maternal
infection or exposure occurs is unclear and understudied
(Figure 1). One possible explanation for trained fetal immunity
could be the direct passage of maternal cytokines or other
inflammatory mediators into fetal circulation, which then
stimulate the fetal immune system (Figure 1III). Determining
whether maternal cytokines cross the placenta in humans during
gestation is extremely challenging; ex vivo experiments with
full-term human placenta suggests that transfer of cytokine
across the placenta is limited at later developmental stages
(99, 100). Nonetheless, evidence from rodent models suggests
that some cytokines can cross the placenta earlier in gestation
(101, 102), and subsequently modulate the neonatal response
to infection (103). Dahlgren and colleagues demonstrated that
transplacental passage of I125-labeled IL-6 was considerably
higher at mid-gestation [embryonic day (E) 11–13] as compared
to late gestation/near term (E17-19), suggesting that a less
mature placenta may be more permeable to maternal cytokines
(101). TLR ligands for specific pathogens were also recently
shown to cross the mouse placenta at mid-gestation (E15) and
directly impinge upon fetal cells; however, a direct effect on
fetal immune cells was not described (104). Whether other
TLR ligands can cross the placenta and directly elicit a fetal
immune response has not been determined. In general, we
know very little about how maternal cytokines or inflammatory
mediators might induce the production or release of different
cytokines on the fetal side (Figure 1ii,iii). Finally, vertically
transmitted pathogens may directly stimulate fetal immune
responses in utero (Figure 1IV,iv). Further investigation of the
role of maternal cytokines and other inflammatory mediators in
the direct induction of a fetal immune response, and the nature
of that response, is warranted.

Another alternative explanation is that the fetus could
respond indirectly to inflammation of or impingement on
placental function caused by maternal infection (Figure 1II).

Chorioamnionitis, an infection of the placenta typically caused
by normally non-pathogenic microbes, drives systemic changes
to the fetal immune system, including cytokine production
and lymphocyte polarization (105). Importantly, fetal cytokine
production has been observed in the absence of overt amniotic
infection in a macaque model of Group B streptococcal-induced
chorioamnionitis (106), suggesting that the fetus can respond
directly to other signals outside of the fetal unit. Maternal viral
infection of the placenta can also evoke fetal cytokine production
in mice in the absence of fetal infection (107). Recent evidence
from studies of cord blood in pre-term human infants suggests
that inflammation at the maternal-fetal interface primes fetal
lymphocytes to produce more inflammatory cytokines, including
TNF-α and IFN-γ, in pre-term infants (108). Genetic dissection
of the contribution of the fetal response to placental malaria
recently revealed the requirement for fetal innate immune
signaling in the control of placental malarial infection (109).
Thus, the fetal immune system may respond to the consequences
of maternal inflammation, as opposed to or in addition to a direct
response to maternal inflammatory mediators.

Beyond inflammation and infection, growing evidence also
suggests that the maternal microbiome can directly influence
fetal immune development and function in utero. Although
direct movement of maternal microbes to the placenta or fetus
causes fetal demise, indirect exposure via microbial metabolites
can influence fetal immune development. Limited gestational
exposure to maternal E. coli colonization resulted in specific
changes to fetal innate immune compartments, including gut
Type III innate lymphoid cells (ILC3s) and mononuclear cells
(110). Exposure may be dependent on maternal antibody-bound
microbial molecules but could also be transmitted via direct
exposure to microbial metabolites. For example, short chain fatty
acids (SCFA), a microbial byproduct, can directly enter fetal
circulation and influence fetal immune cell production, function,
and ultimately offspring immunity (111). For example, SCFAs
have been shown to influence susceptibility to allergic airway
disease in adulthood by directly affecting adult hematopoiesis
(112). Most recently, SCFA supplementation during pregnancy
was also shown to rescue thymic and T-cell developmental defects
in amousemodel of pre-eclampsia (113). In addition to the direct
influence of the maternal microbiome on the infant microbiome,
which ultimately influences neonatal immunity, direct or indirect
exposure to metabolites in utero may also direct the prenatal
immune response.

Activation of the fetal immune system in the context of
maternal inflammation, infection, or exposure provides evidence
that in utero exposure can directly evoke a fetal immune response
(Figure 1). One outstanding question is whether or how a
fetal immune response evoked during gestation translates into
persistent changes in immune function into the neonatal period
and beyond. Although fetal lymphocytes are generally considered
to be long-lived immune cells, fetal and neonatal immune cells
are eventually replaced by more mature immune cells over
the course of postnatal development. In this case, how does
in utero exposure imprint itself on the adult immune system?
Below we consider a reframing of immune development to better
understand how in utero exposuremight have a long-term impact
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on immunity across the lifespan and particularly on vulnerability
to hypersensitivity disorder.

Fetal Immune Development Produces
Tolerogenic Cells
Until recently, immune development has been perceived as
relatively linear in nature: as the organism was exposed to
and “experienced” pathogen, the immune system “matured” in
tandem. Almost 30 years ago, however, Leonard Herzenberg
described Ly5+ B1-B cells in adults that had distinct functions
as compared to adult B cells and were produced specifically
during fetal development (114). Since this initial discovery,
increasingly sophisticated molecular and genetic approaches
have led to an ever-growing list of specialized immune cells
derived from fetal precursors. These include other subsets of
innate-like lymphocytes—including γδ-T-cells (115–120), innate
lymphoid cell subsets (ILCs) (121) and distinct T-cell subsets
(122–124) as well as specific myeloid cells, such as tissue resident
macrophages (125, 126) and mast cells (127). Importantly,
many of these fetal-derived immune cells have been shown to
persist across the lifespan of the animal, mostly independent of
adult bone marrow (BM) hematopoiesis. Convincing evidence
for a fetal origin of these specific immune cell compartments
extend from (1) transplantation experiments revealing the
enhanced or inclusive capability of fetal cells to reconstitute
these compartments relative to adult BM cells (128–131),
(2) parabiosis experiments revealing the minimal contribution
of adult BM-derived hematopoiesis to these compartments
under steady-state conditions (115, 129, 132, 133), or (3) fate-
mapping or in vivo bar-coding experiments that have definitively
shown the sustained contribution of fetal precursors to these
populations in adulthood (115, 121, 125, 126, 131). The discovery
of fetal-derived immune cells that persist and contribute to
adult immunity with minimal contribution from adult BM
hematopoiesis confirms that immune development is far from
linear, and suggests that the phenotype of the adult immune
system can be shaped from fetal development onwards.

A pivotal shift in immune function occurs at birth as the fetal
immune system must switch from tolerogenic of the maternal
environment to responsive to the external environment. This
shift dictates the generation of immune cells with distinct
functionality. In comparison to adult BM-derived immune cells,
many fetal-derived immune cells recognize self- or commensal
antigens, and function at the boundary of innate and adaptive
immunity. They straddle a subtle functional balance as both
mediators of tolerance and rapid responders to infection. For
example, innate-like lymphocytes, including B1-B cells, γδ-T-
cells, and innate lymphoid cells (ILCs), are rapid responders
bearing either non-specific, germ-line encoded antigen receptors
(B1-B cells, γδ-T-cells) or no antigen receptors (ILCs) that
release natural antibody or cytokine in response to pathogen.
Fetal-derived myeloid cells are mostly “tissue-resident,” and have
unique functions in tissue homeostasis within their resident
tissues. As these immune cells take up residency in their
respective tissues across ontogeny, they both educate and are
educated by the tissue microenvironment (134). For example,

tissue-resident Kupffer cells in the liver function in iron recycling
(135), and microglia are critical for synapse pruning during
development (136). Thus, the establishment of these functionally
distinct cell types from fetal precursors during development has
critical implications not only for adult immune function, but also
for normal tissue function and homeostasis across the lifespan.

Due to the specific functional attributes of fetal-derived
immune cells in maintaining tolerance and tissue homeostasis,
it is not entirely surprising that their dysregulation is implicated
in disorders of tolerance, such as asthma and autoimmunity.
For example, dysregulation of innate-like B cells and innate-
like marginal zone B-cells has been observed in humans
with, and mouse models of, autoimmune diabetes (137–139).
B1-B cells have been specifically implicated as drivers of
pathogenesis in autoimmune diabetes by producing IgG specific
to self-DNA that promote inflammatory immune complexes in
pancreatic islets (140). Similarly, activation of B1-B cells has
been shown to promote pathogenesis in a variably penetrant
mouse model of lupus (140–143). IL17-producing gamma-
delta T-cells, including those of fetal origin, accumulate in a
wide variety of autoimmune diseases including autoimmune
encephalitis, psoriasis, and arthritis, where they are thought
to enhance the adaptive response during autoimmunity (144–
146). More recently identified innate lymphoid cell subsets
have been similarly implicated in asthma and allergic diseases.
Since the discovery of their importance in Type II immunity
(147, 148), ILC2s have been shown to be crucial players in
the development of allergic asthma (149, 150). Both ILC2s and
ILC3s have been implicated in maintenance of gut homeostasis,
and as cellular targets in inflammatory bowel disease (151,
152). Thus, disruption of fetal immune development may have
distinct consequences for adult immunity by perturbing the
establishment and function of immune cells that function at the
boundary of tolerance and tissue homeostasis.

Layered Immune Development Is
Underscored by Transient Blood
Progenitors
The generation of distinct immune cells during fetal development
is driven from a series of discrete, transient hematopoietic
progenitors that arise across multiple anatomical sites during
ontogeny. The first wave of hematopoiesis occurs in the
extraembryonic yolk sac, in so-called “blood islands” derived
from endothelial cells that undergo endothelial to hematopoietic
transition (EHT) to generate the first blood cells (153). These
“primitive” blood cells consist primarily of large nucleated red
blood cells, that meet that oxygenation needs of the early embryo,
and primitive macrophages (154). Subsequently, more mature
progenitors arise both in the yolk sac and in the developing
aorta region, with increasingly diverse lineage potential (155).
The first so-called “definitive” hematopoietic stem cells (HSCs),
capable of replenishing the blood system after adoptive transfer
into an irradiated adult recipient, arise in the developing aorta
region around mid-gestation (156–159). It is on the basis
of their ability to reconstitute the adult blood system that
multipotent HSCs arising within the developing aorta have long
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been considered the precursors of adult HSCs. More recently,
sophisticated lineage tracing and in vivo barcoding experiments
have alternately suggested that many fetal HSCs and progenitors
are transient, despite possessingmultilineage capability (128, 160,
161). The abundance and diversity of progenitors underlying
fetal hematopoiesis has driven an intense interest in defining
their function and contribution to both the developing and adult
immune systems.

Ongoing examination of how waves of fetal hematopoietic
cell production contribute to adult immune compartments has
begun to unravel two critical insights. First, distinct progenitors
are responsible for generating parallel “waves” of immune
cell production across development. Second, these distinct
waves of immune cell production may contribute to functional
heterogeneity within adult immune cell compartments. Precisely
how developmental waves underlie functional heterogeneity
in both normal and abnormal adult immune function is an
area of active investigation. The best evidence to date to
support the hypothesis that waves of developmental immune cell
generation underlie heterogeneity of adult compartments comes
from ongoing investigation of the origin of adult tissue-resident
macrophages. Elegant studies using a range of fate-mapping
and deletion models have revealed overlapping contribution
from yolk sac, fetal liver, and adult progenitors across ontogeny
(162–164). For example, dissection of the function of these
distinct fetal-derived cell subsets in their resident tissues has
revealed unique roles in electrical conduction in the heart
(165), mammary gland remodeling (163), synaptic pruning
(136), and surfactant clearance for lung alveoli (166). Indeed,
recent work as further shown that fetal-derived macrophages

may contribute uniquely to disease states, including cancer
(167) and myocardial infarction (168). Illuminating the specific
and precise contribution of macrophages derived from distinct
progenitors and refining how specific waves contribute even
greater functional heterogeneity within tissues is an ongoing
effort that will further understanding of how early development
contributes to normal and abnormal immune function across
the lifespan.

Hematopoietic Stem Cells as “Sensors” of
Infection
The complexity of the developing hematopoietic and immune
systems suggests that extrinsic inputs during fetal development
could influence phenotypic outcomes for immune function
in a variety of different ways, depending on when and how
these inputs are interpreted. If subsets of immune cells that
persist across the lifespan are produced only from transient
fetal progenitors during specific windows of fetal development,
the nature and timing of those extrinsic inputs will necessarily
influence the trajectory of the immune system. Here we propose
that extrinsic inputs could shape the trajectory of the immune
system at the progenitor level (Figure 2). By perturbing the
complicated waves of hematopoietic development that ultimately
shape adult immune cell compartments, extrinsic inputs—
including the type and extent of microbial exposure, and the
maternal inflammatory environment shaped by distinct immune
responses—could ultimately shift immune function in offspring.
Superimposing the concept of a “critical period” over layered
immune development provides a new perspective on how

FIGURE 2 | In utero perturbation shapes adult immunity by altering the establishment of the fetal hematopoietic and immune systems. (A) Factors such as maternal

diet, infection, inflammation, environmental insult, and stress can influence fetal growth in utero. (B) In utero perturbations impact fetal hematopoietic stem and

progenitor cells (HSPCs), thereby altering the composition or function of the fetal-derived immune cells they generate during development. The function and cell

composition of fetal-derived immune cell compartments can also be impinged upon directly by in utero perturbation. Maternal perturbation can also drive changes

(red arrows) to the adult hematopoietic stem cell (HSC) compartment. Transient fetal hematopoietic progenitors can fail to appear normally during ontogeny, or be

induced to persist abnormally, driven by persistent epigenetic reprogramming. Such changes will ultimately impact heterogeneity and function of the adult HSC

compartment. Perturbing the composition and function of the adult HSC compartment will alter adult immune output and the trajectory of the immune system.

Similarly, as fetal-derived immune cells play critical roles in tissue development and homeostasis, disturbing their establishment or function can impact tissue-specific

immunity and disease-risk across the lifespan. Figure created using Biorender.com.
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infection or inflammation during gestation might impact long-
term immune function and drive hypersensitivity (Figure 2).

Recent investigation in adult hematopoiesis has illuminated
the mechanisms by which adult HSCs can act as both
direct sensors and drivers of the immune response during
inflammation. In response to infection, the blood system rapidly
produces short-lived myeloid cells required to counter infection.
At the top of the hematopoietic hierarchy, adult HSCs have
been documented to respond directly to systemic viral (169) and
bacterial infections (170), as well as to a host of inflammatory
cytokines, including type I and type II interferons (171–
174), IL-1β (175), IL-27 (176), and TNF-α (173, 177), and
specific TLR ligands (178, 179). In addition, adult HSCs have
been reported to express a multitude of additional cytokine
receptors, the functions of which in regulating HSC biology
have yet to be investigated (180). With progressive exposure,
adult HSCs lose self-renewal potential, face oxidative stress,
and undergo metabolic changes that drive reprogramming of
myeloid differentiation programs (181, 182). Recent evidence
also suggests that specific progenitors within the heterogeneous
adult HSC compartment differentially receive and drive the
response to inflammation. Work by Essers and colleagues, for
example, suggests that specificmegakaryocyte-biased progenitors
are induced upon acute inflammation to rapidly replenish
platelets (173). How these rapid responses contribute to long-
term changes in the adult HSC compartment remains to
be determined.

In direct response to broad range of inflammatory stimuli,
adult HSCs shift the trajectory of hematopoiesis by adopting
a myeloid-biased output (181). Most recently, this response
has been implicated as a driver of “trained innate immunity.”
Whereas immune memory has typically been a distinct and
critical feature of adaptive immunity, as noted earlier, trained
innate immunity refers to the ability of the innate immune
cells to evoke a stronger response to a non-specific stimulus
following infection (84). The conundrum of trained innate
memory is that most innate immune cells, such as monocytes,
are short-lived, with a lifespan shorter than the timespan for
which that “memory” has been observed. Recent work has
shed light on one possible mechanism by which trained innate
memory is “stored” by adult HSCs. Two recent publications have
revealed that, in response to infection, hematopoietic progenitors
specifically producemyeloid cells that have an enhanced response
to subsequent infections. These persistent changes are driven
by alterations in epigenetic profile and metabolism at the
progenitors level (183, 184). These data provide additional
support that the direct sensitivity and responsiveness of adult
HSCs to inflammatory stimuli can redirect the long-term
trajectory of the immune system.

Beyond Congenital Infection—Maternal
Inflammation Shapes Fetal Hematopoiesis
Considerably less is known about how fetal HSCs respond
to inflammation. In light of growing appreciation that the
adult HSC compartment is far more heterogeneous than
previously recognized (185), the fetal HSC compartment is

certain to be even more heterogeneous. For example, numerous
progenitors with varying differentiation capacity have been
identified within the last decade (128, 186–188). As the fetal
HSC compartment is composed of heterogeneous, transient
progenitors that continuously shift in space and time across
development, defining their response to inflammation is a
much more complicated feat. The study of fetal hematopoiesis
and inflammation to date has been guided mostly by the
concept of “sterile” inflammatory signaling—the requirement
for transmission of pro-inflammatory signaling during HSC
specification, but in the absence of any specifically defined source
of inflammatory signal. Indeed, work in mice and zebrafish
models has detailed the requirement for TNF receptors, and
specific signaling pathways downstream of cytokine receptors,
including Myd88 and NFkB, for HSC emergence [for recent
review see (189)]. While recent work on HSC emergence
has revealed the presence of pro-inflammatory macrophages
in the developing aorta that may help drive endothelial to
hematopoietic transition (190), there has generally been limited
investigation of how specific infection or inflammatory signals
during pregnancy might impact the fetal HSC compartment.
Nonetheless, the capability of fetal HSCs to respond to
inflammatory signals, and the responsiveness of the adult
HSC compartment to such signals, certainly suggests that fetal
hematopoietic progenitors could be responsive to infection and
inflammation during gestation.

IMPLICATIONS—A “LAYERED” HYGIENE
HYPOTHESIS

We have reviewed evidence that extends the traditional notion
of the hygiene hypothesis to include perturbations that occur
in utero. The direct cellular mechanism driving training of the
fetal immune system during early life is underscored by key
characteristics unique to the fetal hematopoietic environment.
HSCs can sense and respond to extrinsic stimuli by eliciting
intrinsic changes to their function and output. While the
specific mechanisms driving the fetal HSC response to such
stimuli are unknown, distinct features, such as their transient
nature and less quiescent state, leave fetal HSCs susceptible
to environmental perturbation. Furthermore, fetal HSCs give
rise to immune progeny that persist across the lifespan and
contribute to adult immune function. The formation of a
“layered” immune system, in which fetal-derived immune cells
co-exist alongside adult bone marrow-derived immune cells,
contributes to heterogeneity of adult immune cell compartments,
particularly within tissues. Many fetal derived immune cells,
including innate-like lymphocytes, are implicated in tissue-
specific disease, and diseases of tolerance such as asthma and
autoimmunity. Thus, impairment of fetal hematopoiesis and the
establishment of fetal-derived immune cells can cause persistent
changes to the trajectory of the immune system and disease
susceptibility throughout the lifespan.

Because of the unique interface of the fetal-maternal
environment, the concept of developmental perturbation can
be extended to include a wide range of conditions or external

Frontiers in Immunology | www.frontiersin.org 8 February 2020 | Volume 11 | Article 123

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Apostol et al. A Layered Hygiene Hypothesis

stimuli that can occur during fetal development. In addition
to pathogen exposure, these could include but are not limited
to: maternal nutritional status, maternal obesity/underweight,
maternal toxicant exposure, and maternal stress (Figure 2A).
The mechanisms that define how the fetus responds to
maternal perturbation are poorly understood, which opens the
door to many more types of perturbations being involved in
reprogramming immunity. While we have discussed a body
of literature to demonstrate how infection influences offspring
immunity, we still do not understand how inflammation
during development directly impacts transient hematopoietic
progenitors during fetal development and what the direct
implications are for immunity in later life. Here we posit a
few possibilities (Figure 2B): (1) Transient progenitors could
disappear, and waves of immune cell production could be
lost or altered. (2) Transient progenitors could be induced to
persist abnormally, generating increased numbers of specific
fetal-restricted cells. In both cases, the composition of adult
immune cell compartments would be fundamentally shifted.
(3) Another possibility is that progenitors could be cell-
intrinsically re-programmed to produce functionally different
immune cells. (4) Cell-intrinsic reprogramming of transient
fetal progenitors could affect the make-up and function of the
adult HSC compartment. All of these possibilities remain to be
investigated using an established model of maternal infection,
and all could have a significant influence on adult immunity and
disease susceptibility.

The concept of in utero fetal immune “training” still leaves
many questions to be answered. The distinct cellular mediators
of fetal immune training by maternal inflammatory signals and
the mechanisms by which maternal inflammation impacts fetal
hematopoietic stem cell development have yet to be parsed out.
Unpublished work in our lab has revealed the responsiveness
of specific fetal hematopoietic stem and progenitor cells to
maternal inflammation induced by TLR agonists, such as
poly(I:C), and congenital infections, such as Toxoplasma gondii.
These observations, along with the concepts reviewed above,
underscore the need to expand the Th1/Th2 dichotomy and

its role in early immune development through the lens of the
hygiene hypothesis. We propose a broader understanding that
accounts for the impact of early exposure to both hematopoietic
stem cells and immune cells that arise during a critical window of
development. Innate-like lymphocytes, immune cells that arise
during a critical window of development, including innate-like
lymhocytes. By impinging upon their establishment during fetal
development, we train or manipulate the immune system in
lasting ways.

FUTURE QUESTIONS REGARDING
MATERNAL—FETAL IMMUNE TRAINING

• What are the cellular mediators of fetal immune training by
maternal inflammation?

• What is the mechanism by which maternal inflammation
impacts fetal hematopoietic stem cell development?

• Does fetal immune training lead to fixed or transient changes
to the immune system?

• Does the severity of maternal infection matter?
• Is the training generalized to all infections, or specific to

certain microbes?
• Can the fetal immune system be trained (therapeutically) to

lessen immune hypersensitivity disorders?
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