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ABSTRACT: Microfabrication techniques allow the development and production of artificial superhydrophobic surfaces that
possess a precisely controlled roughness at the micrometer level, typically achieved through the arrangement of micropillar structures
in periodic patterns. In this work, we analyze the stability and energy barrier of droplets in the Cassie−Baxter (CB) state on such
periodic patterns. In addition, we further develop a transition criterion using the CB equation and derive an improved version which
allows predicting for which pillar geometries, equilibrium contact angles, and droplet volumes the CB state switches from a
metastable to an unstable state. This enables a comparison with existing experiments and three-dimensional multiphase Lattice
Boltzmann simulations for different pillar distances, two contact angles, and two droplet volumes, where a good agreement has been
found.

■ INTRODUCTION
Superhydrophobic surfaces have garnered significant attention
because of their outstanding wetting properties and various
potential technological applications.1 Their production has
significantly advanced due to improved microfabrication
techniques that allow for controlled local roughness at the
micrometer scale. Often, these roughnesses are created by
periodically arranged micropillar structures.2−7 Among other
applications, this is especially interesting for membrane
distillation; Xiao et al.7 showed that micropillars and
hydrophobic coatings have the capability to decrease scaling
and extend the operational duration of a membrane. While the
development of artificial superhydrophobic surfaces has made
progress, certain fundamental aspects regarding the wetting
behavior of these surfaces still raise debate. One particular
unresolved issue concerns the transition from the super-
hydrophobic state,1 known as the Cassie−Baxter (CB) state,8
for which gas is trapped within the surface roughness, to the
completely wet state, known as the Wenzel (W) state.9 During
the transition, the apparent contact angle is decreased, and

most of the desirable superhydrophobic characteristics of the
surface are lost.4,7

It is generally accepted that for many common geometries,
the CB state is metastable or unstable. If an energy barrier
between the two states is overcome, the transition to the
energetically stable Wenzel state occurs.10−13 This energy
barrier can already be overcome due to small perturbations
such as surface waves created by gravitational or capillary
forces at the liquid−air interface.4 The transition behavior is
often approached by describing the Gibbs free energy for the
problem. Based on the function for Gibbs free energy, different
transition criteria have been formulated.3,6,10,12,14,15 An
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intermediate state, where the liquid wets the pillar walls but
does not reach the bottom, also exists.6

Jung and Bhushan4,5 observed in experiments that beyond
certain pillar distances, droplets transition from the CB into
the Wenzel state. Jag̈er et al.16 compared Lattice Boltzmann
(LB) simulations to the experimental study from Jung and
Bhushan4 and observed a qualitatively similar behavior for the
transition from CB to Wenzel state but observed a much lower
critical pillar distance. Zheng et al.12 and Patankar11 already
developed a transition criterion based on a critical pressure
difference and the Young−Laplace pressure difference. In this
work, we try to answer the question of which quantities
determine the critical pillar distance and aim to derive a
formula that allows us to predict the critical pillar distance for a
given droplet volume. This allows a comparison to experiments
and simulations. In wetting experiments where a droplet is
placed on a periodically pillared surface, one can often control
the droplet volume; therefore, it is beneficial to know if and
how the droplet volume affects the critical pillar distance.
Two mechanisms were identified for this transition: (a) Jung

and Bhushan4 argued that the transition occurs if the droop/
sag (δ) at the bottom side of the droplet is much greater than
the pillar height (hp). (b) Patankar11 derived a transition
criterion based on the pressure differences: even before the
droop touches the pillar bottom, the Young−Laplace pressure
difference Δp between the inside of the liquid droplet and the
surrounding air pressure p0 can result in penetration of liquid
between the pillars, ultimately leading to wetting of the bottom

between the pillars. Murakami et al.6 also observed that the
Young−Laplace pressure difference is much greater than the
hydrostatic pressure on the bottom side of the droplet because
of gravity. For small droplets, this suggests that the Young−
Laplace pressure difference is an important aspect for the
transition from the CB to the Wenzel state. The two
aforementioned transition mechanisms can both independently
of each other lead to a transition from a CB to the Wenzel
state.11

The paper is structured as follows: we first give a theoretical
background to the problem, particularly regarding the work of
Zheng et al.12 and Patankar,11 who derived a condition for the
critical pressure for an arbitrary periodically pillared surface.
We then give a brief overview of the LB multiphase model that
is being used to characterize the stability of the CB state. We
further develop the condition from Patankar11 and Zheng12

using the CB equation8 and derive a condition which allows
predicting for which pillar geometries, equilibrium contact
angles, and droplet volumes the CB state switches from a
metastable to an unstable state. This condition additionally
allows comparison of the theoretical predictions to multiphase
LB simulations and existing experiments for multiple pillar
geometries.

■ THEORETICAL BACKGROUND
A periodically pillared surface is characterized by A, the cross-
sectional area of the pillar, the rectangular unit cell area Ac
which is repeated periodically in x- and y-directions, the pillar

Figure 1. (a) Aerial view (reprinted with permission from Jag̈er et al.16 CC BY 4.0) and (b) corresponding 3D structure of a periodically pillared
surface with a quadratic unit cell and round pillars.

Figure 2. (a) Droplet in the Wenzel state and (b) droplet in an intermediate state. α is the contact angle between the liquid and the vertical pillar
wall.
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perimeter l, and the pillar heights hp. For a quadratic unit cell
with pillar distance P (see Figure 1), Ac = P × P holds. For
pillars with a circular cross section, l = 2πrp and A = πrp2 and for
pillars with quadratic cross section, l = 4dp and A = dp2 with
pillar side length dp.
Bond number (Bo) is a dimensionless quantity that

characterizes the balance between gravitational and capillary
forces17 and is expressed through the subsequent equation: Bo
= ΔρgL2/γ, where g denotes the gravitational acceleration, Δρ
is the difference in the density of liquid and gas, γ denotes the
surface tension, and L represents the characteristic length. In
the context of liquid droplets, the characteristic length L
corresponds to the droplet radius. When the bond number is
much smaller than 1 (Bo ≪ 1), gravitational effects can be
considered negligible.

Wenzel and CB Equation. The equilibrium contact angle
α0 on a flat surface of the same material and the apparent
contact angle βW for a droplet in the Wenzel state (Figure 2)
are connected through the Wenzel equation.9 For details, see
the Appendix.
In the case of a droplet in the CB state,8 in contrast, the

equilibrium contact angle α0 for a similar surface is connected
to the apparent contact angle βCB through the subsequent
equation

= +A
A

cos (cos 1) 1CB
c

0
(1)

If gravitation is negligible, the shape of a droplet in the CB
state can be approximated by a spherical cap (see Figure 3),
and the droplet radius rd is given by

=
+

=
+ + +( )( )

r
V

V

3
(2 cos )(1 cos )

3

1 (cos 1) 2 (cos 1)A
A

A
A

d
d

CB CB
2

d

0 0

3

c c

3

(2)

where Vd is the volume of the droplet (spherical cap).
Equation 1 can be used to eliminate the apparent contact angle
of the droplet βCB in the equation for the droplet radius.

Stability of the CB and Wenzel States. Based on an
equation for the Gibbs free energy by Patankar10 (shown in the
Appendix), Zheng12 derived a condition to evaluate which of
the two droplet states (CB or Wenzel) is the stable state

<cos cosW CB (3)

If that is true, the Wenzel state is stable, whereas the CB
wetting mode is meta stable or even unstable.12,13 In this study,
the emphasis is directed toward situations in which the Wenzel
state is the stable state with the analysis focusing on which
geometries the droplet in the CB state switches from a meta
stable to an unstable state.

Young−Laplace Equation. According to Laplace,18 the
pressure difference across a liquid−gas interface Δp is linked to
the mean curvature of the interface and the liquid surface
tension γ. In a static scenario, where external forces such as
gravity are negligible, the pressure difference at the interface is
independent of the spatial location. Consequently, the pressure
difference Δp is constant everywhere along the liquid−gas
interface, including both the liquid−gas interface on top of the
droplet and the one between the pillars.
If gravitation is negligible, a droplet in the CB state can be

approximated by a spherical cap of radius rd, and therefore one
can calculate the pressure difference according to Laplace18 by

=p
r
2

d (4)

Transition Criterion. Critical Pressure and Energy Barrier
for Periodically Pillared Surfaces. Zheng et al.12 used a force
balance approach to derive a general expression to calculate the
critical pressure for a liquid film on an arbitrary periodically
pillared structure and found good agreement with numerical
simulations. Jag̈er et al.19 were able to confirm their results
with multiphase LB simulations. In the critical state, according
to12

= + =F p A A l( ) cos( ) 0z crit c 0
projection

along
z axis

Ö́ÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖ

(5)

Rearranging gives12

=p
l
A A
cos( )

crit
0

c (6)

Patankar11 concluded that the CB state transits to the
Wenzel state if the Young−Laplace pressure difference (Δp =
2γ/rd) exceeds the critical value Δpcrit (shown in eq 6) and
showed that the same condition can be derived when
considering the energy barrier and the work done when the
liquid moves down the pillar.
If the pressure difference between the liquid above the pillars

and the air below exceeds the critical pressure difference Δpcrit,
the liquid starts to move down the pillars. Based on the work

Figure 3. Droplet in the CB state. Full droplet in (a) and the droplet bottom in (b).
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needed to move down the liquid, Patankar3 and Zheng12

calculated the magnitude of the energy barrier per area from
CB to Wenzel state by

= =h p
A A

A

h l

A

cos ( )
CB W p crit

c

c

p 0

c (7)

Sag Transition. Jag̈er et al.4 and Patankar11 estimated the
droop/sag δ by a spherical approximation of the liquid gas
interface and obtained = r r P r( 2 2 ) /4d d

2
p

2 .

Here, P2 is the diagonal distance between two pillar centers,
and rp is the pillar radius. For quadratic pillars, the previous
equation can be modified as

= r r P d( 2 2 ) /4d d
2

p
2

(8)

A transition to the Wenzel state occurs when δ ≥ hp.
4,11

Patankar11 concluded that the sag transition is likely to occur
only when the Wenzel state leads to lower energy than the CB
state.

■ NUMERICAL METHOD
To determine the interface of a droplet on top of a rough
hydrophobic surface, this study uses a LB multiphase model
with additional interactions between fluid and solid. This
enables the adjustment of the equilibrium contact angle (α0)
between a flat solid surface and a liquid droplet and allows
simulating the liquid−gas flow. Mesoscopic methods, like LB,
provide viable predictions for intricate 3D structures, both on
the micro- and nano-scales. These methods can be categorized
into particle- and lattice-based approaches.20 The LB frame-
work shows promise due to its ability to handle complex
boundary conditions, including rough surfaces.21 Moreover, it
is well-suited for parallelized calculations on GPUs,20,22,23

enabling simulations in both the continuum and the slip flow
regime.24 In contrast to classical continuum based solvers, the
fluid is described by a density distribution function f(x, v, t)
within the LB framework. f(x, v, t) can be seen as an extension
to the mass density, also containing information about the
velocity distribution.
Similar to previous works, e.g.,16,21 an isothermal multiphase

LB method is employed in this study to predict the shape and
state of liquid droplets on micropillar structures and to validate
our theoretical findings. A D3Q27 lattice is used, which
employs 27 discrete velocities (ci, i = 0....26) at every lattice
node within a three-dimensional (3D) spatial framework.25

During one time step of length Δt, the discrete distribution
function f i(x, t) is streamed to its neighboring nodes according
to

+ +

= [ ]

f t t t f t

f t f t

x c x

x v x

( , ) ( , )
1

( , ) ( , , , )

i i i

i i
eq

(9)

Typically, the LB method uses the Bhatnagar−Gross−Krook
approach to approximate the collisions between the fluid
particles.26 The viscosity is associated with relaxation time τ.
Macroscopic quantities like velocity and density are derived by
a summation over the discrete distribution function f i and
velocities ci at a given point in space.25 The LB method
employs a dimensionless approach, where time step (Δt = 1
ts), lattice spacing (Δx = 1lu), and particle mass (m = 1 mu)
are set to one unit each, providing stability and faster

convergence as commonly done for LB simulations.27 The
method reproduces the Navier−Stokes equation in the
hydrodynamic limit.25

=
=

f
i

i
0

26

(10)

=
=

fv c1

i
i i

0

26

(11)

In this study, the guided equilibrium model25,28 was
employed to calculate the equilibrium distribution f ieq.
Additional implementation details are given in refs 16, 25,
and 28. The selected multiphase model for this research was
the Shan−Chen model,27,29,30 which incorporates a pseudo
potential to account for the interactions between fluid particles

= +
=

G t w t tF x x c c( , ) ( , )
i

i i i
0

26

(12)

G represents the fluid−fluid interaction strength and
controls the surface tension of the fluid. The fluid−solid
interaction is modeled by including an additional interaction
force Fads, where s(x) is a step function that takes the value 0
for fluid voxels and 1 for solid voxels.27,31

= +
=

G t ws t tF x x c c( , ) ( , )
i

i i iads ads
0

26

(13)

The model parameter Gads exhibits a linear correlation with
the equilibrium contact angle α0 measured on a flat solid
surface, as demonstrated in a benchmark presented in ref 16
Therefore, this enables the manipulation of the hydrophobicity
by adjusting Gads. Detailed information is given in refs 16, 27,
and 29.
Furthermore, a nonslip boundary condition (achieved by a

bounce-back of the distribution function) was utilized between
the fluid and solid surfaces. Unless specified otherwise,
periodic boundary conditions were applied in all directions
at the boundaries of the computational domain.
For all LB simulations conducted here, we employed G =

120.0, which leads to a surface tension of γ = 14.04 mu ts−2 in
LB units. This results in ρl = 524.4 mu lu lu−3 (liquid density)
and ρg = 85.7 mu lu−3 (gas density) for a flat interface. To
realize an equilibrium contact angle of 100°, we used Gads =
−174.52.
As the liquid−gas interface shape is solely influenced by the

contact line of liquid gas and solid and the parameter q≔Δp/γ
[lu−1], it is enough to make sure that q corresponds to the
physical problem to capture the correct interface shape. To
dimensionalize the problem, the following relationship is used:
ΔpSI/γSI = qSI = q/ΔxSI, where ΔxSI represents the distance
between two lattice nodes in SI units. As a consequence, for a
droplet on top of the pillar structure, the interface shape is only
determined by the droplet radius, the geometry of the pillars,
and the equilibrium contact angle α0. Equation 14 shows the
convergence criterion for all simulations conducted in this
work, fulfilled with ε = 1 × 10−6.

>
| |x y z x y z

x y z
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t t
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1
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All simulations were conducted using an adapted high-
performance computing code from Safi.32 All 3D plots
presented in this study were generated using ParaView33

■ RESULTS AND DISCUSSION
Energy Barrier and Transition Criterion for a Finite

Droplet. If one places a finite droplet on top of a periodically
pillared surface, the Young−Laplace pressure difference
effectively lowers the energy barrier per area between the CB
and Wenzel states, and a lower external pressure needs to be
applied to achieve the transition. Therefore, based on the
results from Patankar11 and Zheng,12 we propose a modified
equation to calculate the energy barrier per area for droplets on
periodically pillared surfaces

= h p
r

A A
A

2CB W,d p crit
d

c

c

i
k
jjjjj

y
{
zzzzz (15)

Compared to eq 7, which is only applicable if the Young−
Laplace pressure difference can be neglected, e.g., for a film on
an infinite periodically pillared surface, the new eq 15 takes
into account the curvature and is therefore applicable for a
finite droplet. Equation 6 was similarly derived for a film on an
infinite periodically pillared surface but still remains applicable

if the droplet is in contact with multiple pillars. Therefore, it is
still used for the calculation of Δpcrit. However, a droplet only
in contact with a single pillar in the absence of gravity will
always remain in a stable state; therefore, eq 6 is not applicable
in this case.
It is crucial to keep in mind that this is only valid in the case

where gravitation can be neglected, since in this case the
pressure difference at the droplet interface does not depend on
the direction and the droplet has the shape of a spherical cap
with a radius rd. As the bond number approaches 1, the
assumption of a spherical cap is no longer reasonable. And an
additional term accounting for gravity would enter the
equation for the energy barrier and further lower the
magnitude of the barrier.
Therefore, we can conclude that in the absence of gravity the

energy barrier for a droplet depends not only on hp, γ, l, A, Ac,
and α0 but also on rd, the radius of the droplet. The smaller the
droplet becomes, the lower the barrier gets. According to the
criterion from Patankar11 (Δp > Δpcrit), an increase of the
pressure difference, Δp = 2γ/r, increases the angle α (see
Figure 3) until α0 is reached and eq 4 equals eq 6. When this
critical point is reached, the energy barrier vanishes completely,
and the CB state switches from a metastable to an unstable

Figure 4. Multiphase simulation results LB1 (Adapted with permission from Jag̈er et al.16 CC BY 4.0) in (a). Multiphase simulation results LB2 in
(b) and LB3 in (c). The apparent contact angle β for the CB or Wenzel state as a function of the pillar distance P. The blue area marks the CB
regime and the red area the Wenzel regime.
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state. From this, one can derive a condition for the critical
radius of the droplet

=r
A A

l
2

cos( )d,crit
c

0 (16)

It immediately becomes clear that when gravity is absent, the
condition for the critical droplet radius in eq 16 is independent
of the surface tension.
In experiments, one can often control the volume of the

droplet. Therefore, we chose to use the relation for the droplet
volume and the droplet (spherical cap) radius in eq 2 to
reformulate eq 16.

=
+

V l A A

A A

l

( , , , , )

8 ( ) (2 cos )(1 cos( ))

3 cos ( )

d,crit c 0 CB

c
3

CB CB
2

3 3
0 (17)

Using the CB (1 we can eliminate the apparent contact angle
βCB. With Ac = P × P for a quadratic periodically pillared
surface, we then gain a condition (eq 18) for the critical
volume which only depends on l the perimeter of the pillar, P
the distance between two pillars, A the top area of the pillars,
and the equilibrium contact angle α0.

=
+ + +( )( )

V l P A

P A

l

( , , , )

8 ( ) 1 (cos 1) 2 (cos 1)

3 cos ( )

A
P

A
P

d,crit 0

2 3
0 0

2

3 3
0

2 2

(18)

Iterative root-finding procedures can be used to solve eq 18
numerically for the other variables (l, P, A, α0). We used this
procedure to calculate Pcrit(α0, l, A, V) numerically and
compare the predictions of condition 18 to experimental
results from Jung and Bhushan4 and multiphase LB simulations
from Jag̈er et al.16 (see Figure 4a) and new multiphase LB
simulations for additional geometries (see Figure 4b,c). In Jung
and Bhushan’s4 experiments, a droplet of 5 μL was placed on a
periodically pillared surface; then they observed whether the
static droplet ended up in either the CB or Wenzel state and
measured the apparent contact angle. The experiment was
repeated for different pillar distances P. Therefore, Jung and
Bhushan4 were able to determine a range of P for which a
transition from CB to Wenzel state takes place.

Numerical and Experimental Validation. Previously,
Jag̈er et al.16 compared the results from Jung and Bhushan4

(Exp. 1 and 2) to multiphase LB simulations (LB1) with a
similar geometry and equilibrium contact angle but a smaller
droplet of only 1 μL volume due to computational limitations.
Simulation results from Jag̈er et al.16 (LB1) are shown in
Figure 4 (a). They observed the same qualitative behavior in
the simulations, but the transition from CB to Wenzel state
occurred for a smaller P compared to the experimental study
by Jung and Bhushan4 (see Table 1). We also added the
theoretical predictions for Pcrit based on eq 18 in Table 1.
In the LB simulations, the droplet transitions to a different

state even in the absence of gravity and with zero initial
velocity because, after initializing a spherical droplet just above
the pillar structure, small oscillations occur until the liquid and
gas density converged to their equilibrium values. This is
enough perturbation to make the transition happen if the
critical state is reached. These dampened oscillations are
typical for LB multiphase simulations and vanish over time.

In this paper, we investigate two additional pillar geometries
(LB2 and LB3) with the same multiphase LB method. The
corresponding results for the droplet state and the contact
angle are shown in Figure 4b,c. An example of a droplet in the
CB or the Wenzel state is given in Figure 5. For all LB

simulations in this paper, we used rectangular pillars of either A
= 3 × 3 lu3 or A = 4 × 4 lu3. Here, Δx = 1 lu ≡ 4.135 μm was
chosen to match the geometries in the experimental study from
Jung and Bhushan.4 A spherical droplet of volume 1 μL is
initialized right above the pillar structure with zero velocity
according to eq 19

=
+

+

×
[ + + ]

x y z

x x y y z z r

( , , )
2 2

tanh
2 ( ) ( ) ( )

5

l g g l

0
2

0 0
2i

k

jjjjjjjjj

y

{

zzzzzzzzz
(19)

for every simulation with r = 150lu. This leads to a volume of
Vd ≈ 1.0 μL.
Total domain size was about 370 × 370 × 370 lu3 ≡ 3.58

mm3 for each simulation. For all the setups which we
investigated numerically, we ensured full contact with the
droplet in the Wenzel state for at least 9 pillars.
In Figure 6 the dependence of the critical volume on the

pillar distance P according to eq 18 is shown for the two
experiments and the LB simulations. The intersection of
Vd,crit(P) with a given droplet volume Vd gives a predicted value

Table 1. Observed and Theoretically Predicted Critical
Pillar Distance Pcrit for Different Experimental and
Numerical (LB1, LB2, LB3) Setups

Exp. 1
Jung4

Exp. 2
Jung4 LB116 LB2 LB3

α0 [°] 109 109 109 100 100
l [μm] 15.708 43.982 49.62 66.16 49.62
A [μm2] 19.635 153.938 153.88 273.57 153.88
Vd [μL] 5 5 1 1 1
hp [μm] 10 30 33.08 33.08 33.08
stable state Wenzel Wenzel Wenzel Wenzel Wenzel
δ [μm] 2 4 5 3 2
Bo 0.24 0.24 0.083 0.083 0.082
observed Pcrit
[μm]

44−60 125−167 70−83 54−58 45−54

[lu] 17−20 13−14 11−13
predicted Pcrit
[μm]

52.27 88.03 71.87 61.96 53.17

Figure 5. Droplet in contact with geometry LB2. In (a) is shown a
droplet in the CB state for P = 54 μm and in (b) is shown a droplet in
the Wenzel state P = 58 μm.
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for Pcrit. Table 1 contains the experimental and simulation
parameters (experiment 1, experiment 2, and LB simulations
LB1, LB2, and LB3), as well as the observed and theoretically
predicted values for Pcrit. For all analyzed geometries, according
to eq 3 the Wenzel state is the stable configuration, and since
the sag is much smaller than the pillar heights (δ < hp) the
transition occurs due to the Young−Laplace pressure differ-
ence (see Table 1). The bond number was calculated to be
below 1 for all droplets.
Comparing these results with the two experiments by Jung

and Bhushan4 and LB simulations (see Table 1), we found

very good agreement for experiment 1 and the LB simulations;
the predicted critical values Pcrit based on condition 18 lie
within the observed range; only for LB simulation 2 the
predicted value was slightly high. For the setup from
experiment 2, the predicted value (Pcrit = 88.03 μm) is
below the range (125−167 μm) found in the experiment by
Jung and Bhushan.4 Figure 7b,d show the Wenzel and CB
states for LB2, respectively.
We also simulated cases with equilibrium contact angles

larger than 109°. However, this results in a state in which the
droplet is in contact with only a few pillars. Therefore, these
results are not comparable to the theoretical transition
criterion.
It is important to mention that for the present LB

simulations, a change in the pillar height can also change the
droplet state. For example, for the LB2 setup, if we increase the
pillar height to hp = 49.62 μm and rerun the simulations, no
transition to the Wenzel state was observed for P = 58 μm (see
Figure 7a). Whereas for pillars with a height hp = 33.08 μm, as
reported in Table 1, we observed a transition to the Wenzel
state for P = 58 μm (see Figure 7b). Increasing P for hp = 49.62
μm, we can also observe a transition to the intermediate state
(see Figure 7c).
To compare the influences of the different variables on the

critical droplet volume Vd,crit, we calculated the partial
derivatives of Vd,crit in eq 18 with respect to the variables A,
l, P, and α0 and listed the magnitude of the derivatives in Table
2.

= + + + +V

A
A P A P A A AP P A A P A A P

l P
8( ) ( 2 cos( ))(2( ) (4 3 )cos( ) (2 )cos ( ))

cos ( )
d,crit

2 2 2
0

2 2 4 2
0

2 2
0

3 6 3
0 (20)

Figure 6. Dependence of the critical droplet volume Vd,crit on the
pillar distance P according to eq 18 for different experimental4 and
numerical (LB1,16 LB2, LB3) setups.

Figure 7. Slice of a 3D droplet (in red) on a periodically pillared surface from the present LB simulation results. For all setups shown in this figure,
A = 4 × 4 lu3 holds, α0 = 100°.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c08862
ACS Omega 2024, 9, 10592−10601

10598

https://pubs.acs.org/doi/10.1021/acsomega.3c08862?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c08862?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c08862?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c08862?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c08862?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c08862?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c08862?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c08862?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c08862?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


= + + +V

l
A P A P A A P A

l P
8( ) ( 2 cos( )) ( cos( ))

cos ( )
d,crit

2 3 2
0

2 2
0

4 6 3
0 (21)

=
+ + + +V

P
A P A P A A AP P A AP A

l P
16( ) ( 2 cos( ))( 2 (2 )cos( ) cos ( ))

cos ( )
d,crit

2 2 2
0

3 4 6 3 4
0

3 2
0

3 7 3
0 (22)

= + +V A P A P A A AP P A A P
l P

8( ) ( 2 cos( ))( 2 ( )cos( ))tan( )
cos ( )

d,crit

0

2 3 2
0

2 2 4 2
0 0

3 6 3
0 (23)

As shown in Table 2, we found that the equilibrium contact
angle has by far the largest influence among all of the
parameters. A 3° higher equilibrium contact angle for
experiment 2 (α0 = 112°) leads to a predicted Pcrit = 94.3
μm. Therefore, an error in the equilibrium contact angle
measurements alone can not explain the difference between
observation and theoretical prediction for experiment 2, but it
can explain the small difference observed in the LB2
simulations (see Table 1). A possible explanation is that in
experiment 2 the droplet switched and maintained the
intermediate state instead of fully transitioning to the Wenzel
state when reaching Pcrit. This hypothesis is supported by the
equation for the energy barrier (eq 15), which increases
linearly with hp. Experiments 1 and 2 have the same droplet
volume, but the pillar heights differ by a factor of 3, which
could explain the difference in predictions between experi-
ments 1 and 2.
We also observed in the LB simulations that the transition to

the Wenzel state depends on hp. Even if the energy barrier in
eq 15 completely vanished when Pcrit is reached, one still needs
some perturbation to make the transition to the Wenzel state
happen. In the absence of gravity, as for our simulation, the
oscillation of the droplet after the initialization provides the
perturbation needed to make the transition happen. If the
pillars are too high the perturbations dampen out before the
transition to the Wenzel state is completed, and the droplet
remains in the Wenzel or intermediate state. During the
transition and especially for high pillars, the droplet radius and
therefore the Young−Laplace pressure difference could
decrease and the critical pressure might not be reached
anymore, and the droplet gets stuck in the intermediate state.

■ CONCLUSIONS
Based on the work of Patankar11 and Zheng et al.,12 we have
derived an equation for the energy barrier between CB and
Wenzel states for droplets on periodically pillared surfaces.

Due to the curvature of the droplets, there is a pressure
difference between the droplet and the surrounding air, which
lowers the transition barrier from the CB to the Wenzel state.
The smaller the droplet becomes, the lower the transition
barrier becomes. Furthermore, we derived a condition which
allows to calculate the pillar geometries, equilibrium contact
angles, and droplet volumes for which the CB state becomes
unstable, which is especially useful if one wants to compare the
theoretical findings from Patankar11 and Zheng12 to exper-
imental results or simulations. The criterion in eq 16 is
applicable for droplets on any periodically arranged roughness
with vertical lateral surfaces and a flat horizontal top surface if
gravitation is negligible and the area of the unit cell Ac is much
smaller than the droplet cross section.
Based on theoretical considerations, we can conclude that

the droplet size has a significant effect on the stability of the
CB state. The surface tension plays a role only in the
magnitude of the energy barrier. These findings are validated
with experimental results and 3D multiphase LB simulations
for two equilibrium contact angles (100 and 109°) and two
droplet volumes (1 and 5 μL). The emphasis of this work was
on the influence of pillar spacing, for which we found good
agreement. To further validate the predictive power of 18 more
experiments and LB simulations for different droplet volumes
and different equilibrium contact angles are needed.

■ APPENDIX

Wenzel equation
The Wenzel equation9 links the apparent contact angle in the
Wenzel state to the equilibrium contact angle α0.

= Rcos cosW f 0 (24)

Here, Rf is the roughness factor defined by the ratio of rough
to planar surface areas. For periodically repeated pillars, Rf = 1
+ Al/Ac, where Al = l × hp is the lateral surface of the pillar.

Table 2. Influence of the Different Variables on Vd,crit

V

V

A
1

crit

d,crit

V

V

l
1

crit

d,crit

V

V

P
1

crit

d,crit

V

V1

crit

d,crit

0 A l P α0 Vcrit
[μm−2] [μm−1] [μm−1] [1/°] [μm2] [μm] [μm] [deg] [μL]
−0.00020 −0.03431 0.02077 −0.76282 19.63 15.71 52.27 109 5
−0.000071 −0.01225 0.01249 −0.76285 153.94 43.98 88.03 109 5
−0.00011 −0.01086 0.01546 −0.76288 153.88 49.62 71.87 109 1
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Gibbs Free Energy for a Droplet
Patankar10 derived an equation for the Gibbs free energy EG of
a droplet with the shape of a spherical cap in contact with the
pillar structure in any state.

= +E V(9 ) (2 3cos( ) cos ( ))G
1/3

d
2/3 3 1/3 (25)

Since EG is a strictly monotonically increasing function of
−cos(β) in eq 25, the following relation needs to be true for
the Wenzel wetting mode to be associated to a lower Gibbs
free energy than the CB:3,10,12,13 − cos βW < − cos βCB
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■ NOMENCLATURE
Δpcrit critical pressure difference

γ surface tension
q Δp/γ
rp pillar radius
α contact angles between the liquid and the pillar wall
α0 equilibrium contact angle between liquid and solid
P pillar distance (periodicity in x- and y-directions)
Ac area of the periodically repeated cell (Ac = P × P)
A top area of the pillar
l perimeter of the pillar
LB lattice Boltzmann
p pressure
ρ density
ρl liquid density
ρg gas density
F force
Δx lattice spacing
Δt time step
m fluid particle mass
Gads LB parameter to tune the equilibrium contact angle
G LB parameter to control the fluid−fluid interaction

strength
τ relaxation time
ν kinematic viscosity
cs speed of sound
g gravitation acceleration
v velocity
ci discrete lattice velocity
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Büchi, F. N. Experimental and pore-level numerical investigation of
water evaporation in gas diffusion layers of polymer electrolyte fuel
cells. Int. J. Heat Mass Transfer 2017, 115, 238−249.
(33) Ahrens, J.; Geveci, B.; Law, C. Visualization Handbook; Elsevier,
2005; ISBN 978−0123875822.
(34) Varrette, S.; Cartiaux, H.; Peter, S.; Kieffer, E.; Valette, T.;
Olloh, A. Proceeding of the 6th ACM High Performance Computing and
Cluster Technologies Conference (HPCCT 2022); Fuzhou: China,
2022.Management of an Academic HPC & Research Computing
Facility: The ULHPC Experience 2.0

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c08862
ACS Omega 2024, 9, 10592−10601

10601

https://doi.org/10.1021/la300331e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la300331e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la300331e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/physrevlett.112.196101
https://doi.org/10.1103/physrevlett.112.196101
https://doi.org/10.3390/membranes12111112
https://doi.org/10.3390/membranes12111112
https://doi.org/10.3390/membranes12111112
https://doi.org/10.3390/coatings13050865
https://doi.org/10.3390/coatings13050865
https://doi.org/10.3390/coatings13050865
https://doi.org/10.1039/C7SM01711A
https://doi.org/10.1039/C7SM01711A
https://doi.org/10.1016/j.icheatmasstransfer.2018.09.001
https://doi.org/10.1016/j.icheatmasstransfer.2018.09.001
https://doi.org/10.4208/cicp.341011.310112s
https://doi.org/10.4208/cicp.341011.310112s
https://doi.org/10.1149/2.005209jes
https://doi.org/10.1149/2.005209jes
https://doi.org/10.1142/s1756973709000074
https://doi.org/10.1142/s1756973709000074
https://doi.org/10.1209/0295-5075/17/6/001
https://doi.org/10.1209/0295-5075/17/6/001
https://doi.org/10.1103/PhysRevE.98.023305
https://doi.org/10.1103/PhysRevE.98.023305
https://doi.org/10.1103/PhysRevE.98.023305
https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.042
https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.042
https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.042
https://doi.org/10.1103/PhysRevE.47.1815
https://doi.org/10.1103/PhysRevE.47.1815
https://doi.org/10.1103/physreve.49.2941
https://doi.org/10.1103/physreve.49.2941
https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.050
https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.050
https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.050
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c08862?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

