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Abstract: D-dimer is a multifaceted biomarker of concomitant activation of coagulation and fibrinol-
ysis, which is routinely used for ruling out pulmonary embolism (PE) and/or deep vein thrombosis
(DVT) combined with a clinical pretest probability assessment. The intended use of the tests depends
largely on the assay used, and local guidance should be applied. D-dimer testing may suffer from
diagnostic errors occurring throughout the pre-analytical, analytical, and post-analytical phases of
the testing process. This review aims to provide an overview of D-dimer testing and its value in
diagnosing PE and discusses the variables that may impact the quality of its laboratory assessment.

Keywords: D-dimer; venous thromboembolism; pulmonary embolism; pre-analytical; analytical;
post-analytical; In Vitro Diagnostic Regulation; ISO15189

1. Introduction

What is universally referred to as “D-dimer” is actually a mixture of fibrin degradation
products (FnDP) that contain a “D-dimer” motif, obtained from cross-linked fibrin diges-
tion by plasmin [1–4]. Thrombin, activated factor XIII (factor XIIIa), and plasmin are the
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three successive enzymes responsible for D-dimer formation. Fibrinogen contains a central
E-domain connected to two outer D-domains and consists of three pairs of polypeptide
chains (Aα-, Bβ-, and γ-) [5,6]. Thrombin releases fibrinopeptides A and B, generating
fibrin monomers and unraveling two cryptic polymerization sites located on the E do-
main. Self-assembling of fibrin monomers leads to the formation of a network, which
becomes insoluble (fibrin deposits) after reaching a critical size [1]. Thrombin activates
FXIII into FXIIIa in a reaction that is enhanced by fibrin [7]. FXIIIa in turn promotes the
generation of stable fibrin clots, the lysis of which is slowed down [1,4]. The generation of
plasmin from plasminogen catalyzed by tissue plasminogen activator and urokinase-type
plasminogen activator leads to the degradation of fibrin by cleavages at several specific
sites [4]. Fibrinolysis generates products with a wide range of molecular masses, referred
to as FnDP. The smallest final digestion product of fibrin clots is the D-dimer/fragment
E (DD/E) complex, which presents two adjacent covalently bound D-domains from two
fibrin monomers cross-linked by factor XIIIa [4].

Initially, the term “D-dimer fragment” only referred to the DD/E complex [1,8].
Nonetheless, the range of species recognized by antibodies in D-dimer assays is wider,
including species with masses ranging from approximately 200 to over 10,000 kDa [1,9].
In healthy subjects, D-dimer is detectable in small amounts because of the physiological
conversion of fibrinogen to fibrin [4,10]. The half-life of D-dimer in vivo is estimated to be
approximately 8 h [11].

D-dimer immunoassays are designed to detect a specific epitope on degradation
products of factor XIIIa-cross-linked fibrin and should therefore not recognize X, Y, D,
or E fragments but only the D-dimer motif in the smallest DD/E fragment and in larger
FnDP [3].

2. Interest in D-dimer Testing in PE

Pulmonary embolism (PE) is defined as the obstruction of blood flow in a pulmonary
artery by an embolus that has usually originated from a thrombus in the lower limb veins.
Its incidence is approximately 60 to 120 per 100,000 people/year. The clinical picture mainly
includes acute chest pain, shortness of breath (i.e., dyspnea), or syncope, and diagnosis
requires chest imaging [12]. D-dimer testing is widely used as a gold standard for ruling out
venous thromboembolism (VTE) in patients classified as having a low-intermediate pre-test
probability based on a clinical decision rule (CDR) or implicit assessment [1,4,13–16]. In ad-
dition to almost all cases of VTE, increased D-dimer levels may also be observed in many
conditions, such as infection, pregnancy, trauma, cancer, and aging as well as in hematomas
or interstitial hemorrhages [2]. Interpretation of D-dimer assays should be performed
following local regulations that may apply, as some uses may fall outside the requirements
of intended use approved by the local regulatory agency [17–19]. The use of tests outside
those directives (e.g., age-adjusted cut-offs) may constitute a laboratory-developed test.
Other indications for D-dimer testing include assessing the risk of recurrent thrombosis
and guiding anticoagulant therapy and diagnosing and monitoring disseminated intravas-
cular coagulation although the use of D-dimer in those settings is controversial or less
well-established [1,4,20]. Table 1 summarizes the characteristics of some relevant central lab-
oratory and point-of-care (POC) assays, including the method type and the “intended use”
issued by the U.S. Food and Drugs Administration (FDA) [18]. Regarding test performance,
the recommendations from the FDA are ≥95% (with a lower limit of confidence interval
(CI) ≥90%) sensitivity and ≥97% (with a lower limit of CI ≥95%) negative predictive value
(NPV) [21], while the Clinical and Laboratory Standards Institute (CLSI, former NCCLS)
suggests specifications of ≥97% (with a lower limit of CI ≥90%) sensitivity and ≥98% (with
a lower limit of CI ≥95%) NPV to rule out VTE. Quantitative assays have higher sensitivity
than qualitative or semi-quantitative assays and should hence be preferred [3]. Of note,
accurate estimation of the performance of D-dimer immunoassays is pivotal and required
by the In Vitro Diagnostics Regulation (IVDR) [22]. Regarding POC assays, whole-blood
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D-dimer assays may display higher specificity for PE than laboratory assays (i.e., 69%) but
at the expense of lower sensitivity (i.e., 87%) [23,24].

Table 1. Characteristics of common D-dimer assays. Relevant central laboratory and point-of-care
assays are shown along with the manufacturer, method design, method principle, unit type, cut-off
mentioned by the manufacturer, and the intended use issued by the FDA regarding PE. DDU, D-
dimer units; FDA, U.S. Food and Drugs Administration; FEU, fibrinogen-equivalent units; NA, not
applicable; PE, pulmonary embolism; POC, point-of-care.

Assay Type Assay Name Manufacturer Design Principle Unit Type Manufacturer’s
Cut-Off

FDA
Intended
Use (PE)

Central lab Advanced
D-Dimer

Siemens
Healthcare
Diagnostics

(previously Dade
Berhing)

Quantitative
Latex-enhanced

turbidimetric
immunoassay

FEU

BCS System:
1.6 mg/L
Sysmex

CA-1500:
1.0 mg/L

Aid in
diagnosis

Central lab AxSYM
D-dimer

Abbott
laboratories Quantitative Enzyme-linked

fluorescent assay FEU 500 µg/L NA

Central lab Diazyme
D-Dimer

Diazyme
Laboratories Quantitative

Latex-enhanced
turbidimetric
immunoassay

FEU 0.5 µg/mL Aid in
diagnosis

Central lab
HemosIL
AcuStar
D-Dimer

Werfen
(previously

Instrumentation
Laboratory)

Quantitative Chemiluminescent
immunoassay FEU 500 µg/L Aid in

diagnosis

Central lab
HemosIL
D-Dimer

(±HS)

Werfen
(previously

Instrumentation
Laboratory)

Quantitative
Latex-enhanced

turbidimetric
immunoassay

DDU 230 µg/L Exclusion

Central lab
HemosIL

D-Dimer HS
500

Werfen
(previously

Instrumentation
Laboratory)

Quantitative
Latex-enhanced

turbidimetric
immunoassay

FEU 500 µg/L Exclusion

Central lab Innovance
D-Dimer

Siemens
Healthcare
Diagnostics

Quantitative
Latex-enhanced

turbidimetric
immunoassay

FEU 0.5 mg/L Exclusion

Central lab STA Liatest
D-Di

Diagnostica
Stago Quantitative

Latex-enhanced
turbidimetric
immunoassay

FEU 0.5 µg/mL Exclusion

Central lab Tina-Quant
D-Dimer

Roche
Diagnostics Quantitative

Latex-enhanced
turbidimetric
immunoassay

FEU 0.5 µg/mL Exclusion

Central lab
(or POC)

VIDAS
D-Dimer bioMérieux Quantitative Enzyme-linked

fluorescent assay FEU 500 µg/L Exclusion

POC AQT90 FLEX
D-dimer

Radiometer
Medical ApS Quantitative Time-resolved

fluorometry NA 500 µg/L NA

POC Clearview
Simplify Agen Biomedical Qualitative

Solid-phase
immunochro-
matography

Neg/pos 80 µg/L NA

POC Pathfast
D-Dimer

Mitsubishi
Kagaku
Iatron

Quantitative Chemiluminescent
immunoassay FEU 0.686 µg/mL NA

POC Roche Cardiac
D-dimer

Roche
Diagnostics Quantitative

Solid-phase
immunochro-
matography

FEU 0.5 µg/mL NA

POC
Stratus CS
Acute Care

D-dimer

Siemens
Healthcare
Diagnostics

Quantitative Fluorescent
immunoassay FEU 450 µg/L Exclusion

POC Triage D-dimer Biosite
Diagnostics Quantitative Fluorescent

immunoassay DDU 350 µg/L Aid in
diagnosis
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The use of validated CDR in combination with D-dimer testing is recommended to
identify patients with suspected VTE in whom the diagnosis can be ruled out without
imaging [2,4,13,25–29]. A score is assigned to an individual based on signs, symptoms, and
risk factors, which can be used to classify patients into risk categories for VTE (e.g., low,
intermediate, or high probability). Straightforward two-level scores are preferred since
they perform as well as three-level scores and are easier to use [25,26]. Numerous CDR for
suspected PE are available, among which the Wells’ PE and revised Geneva scores are the
most widely used and display comparable diagnostic performances [1,16,30–33]. By using
an approach that combines a CDR with D-dimer testing to rule out PE, the risk of withhold-
ing imaging in patients with false-negative D-dimer (failure rate) is very low [1,2,4,13,34].
The use of a combination of CDR and D-dimer testing may be safely applied when the
incidence of thromboembolic events is below 1–2% after 3 months in patients in whom
VTE was excluded without imaging testing [35,36]. Imaging testing is recommended, and
D-dimer testing is unnecessary in patients with “high” or “likely” probability [2,36,37].

The use of D-dimer testing alone was evaluated with the YEARS algorithm that,
in essence, excluded PE in all patients with a high-sensitive D-dimer < 500 µg/L fibrinogen-
equivalent units (FEU) [33]. In the YEARS study, the overall failure rate (1 minus NPV)
of this diagnostic algorithm was well below the accepted threshold of 2%. The recently
introduced PEGeD algorithm, which also uses varying D-dimer thresholds dependent on
the clinical pretest probability, maintains the approach of not using D-dimer alone to rule
out PE in patients with a high pretest probability based on the Wells’ score [38].

An age-adjusted cut-off for D-dimer is defined as age times 10 µg/L in those aged
51 years or older, while the traditional threshold of 500 µg/L FEU is used in those 50 years
or younger. Age-adjusted cut-offs combined with results of a clinical score (i.e., Wells’ or
revised Geneva score) were demonstrated by the ADJUST-PE study to enable safe PE exclu-
sion without additional computed tomography pulmonary angiography (CTPA) [27,39].
The use of such cut-offs is now one of the recommended diagnostic approaches for patients
with suspected PE in order to enhance the clinical specificity while maintaining a clini-
cally usable NPV [13,30,40–43]. For example, the European Society of Cardiology recently
endorsed the use of age-adjusted cut-offs for ruling out PE [28].

Interestingly, D-dimer may also be used to rule out VTE in specific clinical circum-
stances such as pregnancy, cancer, or kidney disease [11].

3. Pre-Analytical Step

Among all the various steps of the total testing process, the pre-analytical phase is
currently considered as the main source of diagnostic errors, accounting for 60–70% of all
laboratory mistakes [44]. The International Organization for Standardization 15189:2012
standard for laboratory accreditation is defined as “processes that start, in chronological
order, from the clinician’s request and include the examination request, preparation and
identification of the patient, collection of the primary sample(s), the transport to and within
the laboratory, and end when the analytical examination begins” [45]. The pre-analytical
requirements for D-dimer analysis are often wrongly assimilated to those for other coag-
ulation tests [46,47]. This misperception may come from the fact that, although testing
methods are diametrically different, D-dimer and other hemostasis tests are generally
performed using the same citrated tube.

The first variable that affects the D-dimer measurement is sample collection. To per-
form venipuncture, it is recommended that the tourniquet should not obstruct the arterial
blood flow, and venous blood flow should be freed as soon as the needle enters the vein or
when the first tube starts to fill [48,49]. If applied longer than 1 to 2 min, the obstruction
of blood flow may induce both hemoconcentration and thrombin generation, therefore
interfering with accurate hemostasis testing [48–50]. In a study on the effect of tourniquet
application on D-dimer, 1 min of venous stasis already increased D-dimer values on average
by 7.9% using the Vidas DD assay (BioMérieux, Marcy l’Etoile, France) [50].
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The act of collection should be performed by ordinary straight needles with a caliber
between 19–22 gauge (G) and confer as little trauma as possible [48]. Butterfly devices,
even with small-sized needles, constitute an appropriate alternative approach to stan-
dard straight needles when needed [50,51] although a mandatory discard tube must be
drawn prior to sample collection to ensure removing any air present within the tubing.
The presence of air may be responsible for inadequate volume in the tube and subsequent
disturbances or interferences [52]. Straight-needle venipunctures are to be preferred when
other hemostasis analyses are requested [13]. In this case, the use of a discard tube does not
have a significant impact on D-dimer results and is therefore unnecessary when D-dimer is
the only test requested [53].

The tube material as well as the additive used for anticoagulation may also be sources
of variation. Different tube materials were studied (i.e., glass or polyethylene terephthalate
plastic collection tubes (Vacutainer, Becton Dickinson (BD), Franklin Lakes, NJ, USA) as
well as glass citrated collection tubes (Vacuette, Grenier bio-one, Germany)) and showed
no significant differences in D-dimer values [54–56]. Altogether, the choice of silicone-
coated glass or polypropylene plastic tubes does not substantially impact the quality
of D-dimer measurement. The CLSI and the World Health Organization recommend
the use of collection tubes containing 3.2% (105–109 mmol/L) buffered sodium citrate
anticoagulant [49,52]. Alternative sample matrices should be locally validated before
being used in routine clinical practice. Few D-dimer assays (including POC tests) also
allow using heparinized or ethylenediamine tetraacetic acid plasma, whilst only citrate
anticoagulated blood is recommended for others [57]. Reports in the literature do not agree
on the influence of heparin tubes, stating that a modest bias could appear, which could be
corrected by a correction factor to adjust for the dilution induced by the presence of the
anticoagulant [58–60]. Importantly, a blood-to-anticoagulant ratio of 9:1 must be respected
once the specimen is collected to prevent underestimation of D-dimer due to excessive
sample dilution [4,49,61]. Sample collection should ensure free flow into the tube and be
mixed within 30 s after completing the phlebotomy (i.e., three to six complete inversions),
thus ensuring homogenization of blood and anticoagulant [49].

Samples delivery should be performed as fast as possible (i.e., usually <1 h) after
collection, in a vertical position and at ambient temperature (15–22 ◦C) [48,49,52]. Owing
to accessibility and rapidity, a reduction in turnaround time (TAT) may be obtained using a
pneumatic tube system (PTS). Although a low impact of PTS on D-dimer test results has
been noted [58,62,63], PTS should be assessed and validated locally since these systems
are rather heterogeneous in terms of length, materials, internal diameter, acceleration
(or deceleration) forces, and speed [62,64].

Sample processing is another important pre-analytical variable. Once received in the
laboratory and prior to analysis, the specimens should be carefully examined to identify
those that do not comply with pre-analytical requirements (e.g., inappropriate additive,
identification errors, insufficient volume, presence of clots). To ensure patient safety, non-
compliant samples should be rejected, or test results should be otherwise suppressed [48].
Automation (i.e., pre-analytical modules) may help identify pre-analytical issues [65]. Then,
prior to performing most D-dimer analysis, plasma needs to be separated from cellular
components, usually through centrifugation at 1500× g for at least 15 min at ambient tem-
perature [52]. Shorter centrifugation schemes may also be used, especially for stat testing,
and are of major interest to ensure shorter TAT [66,67]. The impact of the temperature of
centrifugation was also shown to be non-significant [34,68].

Finally, the stability of D-dimer in collecting tubes prior to analysis is of the utmost
importance to ensure appropriate results. Various real-life studies suggested that sample
stability might be sufficient to allow longer delays than stated by current recommendations
(i.e., no more than 4 h room temperature (15–25 ◦C) prior to D-dimer testing [48]). D-
dimer is stable for at least 24 h (in plasma/whole blood) at room temperature or at 2–8 ◦C
with many different D-dimer immunoassays before performing D-dimer testing. Several
freezing-thawing cycles did not induce significant changes in D-dimer values [58,69–71].
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Due to the important clinical decisions that could be taken (e.g., ruling out acute episodes of
PE), rapid D-dimer testing is typically required, and delayed analysis (e.g., frozen samples)
would prove most useful in research settings [13,69,72–75].

Importantly, like all immunoassays, D-dimer testing may be affected by interferences
that significantly impact test results (i.e., 0.4 to 4.0% of all analyses) [65]. With a prevalence
ranging between 30–70% of all unsuitable specimens, in vitro hemolysis is the most fre-
quent interference in hemostasis testing and is caused by various conditions (e.g., hemolytic
anemia, metabolic disorders), traumatic venipuncture, sample transportation, processing
(e.g., delay before centrifugation), and storage (e.g., unsuitable conditions of temperature
and duration) [76–80]. Notably, it has been observed that the majority of hemolyzed sam-
ples (±95%) in clinical laboratories are only “mildly” hemolytic (e.g., cell-free hemoglobin
concentration between 0.3–0.6 g/L, giving a faint reddish hue to the sample) [76,78,81].
D-dimer values might still be reliable when the concentration of cell-free hemoglobin
remains within a non-interference limit (i.e., <3 g/L) and could hence be safely reported
to the clinicians [78]. Greater hemolysis might, however, lead to biased results, which
would need to be suppressed in order to safeguard patient safety [77,78,82,83]. The impact
of other frequent sources of interference, such as lipemia, icterus, proteinemia (includ-
ing monoclonal gammopathy) and heterophilic antibodies, is less-documented [77,84–86].
Some studies observed no impact of lipemia and icterus [87–93]. Spurious D-dimer results
were only observed with the STA reagents (Diagnostica Stago, Asnières sur Seine, France)
when adding high concentrations of free bilirubin at 80 mg/dL and above [94]. Moreover,
the HIL check was able to detect lipemic samples (triglyceride levels > 400 mg/dL) on
the CS-5100 D-dimer assay (Sysmex, Kobe, Japan) in three out of four samples [95]. Re-
cently, patient pools with low D-dimer concentrations (<750 µg/L FEU) were shown to
be significantly affected by lipemia (HemosIL HS500, Werfen, San Diego, CA, USA) [96].
Interestingly, excessive lipemia might be decreased using high-speed centrifugation (e.g., at
10,000 g) [97]. Multiple case reports suggested or illustrated an interference of monoclonal
gammopathy in D-dimer assays [85,98–100]. Few reports on heterophilic antibodies are
available on interference with D-dimer assays [84,101–104]. Recently, such cases were also
reported in COVID-19 patients [105]. Such interferences may be detected and prevented
using commercially available heterophilic blocking agents [84,85] or by using a second (and
unaffected) assay [65,85]. Research and identification of interferences may be performed
based on a practical algorithm [65].

4. Analytical Step

The first method developed for D-dimer testing was a microplate enzyme-linked
immunosorbent assay (ELISA) [1]. The principle relies on the use of D-dimer-specific
capture antibodies fixed on a plate, followed by the generation of a colorimetric detec-
tion when a labeled antibody is added and binds to the immobilized D-dimer antigen
(sandwich assay) [1,2]. These techniques were labor-intensive and had poor analytical
precision and reproducibility [2,106]. The following generations of assays were mainly
based on qualitative agglutination of antibody-coated latex microparticles detected by
visual inspection [1,3,4,107]. Latex-enhanced immunoturbidimetric assays today reach a
sensitivity close to ELISAs but offer significantly shorter TAT [3].

The automated Vidas enzyme-linked immunofluorescence assays (ELFA) were shown
many years ago to display comparable analytical performance to microplate ELISA [3,87].
The Vidas method was thoroughly clinically validated [34,57,108–111] and is often consid-
ered the reference quantitative immunoassay for D-dimer testing [110,112,113]. Finally,
chemiluminescent enzyme immunometric assays (CLIA) use magnetic particles coated
with D-dimer-specific monoclonal antibodies, while detection is enabled by ulterior fixa-
tion anti-D-dimer antibodies labeled with chemiluminescent substances that generate a
detectable light signal [3]. The sensitivity of CLIA is similar to or even better than ELISAs,
latex-enhanced immunoturbidimetric, and ELFA assays [3,59,112].
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Notably, POC D-dimer assays using methods involving monoclonal antibodies may
facilitate the triage of patients suspected of VTE [3,114–116]. Accessibility to general practi-
tioners shortens TAT [23,114,117], and the use of whole-blood samples enables testing with-
out centrifugation [3,114]. Method design may be qualitative or (semi-)quantitative [3,118].
Only POC tests validated in clinical trials and cleared by the FDA, the European Com-
munity, or other similar regulatory agencies should be used for excluding PE. Table 1
recapitulates relevant central laboratory and POC D-dimer assays and their characteristics
and intended use as issued by the FDA.

D-dimer assays may also vary importantly between laboratories. In a study on 353 lab-
oratories using the seven most frequently used D-dimer immunoassays, the authors ob-
served that different assays could produce high variations in D-dimer concentrations be-
tween assays, causing misclassifications around the 500 ng/mL FEU cut-off [119]. An inter-
method coefficient of variation of 42% was, furthermore, observed by the Coagulation
Resource Committee of the College of American Pathologists in a survey involving 3800 lab-
oratories [120].

Importantly, D-dimer units vary according to the type of calibration material [9,121,122].
For FEU calibrators preparation, plasmin degradation of purified fibrinogen clotted in
the presence of factor XIII is used, whilst calibrators are composed of purified D-dimer
for D-dimer units (DDU), respectively [4]. Based on their molecular mass, DDU (195 kD)
could be converted to FEU (340 kD) by applying a factor of correction (i.e., approximately
2×) [2–4,9,13].

Given the coexistence of multiple sources of heterogeneity in D-dimer assays (e.g.,
specificity of proprietary monoclonal antibodies, the existence of various fragments obtained
from the digestion of cross-linked fibrin from low-molecular-mass forms to high-molecular-
mass forms, the lack of certified IQC or calibrators, different reporting units and clinical
cut-offs), the development of an international reference for calibration and standardization
of D-dimer immunoassays are still unmet needs unlikely to be achieved [9,120,123–132].
Nonetheless, efforts are underway to provide more comparable results through the use of
mathematical models and conversion factors [119,121,122,127,133]. Although such efforts
towards harmonization have been made, a single diagnostic cut-off does not seem attainable
since false-negative test results would have a harmful clinical impact [9]. According to
the Fibrinolysis and Disseminated Intravascular Coagulation Scientific Standardization
Subcommittees of the International Society on Hemostasis and Thrombosis, a consensus
reference for D-dimer immunoassays might be obtained from a stable freeze-dried reference
material containing high concentrations of D-dimer of heterogeneous species [132]. A study
among the latest attempted to produce such material but found major instability due
to structural rearrangements and amyloid formation of FnDP [134]. Another approach
would be to selectively target low- and middle-molecular-mass FnDP species and higher-
molecular-mass forms, using adequate monoclonal antibodies [126].

Prospective studies were carried out to validate cut-offs with some reagents (e.g.,
Vidas, AxSYM, STA Liatest) [1,4,34,108–110,129,135] but not with others. When validation
studies are missing, a comparison with validated assays must be performed. This will
also be required under the new IVDR [22]. It is the role of manufacturers to stay abreast
of the most recent literature regarding their assays and suggest revised cut-offs when
needed [136].

Recommendations stated that a coefficient of variation <10% should be observed
around the diagnostic decision cut-off, and linearity should extend from 50 to 5000 µg/L
FEU [132]. The CLSI has proposed to aim at a precision ≤7.5% around the assay-specific
diagnostic threshold [17]. Importantly, there should be no cross-reaction with fibrinogen or
fibrinogen-degradation products and preferably not with fibrin and fibrinogen fragments
released from proteolysis mediated by various enzymes other than plasmin [132].
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5. Post-Analytical Step

The International Organization for Standardization 15189:2012 standard defines the
post-analytical phase as “processes following the examination including systematic review,
formatting and interpretation, authorization for release, reporting and transmission of the
results, and storage of samples of the examinations” [45]. The post-analytical phase is still
the cause of a large number of diagnostic errors (15–20%), which may jeopardize patient
safety [125].

Adequate reporting of D-dimer results is crucial. Several different measure units
(i.e., ng/mL, µg/L, mg/L, g/L, µg/mL, mg/mL, and g/dL) are used [3] to report results
obtained with diverse assays [2,137,138]. The coexistence of FEU, DDU, and different
measure units is a major issue that may cause confusion among clinicians and potentially
lead to misinterpretation of test results [3,4,125]. A total of 14 combinations of units and
calibrations may hence be used, and surveys reveal an important variability in D-dimer
test reporting between laboratories [9,120,125,139]. It is now recommended to favor “µg/L”
(or “ng/mL”), which is the unit that best approximates the International System [13,125].
Additionally, the possibility to use age-adjusted cut-offs (or clinical probability-adjusted
cut-offs) is another source of complexity for reporting D-dimer test results [125].

Recently, the SARS-CoV-2 pandemic and associated thrombotic events led to a consid-
erable increase in D-dimer measurements as well as in the number of publications on this
subject, with many presenting D-dimer reporting issues, ultimately generating confusion
and misinterpretations (e.g., absence of units, identification and type of the assay used,
age-specific cut-offs) [140]. Overcoming these challenges in reporting D-dimer through
standardization is crucial [120,128,132].

Finally, to ensure the clinical usefulness of D-dimer in urgent situations, TAT offered
by clinical laboratories must be the shortest possible. An acceptable TAT < 1 h has been pro-
posed, which seems appropriate given the urgent (clinical) nature of this test [13]. A shorter
TAT may be obtained by selecting assays that guarantee a wide range of linearity (i.e., up
to 5000 µg/L FEU), therefore avoiding additional dilutions, ensuring faster pre-analytical
steps (e.g., use of PTS and high-speed centrifugation), and using bedside POC analyz-
ers [3,13,58,62,63,66,117,129]. Current methods (e.g., ELFA, CLIA) require an analytical
processing time ranging between 15–40 min. In a European study, 81% of participant
laboratories responded that D-dimer testing was available 24/7 [14].

6. Conclusions

D-dimer is a multifaceted biomarker of activation of coagulation and fibrinolysis and
is the main laboratory test for patients with suspected VTE (PE and/or DVT). It is currently
recommended to use D-dimer assays with high sensitivity to maximize the NPV (i.e.,
≥95% sensitivity and ≥97% NPV). In patients with a low or intermediate clinical pretest
probability based on structured CDR, a normal D-dimer test result safely rules out acute
PE and the need for additional imaging, whilst values above the cut-off should trigger
further testing to confirm or refute the diagnosis. The use of age-adjusted cut-offs and,
more recently, clinical probability-adjusted cut-offs have been introduced to increase the
diagnostic specificity. Pre-analytical requirements for D-dimer differ from other hemostasis
tests, as this biomarker appears to be less sensitive to some pre-analytical variables. D-
dimer suffers from high inter-laboratory variation, and results obtained from a particular
assay cannot be simply extrapolated to another. Reporting of D-dimer is complex, and
clinicians should be aware of the possible use of different measuring units. Further studies
are needed to promote harmonization of D-dimer measurement and reporting. Systematic
reviews on narrower topics on the use of D-dimer in PE are also needed. Future regulations
such as the coming IVDR in Europe will have a major impact on the use of D-dimer for PE
exclusion and will bring a better definition of the intended use of each D-dimer assay.
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