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Abstract

Since the allocation of vaccines is often constrained by limited resources, designing an economical vaccination strategy is a
fundamental goal of the epidemiological modelling. In this study, with the objective of reducing costs, we determine the
optimal allocation of vaccines for a general class of infectious diseases that spread mainly via contact. We use an
optimization routine to identify the roles of nodes with distinct degrees as depending on the cost of treatment to that of
vaccination (relative cost of treatment). The optimal allocation drives vaccination priority to medium-degree nodes at a low
relative cost of treatment or to high-degree nodes at a high relative cost of treatment. According to the presented results,
we may adjust the vaccination priority in the face of an endemic situation.
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Introduction

Vaccines are often used to combat specific diseases, thereby

preventing millions of deaths every year. Mathematical modelling

of vaccine policies [1] and the human behavior that influences

epidemic dynamics [2–7] have attracted considerable attention

during the last few years. In order to control the outbreak of an

infectious disease efficiently, a reasonable vaccination strategy is

required, and its efficacy needs to be evaluated. To this end, the

characteristics of an infectious disease often provide important

guidelines for the determination of the optimal allocation of

vaccines [8]. For instance, a strategy that takes into account the

transmission rates of the influenza virus in different age groups and

targets the group with the highest risk of infection, i.e.,

schoolchildren, has achieved the largest reduction in transmission

[9,10]. The efficacy of a vaccination strategy has often been

evaluated by comparing it with other vaccination strategies that

aim at reducing the transmission rate or infection risk [11].

However, a comparative analysis of different strategies is not

sufficient for finding the optimal strategy [10]. Given certain

outcome measures, such as the basic reproduction number

[12,13], and the morbidity and mortality rates of a disease

[14,15], and the economic considerations [16], the optimal

allocation of vaccines can be determined accordingly using an

optimization procedure [17,18]. Since the available amount of

vaccines is often limited, economic factors become fundamentally

important. Thus, the requirement for a successful strategy would

primarily involve the minimization of the total cost, and it might

be more desirable to rely on the design of an economical vaccine

policy.

For airborne diseases, such as the influenza virus, the

assumption of a homogeneous mixing of the population is often

reasonable for modeling the epidemic dynamics. However, for

contagious diseases, such as sexually transmitted diseases (STDs),

it may not be appropriate. This is because the sexual contact

network within a population has been found to obey power-law

degree distribution [19], wherein heterogeneity in the network

leads to the epidemic process being characterized by new

properties, such as the vanishing of the critical invasion threshold

in the limit of infinite population [20,21]. Consequently,

heterogeneity leads to new intervention strategies [22–24], such

as targeting vaccination at highly connected nodes [19].

Supposing that a fixed amount of vaccine is available, how to

allocate it efficiently in the population is an essential issue with

which public health officials are often concerned [25,26]. Cost

may be used to treat infected individuals, and it may be used

to vaccinate susceptible individuals. The issue of minimizing the

total costs of both treatment and vaccination, similar to the issue

presented here, was explored in [16], where the network was

assumed to be homogeneous, and thereby, nodes were equiva-

lently treated. However, previous studies have shown that,

depending on the detailed dynamics, nodes with distinct degrees

play diverse roles. For instance, hub nodes play a crucial role in

maintaining the static network robustness [24], whereas low-

degree nodes are important for maintaining the dynamical

network robustness [27].

In this paper, we are concerned with the role of nodes with

distinct degrees in the design of an economical vaccination

strategy. It may be useful to consider the factor of heterogeneity in

different aspects of diseases, such as susceptibility, infectiousness,

and latent and incubation periods; however, we focus particularly
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on the importance of contact. To achieve our objective of

describing a general class of diseases that predominantly spread via

contact, in this study we utilized a susceptible-infected-recovered

(SIR) model and ignored side effects possibly caused by treatment,

vaccination, and so on. The pursuit of the optimal allocation of

vaccines that balances the trade-off between vaccination and

treatment leads us to make the simple assumption that all infected

individuals may receive treatment, and thus, the issue of the

optimal ratio of individuals who receive treatment is beyond the

scope of this paper. For further detailed analysis of this issue,

please refer to Ref. [25]. In addition, in order to observe explicitly

the relationship between vaccination and treatment, the endemic

state of the disease in the long run is used, and consequently, this

assumption constrains our study to the control of endemic

situations and not to the control of emerging outbreaks.

In the study, we assume that a fixed amount of vaccines is

provided at each time unit. Based on the epidemiological model

that uses births and deaths, we investigate the optimal vaccination

strategies in two cases: (i) homogeneous networks; (ii) heteroge-

neous networks. We find that in case (i), depending on the cost of

treatment relative to that of vaccination (relative cost of treatment),

optimal vaccination coverage varies between zero and the critical

coverage required to eradicate the disease. In case (ii), it becomes

almost impossible to derive the optimal allocation analytically,

because the allocation of vaccine is uncertain and the number

of variables involved in the model is increased. We use an

optimization routine named tabu search, to obtain numerically the

optimal allocations within a range of parameters. In the light of

our findings, the optimal allocation is closely relevant to the

relative cost of treatment. In the case of a low relative cost of

treatment, vaccination priority usually goes to medium-degree

nodes rather than high-degree nodes, which indicates that the role

of high-degree nodes may have to be reevaluated; however, in the

case of a high relative cost of treatment, vaccination priority may

shift primarily toward high-degree nodes, where the reduction in

the fraction of infected nodes crucially affects how much the total

cost will be. This study may guide us to determine the optimal

allocation of vaccines for a general class of infectious diseases that

spread mainly via contact, and it may provide important insights

into the role of nodes in the economical control of infectious

disease, which will benefit public health services.

Results

Case of homogeneous networks
The theoretical understanding of the spread of epidemics is

usually based on compartmental models, in which individuals in

the population are classified into a discrete set of states and mixed

homogeneously. In order to carry out the epidemiological analysis,

the basic susceptible-infected-removed (SIR) model that uses births

and deaths was employed, where the birth and death rates are

assumed to be equal to m. This model assumes that the time scale

of an epidemic is longer than the demographic time scale.

Unvaccinated susceptible individuals become infected by coming

in contact with infectious individuals at the rate bI , and infected

individuals undergo recovery at rate r. We assumed that a fixed

vaccination coverage, x0, is provided at each time unit, even after

the eradication of the disease. Since vaccines rarely provide

full protection from diseases [28], partially effective (imperfect)

vaccines are often used to protect both individuals and the entire

population, as is the case for vaccines currently being developed

against malaria [29] and the human immunodeficiency virus

(HIV) [30]. Thus, the assumption of a partially effective vaccine

was made in the model. The vaccine efficacy, a, is captured by a

reduced infection rate, bv, i.e., bv~(1{a)bI with 0ƒaƒ1, at

which vaccinated individuals become infected.

Without economic considerations, the critical vaccination

coverage, x0c, i.e., the fraction of the population that has to be

vaccinated to avoid a major outbreak, should satisfy the condition

1~R0(1{ax0), where R0 denotes the basic reproduction

number, defined as R0~
bI

mzr
[31]. Thus, the critical vaccination

coverage x0c is derived as x0c~
1

a
(1{

1

R0
), indicating that x0c

decreases with an increase in a and increases with R0. In

particular, if x0wx0c, vaccination will lead to the eradication of

the disease.

Let us consider the cost associated with the model. Suppose that

the total cost is composed of two parts: The cost of vaccinating

susceptible individuals and that of treating infected individuals.

Obviously, vaccinating susceptible individuals will increase with

the amount of vaccines used. For simplicity, we assume that the

cost of vaccination exponentially depends on the vaccination

coverage, as in Ref. [16], whereas the cost of treatment is

proportional to the prevalence of the disease. In this study,

discounting was ignored and the cost was counted only at the end

of an epidemic [16]. Therefore, the total cost is defined as

f (x0)~cvex0
�SSzcI

�II , ð1Þ

where �SS and �II denote the stationary fractions of susceptible and

infected nodes, respectively, and cv and cI denote the per capita

cost of vaccination and that of treatment, respectively. Typically,

we have cI~ccv (where cw1 is referred to as the ‘‘relative cost of

treatment’’), indicating that the lower cost of vaccination would

save us money as compared to the perceived high cost of

treatment. The optimal solution to Eq. (1) is achieved by validating

the first-order condition
df (x0)

dx0

~0 and given by

x�0~

R0 ln c
ma

rzm

1zaR0 ln c
ma

rzm

, ð2Þ

where c should satisfy the condition cv
mzr

ma
e

1
R0(1{a) for a

meaningful solution to exist. x�0 is a local minimal solution that is

further confirmed by checking the second-order condition

d2f (x0)

dx2
0

jx0~x�
0
w0 (see Methods).

Figure 1 shows the total cost (the black solid lines), the cost of

treatment (the red dashed lines), and that of vaccination (the blue

short dashed line) versus x0. Obviously, the cost of treatment

decreases with x0, because the more available is the vaccination

coverage, the smaller is the fraction of infected nodes at

equilibrium. At x0c&0:5, the outbreak is almost eradicated. If

vaccines are continually provided, the cost of treatment decreases

to zero, while the cost of vaccination increases continually (see the

blue short dashed line in Fig. 1). Therefore, the total cost varies

irregularly with the relative cost of treatment c, yielding a minimal

solution x�0 (x�0ƒx0c).

The total cost as a function of c and x0 with regard to a is shown

in Fig. 2. The curves indicate that the optimal vaccination

coverage is closely related to the relative cost of treatment c and

the vaccine efficacy a. For example, if the vaccine efficacy is high

(a~1) and the relative cost of treatment is low (cƒ6), it is
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unnecessary to vaccinate any nodes at all; on the other hand, with

an increase in c, vaccines are required in order to reduce the

prevalence of the epidemic (Fig. 2 (a)). With a reduction in a, it

would be more economical to stop vaccination (Fig. 2 (c)).

Case of heterogeneous networks
In order to understand the role of nodes in the epidemic process

with regard to vaccination, we investigated the optimal allocation

of vaccines in heterogeneous networks, where the degree

distribution follows power-law, i.e., p(k)*k{j (jw2) with a finite

average connectivity SkT~
P

k kp(k). Since only a fraction x0 of

the population at most can receive vaccines, achieving an efficient

allocation at relatively low cost is an essential goal in the design of

a public health strategy. Intuitively, a simple and direct design

should account for nodes’ degrees, that is, for each degree-block k,

a fraction xk of the population with degree k at most will receive

vaccines. Therefore, the problem is to search the optimal

allocation xk that minimizes the total cost subject to the constraint

that the total consumption of vaccination is not more than the total

resources, i.e.,
P

k p(k)xkƒx0.

Let us first investigate how the critical infection rate varies

versus vaccine allocation in heterogeneous networks. With the

mean-field approximation for each degree k (see Methods), the

effective infection rate lc is given by

lc~
SkT

Sk2T{aSx2T
, ð3Þ
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Figure 1. Cost versus x0for c~2,4,6,8,10,and14 (from bottom to
top) in homogeneous networks. (The green dotted vertical line) the
theoretical solution x0c ; (the blue short dashed line) the cost of
vaccination; (the red dashed lines) the cost of treatment; and (the black
solid lines) the total cost. Parameters are set as R0~1:5, m~ 1

80
, and

r~ 1
14

. The basic per capita cost is set as cv~1 and the vaccine efficacy is
a~0:7.
doi:10.1371/journal.pone.0070793.g001
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Figure 2. The total cost versus c and x0 for different vaccine efficacy a. (a) a~1:0; (b) a~0:5; and (c) a~0:2. Circles indicate the optimal
vaccine coverage x�0 for each value of c. Other parameters are set to the same values as in Fig. 1.
doi:10.1371/journal.pone.0070793.g002
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which relates the network topology (Sk2T~
P

k k2p(k)) to the

second moment of the vaccine allocation xk, i.e.,

Sx2T~
P

k k2p(k)xk. Equation (3) indicates that the critical

infection rate lc is determined by the network structure only

before and after vaccination.

Optimal allocation of vaccines in uncorrelated networks
In this study, instead of simply comparing a number of typical

vaccination strategies, such as target [32], random [24], and

acquaintance vaccination [23], we directly performed an opti-

mization routine to determine the optimal allocation xk. As

demonstrated by previous efforts [32], targeting vaccination at hub

nodes can efficiently eradicate the outbreak, but it is unknown if

this strategy is still optimal in terms of economical considerations.

In order to highlight the role of nodes with high degrees, nodes

with degree larger than a certain critical value kc are stratified into

one group, whereas nodes with the same degree k (kvkc), namely

k~kmin,kminz1,:::,kc{1, are stratified into the same groups.

Consequently, nodes in the same group receive the same

percentage of vaccines. For example, according to the degree

distribution p(k), nodes can be stratified into eight groups as

fkmin~2g, {3},...,fkc~9,:::,kmaxg, where kmin denotes the

minimal degree and kmax denotes the maximal degree. Subse-

quently, high-degree nodes are separated from the other nodes,

and their role in the optimal allocation can be clarified.

The optimization problem of allocating vaccines in heteroge-

neous networks is described as

min
x

f (x)~fvzfI~cve
(
P

k
p(k)xk

�SSk )
zcI

P
k

p(k)�IIk

s:t:
P
k

p(k)xkƒx0,

0ƒxkƒ1:

ð4Þ

Obviously, the total number of vaccinated nodesP
k p(k)xk

�SSkN should not be greater than the total vaccine

resources allocated to each degree k, i.e.,
P

k p(k)xkSkNƒP
k p(k)xkNƒx0N. �SSk and �IIk denote the fractions of susceptible

and infected nodes at equilibrium, respectively. The objective

function f (x) is composed of two components, the cost of

vaccination, fv, and that of treatment, fI , as seen in Eq. (4).

Using the tabu search [33], we determined the optimal

allocation xk for the minimal cost f (x) with regard to c.

Intuitively, if the per capita cost of treatment cI is high, more

doses of vaccines are required to reduce the fraction of infected

nodes, and vice versa. We performed the tabu search with 10

different initial solutions and chose the one with the lowest cost as

the optimal solution.

We begin by testing networks generated using the uncorrelated

configuration network model with a given degree distribution

p(k)*k{j (jw2) [34] (see Methods). This will produce the

maximal degree kmax~N
1
2, and the degree correlation is avoided.

When networks have been generated, the conditional probability

p(k0jk) that a node with degree k is connected to a node with

degree k0 is determined. Due to the uncertainty in the allocation of

vaccines to the nodes with degree k, xk, it is difficult to derive the

explicit forms of �SSk and �IIk at equilibrium in the present model.

Thus, we numerically calculate them with the model in Eqs. (10)

and (11) (see Methods).

In order to understand the impact of the relative cost of

treatment c on the optimal allocation xk, we performed the

optimization routine for a low relative cost of treatment (c~1) and

high relative cost of treatment (c~10), respectively. Without loss of

generality, in the following, vaccines are assumed to be perfect,

that is, a~1. Moreover, to understand the characteristics that xk

possesses, we recorded the distribution of vaccinated nodes for

each degree k, Nk, given by Nk~p(k)xk
�SSkN , and the distribution

of the fraction of infected nodes at equilibrium, �IIk. Comparing the

optimal allocations xk with regard to c, we found a significant

difference between them. For a low relative cost of treatment

(c~1), the optimal allocation vaccinates fewer nodes with

extremely high degrees and low degrees (Fig. 3 (a) and (d)). For

example, only 36% of nodes with degree larger than 30 are

vaccinated, and nodes with degree less than 10 are not vaccinated.

The result suggests that, for low relative cost of treatment, solely

targeting vaccination at high-degree nodes may be considerably

less economical.

With an increase in the relative cost of treatment (c~10, Fig. 3,

center column), more high-degree nodes are vaccinated, e.g., most

nodes with degree larger than 20 are vaccinated. This implies that,

for the high relative cost considered in this analysis, targeting

vaccination at high-degree nodes can efficiently reduce the

fraction of infected nodes at equilibrium and the perceived cost

of treatment as well. To understand the characteristics of the

optimal allocation further, we compared them with those of target

vaccination (Fig. 3, right column). Target vaccination is carried

out by vaccinating all nodes with degree larger than some value

(k0~20). Properties, such as the distribution of vaccinated nodes,

Nk, and the distribution of the fraction of infected nodes, Ik, are

also shown in Fig. 3. A comparison of the optimal vaccination for

c~1 and c~10 with target vaccination, revealed that when the

relative cost of treatment is low, optimal allocation performs much

better than target vaccination; when the relative cost of treatment

is high, target vaccination performs nearly identically to optimal

allocation. In the latter case, the reduction of infected nodes

becomes crucial to that of the total cost. This is confirmed in Fig. 3

(h), where fewer nodes are infected at equilibrium. Since, in

practice, detailed knowledge of the optimal allocation is not often

available in advance, targeting vaccination at high-degree nodes

may be taken as an alternative strategy in this case.

The results presented above suggest that the design of an

optimal allocation should take into account factors that include the

relative cost of treatment. From a realistic point of view, it provides

us with some insights into the design of an economical allocation of

vaccines for the control of diseases that spread via contact. These

diseases are typically characterized by sexually transmitted diseases

(STDs), such as gonorrhea, chlamydia, and syphilis, where

individuals are infected through sexual contact with an infectious

person. Since the human sexual contact network follows power-

law distribution [35], in light of our results, we speculate that if the

cost of treating STDs is extremely high, people who have more

sexual partners (hub individuals) should be prioritized for

vaccination. Thus, the perceived high cost of treatment caused

by the potential infection of hub individuals may be reduced. To

this end, tracing individuals’ sexual contacts to obtain precise

knowledge concerning the people who are well connected in the

sexual network, as was done in the Swedish survey of sexual

behavior in 1996 [19] is a fundamental requirement [36]. If the

cost of treatment is not very high, precise knowledge of personal

contacts may not be required.

Optimal allocation of vaccines in correlated networks
The results presented above are based on the configuration

network model where degree correlation is omitted; however, in

the real world, networks often show some level of degree

correlations [37]. The degree correlation of a network can be

Optimal Allocation of Vaccines
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quantified by the assortativity [37]

n~
Skk0Tl{S(kzk0)=2T2

l

S(k2zk02)=2Tl{S(kzk0)=2T2
l

, ð5Þ

where S:Tl denotes the average over all links and (k,k0) denotes

the degrees of the two nodes at either end of the links. A positive

(assortative) or negative (disassortative) degree correlation is

denoted by the sign of n. An alternative method of calculating

degree correlation is to measure the nearest neighbor degree

knn(k), which is an increasing (decreasing) function of k for

networks with a positive (negative) correlation. To generate

networks with a desired degree correlation, we exchanged the

end points of two edges chosen at random in uncorrelated

networks until the desired degree correlation was achieved.

Optimal allocation of vaccines was then implemented on

networks with typically positive and negative degree correlations

(n~0:2 and n~{0:2, respectively); however, other parameters,

such as network size and the average connectivity were the same as

in uncorrelated networks, see Fig. 4. Irrespective of the degree

correlations, we obtained results that are qualitatively similar to

those on networks with no degree correlation. The findings

represent an advanced step toward the understanding of the role of

high-degree nodes in the design of an economical vaccine

allocation. Depending on the relative cost of treatment, the role

of high-degree nodes is particularly different, driving the optimal

vaccination strategy into two scenarios. When the relative cost of

treatment is low, the tradeoff between the costs of vaccination and

treatment drives the system to vaccinate fewer nodes with high

degrees. When the relative cost of treatment is high, primarily the

fraction of infected nodes determines how much the total cost will

be. Under this condition, prioritizing the vaccination of high-
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Figure 3. Comparison of optimal allocations of vaccines with target vaccination in uncorrelated scale-free networks. Optimal
allocation xk (a), Nk (d), and Ik (g) for c~1 (left column); optimal allocation xk (b), Nk (e), and Ik (h) for c~10 (center column); target allocation xk (c),
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for target vaccination). R0~1:5 and the maximal vaccination coverage is x0~10%. The degree distribution is generated with p(k)*k{2:5 and the
network size N~5000. The minimal degree is kmin~2 and the maximal degree is kmax~67. Nodes are grouped into 30 groups.
doi:10.1371/journal.pone.0070793.g003
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degree nodes is crucial to the reduction of the fraction of infected

nodes and of the total cost as well.

Discussion

In this study, we used a general mathematical model to evaluate

the optimal allocation of vaccines by focusing on a heterogeneous

contact structure and accounting for economic factors. In this

framework, for homogeneous networks, the optimal vaccination

coverage with minimal cost varies between zero and the critical

coverage, depending on the relative cost of treatment, as well as

the vaccine efficacy.

The epidemic model (SIR) we used is very simple, no

heterogeneity related to diseases being considered, but our

preliminary analysis of heterogeneity in contact clarifies the role

of nodes with different degrees in the optimal allocation of

vaccines. In heterogeneous networks, depending on the relative

cost of treatment, the optimal allocation varies such that the

tradeoff between the cost of vaccination and that of treatment is

balanced. In the case of low relative cost of treatment, target

vaccination may have been overestimated in the present model.

With an increase in the relative cost of treatment, vaccination

priority may shift toward nodes with high degrees. The com-

parison analysis shows that the optimal allocation is superior to

target vaccination in terms of minimal total cost but not in terms of

minimal prevalence, whereas target vaccination is superior to the

optimal allocation in terms of reducing the prevalence but not of

minimizing the cost.

For the definition of cost, following Ref. [16], we assumed that

the cost of vaccination is exponentially dependent on the ratio of

vaccinated individuals, whereas the cost of treatment is linearly

dependent on the ratio of treated individuals. It might be useful to

consider disease-related costs, such as those of side effects of

treatment, morbidity, mortality, and loss of productivity, which are

related to details of a specific disease.

The results of our present study are particularly useful for

guiding the optimal allocation of vaccines for diseases that pre-

dominantly spread via contact, i.e., STDs, where heterogeneity in

contact dominates the epidemic dynamics. In the real world, the

main aim of the public health policy is usually to minimize the

outbreak of an infectious disease. These results may provide

insights for planning future cost-aware strategies for multi-

objective optimization of vaccination, such as simultaneously

optimizing both the cost and prevalence, which will be the primary

concern of public health officials.

Overall, our study demonstrates that the design of an

economical allocation of vaccinations should incorporate a

number of important factors involved in the model. It may be

possible to achieve better control of STDs if advances in our

understanding of the nodes’ role in epidemiology and transmission

dynamics can be integrated into future intervention strategies.

Methods

Derivation in homogeneous networks
We apply the mass-action assumption, where all individuals

have the same contact rate, to obtain the epidemic dynamics for

the SIR model with imperfect vaccines [6],

dS

dt
~m{bI (1{x0)SI{bvx0SI{mS,

dI

dt
~bI (1{x0)SIzbvx0SI{rI{mI ,

dR

dt
~rI{mR, ð6Þ

where bv~(1{a)bI and S, I , and R denote the proportions of

susceptible, infected, and recovered individuals, respectively. In

particular, a~0 represents the case of the classic model without

vaccination, and a~1 represents the case of perfect vaccines,

where all vaccinated individuals obtain complete protection from

infection. In the case where no vaccines are given, the basic

reproductive number is R0~
bI

mzr
. The fractions of susceptible and

infected individuals at equilibrium are subsequently given by

�SS~
rzm

bvx0zbI (1{x0)
~

1

R0(1{ax0)
, ð7Þ

�II~
m

rzm
{

m

bvx0zbI (1{x0)
~

m

mzr
(1{

1

R0(1{ax0)
): ð8Þ

The total cost is composed of two parts: The cost of vaccinating

susceptible individuals and the cost of treating infected individuals.

Therefore, the total cost is written as

f (x0)~cvex0
�SSzcI

�II , ð9Þ

where cv and cI denote the per capita cost of vaccination and

that of treatment, respectively. By inserting Eqs. (7) and (8) into (9),

the optimal solution x�0c can be derived as shown in Eq. (2).

Derivation of effective infection rate in uncorrelated
networks

In order to investigate the effective infection rate lc when

vaccination is induced, we consider the time evolution of the

magnitudes of Sk, Ik, and Rk, which denote the densities of the

susceptible, infected, and recovered vertices of degree k, respec-

tively. These variables are connected by means of the normali-

zation condition, and at the mean-field level, they satisfy the

following set of coupled differential equations [20,21]

dSk

dt
~m{bI k(1{xk)SkH{bvkxkSkH{mSk, ð10Þ

dIk

dt
~bI k(1{xk)SkHzbvkxkSkH{rIk{mIk, ð11Þ

dRk

dt
~rIk{mRk, ð12Þ

where Sk, Ik, and Rk satisfy SkzIkzRk~1. H indicates the

probability that a vertex is reached by following a randomly

chosen link whose end node is infected, written as
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H~

P
k kp(k)IkP

k kp(k)
~

P
k kp(k)Ik

SkT
: ð13Þ

When stationary conditions are imposed, the equilibrium of the

model is given by

�IIk~
bI (1{axk)k�SSkH

mzr
, ð14Þ

�SSk~
m

bI (1{axk)kHzm
, ð15Þ

�RRk~
r

m
�IIk: ð16Þ

By inserting Eq. (14) into Eq. (13), we have

H~
1

SkT(mzr)

X

k

kp(k)
bI (1{axk)kmH

bI (1{axk)kHzm
, ð17Þ

where H is a function of itself, and H~0 is always a trivial

solution. If there exists a nonzero solution, the condition

1

SkT(mzr)

d

dH
(
X

k

kp(k)
bI (1{axk)kmH

bI (1{axk)kHzm
)jH~0§1,

should be satisfied, which is rewritten as

P
k k2p(k)l(1{axk)

SkT
§1:

Then, the effective infection rate lc is derived as

lc~
SkT

Sk2T{aSx2T
, ð18Þ

which indicates that below lc the disease is eradicated from the

network, and above it there is an endemic state. In addition, lc

depends on the first (second) moment of the degree distribution,

the second moment of the vaccination distribution, and the

vaccine efficacy a. If there are no available vaccines, i.e., Sx2T~0,

with Sk2T??, l0~
SkT
Sk2T

?0, indicating that any disease can

spread in heterogeneous networks with the degree distribution

p(k)*k{j (jw2). With the introduction of vaccines, lc

transforms to an explicit function in the form of lc~
l0

1{a Sx2T
Sk2T

.

In real-world networks, with a finite value of Sk2T, lc increases
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Figure 5. Optimal allocations of vaccines xkin correlated scale-
free networks with different degree correlations nfor x0~0:2.
(a) n~{0:2 and c~1; (b) n~{0:2 and c~10; (c) n~0:0 and c~1; (d)
n~0:0 and c~10; (e) n~0:2 and c~1; (f) n~0:2 and c~10. Other
parameters are set to the same values as in Fig. 3. Nodes are grouped
into 30 groups.
doi:10.1371/journal.pone.0070793.g005
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with the vaccine efficacy a, and thus, highly efficient vaccines may

halt the spread of an infectious disease.

Derivation of optimal allocation of vaccines in
uncorrelated networks

It should be noted that f (x) cannot be explicitly defined because

it is not easy to solve �SSk and �IIk analytically due to the complexity

of heterogeneity in the network structure and the uncertainty

of vaccine allocation in each block k, xk. Thus, we numerically

solve �SSk and �IIk using Eqs. (10) and (11). In order to solve the

optimization problem, a heuristic algorithm named tabu search is

subsequently implemented [33,38–41] with 10 different initial

solutions. Then, we choose the solution with the minimal cost

among the 10 runs as the optimal solution. Finally, the optimal

solution is further improved by taking the optimal solution previously

obtained as an initial solution to start the tabu search again.

The processes of the tabu search for solving Eq. (4) are

described as:

N Step 1: Generate an initial feasible vector x0 that satisfies the

inequality constraints, and set the optimal solution x�~x0,

and calculate the optimal cost value f (x�). Set the time step

t~0.

N Step 2: Stop and output the optimal solution x� and f (x�) if a

prescribed condition is satisfied; otherwise, generate a random

vector y that is feasible, and calculate the total cost f (y).

N Step 3: Update the optimal solution if f (y)ƒf (x�) as x� : ~y.

If f (y)ƒf (xt) or if y does not satisfy the tabu conditions, set

xtz1 : ~y; else set xtz1 : ~xt. Set t : ~tz1 and return to

step 2.

The condition j f (xt){f (y)

f (y)
jwd, where d denotes the ratio of

improvement or destruction that will be accepted if the new move

is accepted, is used to determine whether a move is tabu. Thus, the

new solution y in Step 2 is assumed tabu if the ratio of the total

change in the objective function is larger than d. The terminal

condition is that the present step reaches the predefined maximal

number of iteration steps. Here, the maximal number of iteration

steps is set as 2000.

Configuration network models
In order to avoid degree correlation, the substrate networks are

generated using the configuration model based on the Molloy-

Reed algorithm [34]. Each vertex i is assigned a degree ki from

a given degree distribution p(k)*k{j(jw2), subject to the

constraint kiƒN
1
2, where N indicates the network size.

Sensitivity analyses
To explore the robustness of the results, we conducted

sensitivity analyses with varied vaccination coverage x0 ranging

from 20% to 30%, while other parameters remained the same as

given in the main text (without loss of generality, m~ 1
80

and r~ 1
14

throughout this paper. We also tested different choices of

epidemiological parameters m and r and obtained qualitatively

similar results.) Figures 5 and 6 show that even in correlated scale-

free networks, with the assumed vaccination coverage x0 that we

tested, results that are qualitatively similar to those in the main text

were obtained, i.e., with a low relative cost of treatment, fewer

nodes with high degrees are vaccinated, whereas with a high

relative cost of treatment, more nodes with high degrees are

vaccinated. Therefore, irrespective of the vaccination coverage, the

optimal allocations of vaccines show qualitatively similar properties.
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