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ABSTRACT New tools for genetic manipulation of Mycobacterium tuberculosis are
needed for the development of new drug regimens and vaccines aimed at curing
tuberculosis infections. Clustered regularly interspaced short palindromic repeat
(CRISPR)–CRISPR-associated protein (Cas) systems generate a highly specific double-
strand break at the target site that can be repaired via nonhomologous end joining
(NHEJ), resulting in the desired genome alteration. In this study, we first improved
the NHEJ repair pathway and developed a CRISPR-Cas-mediated genome-editing
method that allowed us to generate markerless deletion in Mycobacterium smegma-
tis, Mycobacterium marinum, and M. tuberculosis. Then, we demonstrated that this
system could efficiently achieve simultaneous generation of double mutations and
large-scale genetic mutations in M. tuberculosis. Finally, we showed that the strategy
we developed can also be used to facilitate genome editing in Escherichia coli.

IMPORTANCE The global health impact of M. tuberculosis necessitates the develop-
ment of new genetic tools for its manipulation, to facilitate the identification and
characterization of novel drug targets and vaccine candidates. Clustered regularly in-
terspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) genome
editing has proven to be a powerful genetic tool in various organisms; to date, how-
ever, attempts to use this approach in M. tuberculosis have failed. Here, we describe
a genome-editing tool based on CRISPR cleavage and the nonhomologous end-
joining (NHEJ) repair pathway that can efficiently generate deletion mutants in M.
tuberculosis. More importantly, this system can generate simultaneous double muta-
tions and large-scale genetic mutations in this species. We anticipate that this
CRISPR-NHEJ-assisted genome-editing system will be broadly useful for research on
mycobacteria, vaccine development, and drug target profiling.

KEYWORDS CRISPR-Cas system, Mycobacterium marinum, Mycobacterium smegmatis,
Mycobacterium tuberculosis, genome editing, nonhomologous end joining

Mycobacterium tuberculosis, the infectious agent of tuberculosis (TB), caused 10
million infections and 1.57 million deaths in 2017 (1). The global health impact of

M. tuberculosis necessitates the development of genetic tools for manipulating M. tuber-
culosis to identify and characterize appropriate drug targets and vaccine candidates.
Genetic approaches using nonreplicating vectors, long linear DNA fragments, recombineer-
ing, and specialized phage transduction have been developed to manipulate M. tuberculosis
(2–8). Recently, the ORBIT method, which combines oligonucleotide-mediated recom-
bineering and Bxb1 integrase targeting, was developed for the creation of mutants with
large numbers of deletions, insertions, or fusions in the bacterial chromosome (9).
However, these approaches usually yield low numbers of mutants and require multiple
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steps to generate markerless mutants. The generation of a single markerless mutation
can require months, while the generation of multiple mutations, which is usually
required for the development of live bacterial vaccines and functional studies of
redundant genes, can require years. In addition, the current methods usually leave one
scar from the generation of one markerless mutation (9, 10), which may be problematic
when multiple mutations must be introduced. More importantly, recombination-
mediated chromosomal rearrangements or deletions might occur between these scars,
possibly hindering the use of live bacterial vaccines bearing multiple scars (11).

Clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated
protein (Cas) systems, including CRISPR–CRISPR-associated protein 9 (Cas9) and CRISPR-
Cas12a (Cpf1), have been widely used as genome-editing tools (12, 13). The CRISPR-Cas9
system generates a Cas9-mediated double-strand break (DSB) guided either by two small
RNAs, i.e., a CRISPR RNA (crRNA) and a trans-acting crRNA (tracrRNA), or by a chimeric single
guide RNA (sgRNA) (14, 15). In contrast, Cas12a, which is a type V-A endonuclease of the
class 2 CRISPR-Cas system, is a dual nuclease involved in both crRNA processing and DNA
cleavage guided by a single crRNA without the need for a tracrRNA (16). Recognition and
cleavage of target DNA by CRISPR-Cas requires a short DNA sequence next to the proto-
spacer, the protospacer adjacent motif (PAM) (17). The DNA breaks can be repaired either
via a homologous recombination (HR)-mediated repair pathway or via the nonhomologous
end-joining (NHEJ) repair pathway, leading to precise or imprecise genome editing, respec-
tively (18, 19). The NHEJ pathway is error prone and repairs the DSB by generating
insertions and/or deletions at the cleavage site that disrupt the targeted gene. Unlike
HR-mediated repair pathways, the NHEJ repair pathway does not require a homologous
DNA template, which simplifies genome-editing procedures (18). Recently, HR- and NHEJ-
assisted CRISPR genome-editing approaches have been developed in many bacteria (20–
23), including Mycobacterium smegmatis (24, 25); however, none of these approaches can
be used in M. tuberculosis.

The NHEJ pathway plays a major role in DSB repair in eukaryotic cells (26, 27),
whereas the HR-mediated pathway is more critical for DSB repair in bacterial cells
(28–30). The HR-mediated and NHEJ pathways might compete with each other in
bacteria and mammalian cells (29, 31–33). Mutation of RecA, a major player in the
HR-mediated pathway, strongly induces the NHEJ repair pathway in M. smegmatis (31).
In contrast to the many components required for NHEJ repair in eukaryotic organisms,
the bacterial NHEJ pathway requires only two key components: Ku and multifunctional
ligase D (LigD) (28, 34–36). The Ku protein binds to the DNA ends and recruits LigD,
which then processes and ligates the DNA ends (37). Mycobacterial NHEJ is the most
studied bacterial NHEJ system (28, 38, 39); however, it is far from being completely
understood. The additional ATP-dependent DNA ligase LigC1 can compensate for loss
of LigD ligase activity, suggesting that this NHEJ pathway might be more complex than
the basic two-component system (40).

In this study, we made three changes to increase the activity of the NHEJ repair
pathway (Fig. 1): we (i) increased the expression of Mycobacterium marinum NHEJ
machinery (MmNHEJ, comprising Ku, LigD, and NrgA, the product of a previously
uncharacterized gene we designated nrgA), (ii) repressed RecA-dependent HR, and (iii)
generated DSBs in stationary phase. By applying these strategies for promoting NHEJ
together with CRISPR-Cas cleavage, we developed an efficient method for robust,
template-independent genome editing in M. smegmatis, M. marinum, and M. tubercu-
losis (Fig. 1).

RESULTS
CRISPR-NHEJ-mediated genome editing in M. marinum. We previously reported

a Cas12a-assisted recombineering system that allowed precise genetic manipulation in
M. smegmatis (24). By coupling CRISPR-Cas12a cleavage with the recombineering
mediated by the mycobacteriophage recombination enzyme Che9c, it is possible to
achieve highly efficient genome editing using single-stranded DNA (ssDNA) or double-
stranded DNA (dsDNA) as a repair template (24). However, this system does not work

Yan et al. ®

January/February 2020 Volume 11 Issue 1 e02364-19 mbio.asm.org 2

https://mbio.asm.org


in M. tuberculosis (data not shown). To investigate whether this system functions in
other mycobacteria, we transplanted it into M. marinum, a slowly growing mycobac-
terium similar to M. tuberculosis, to modify the nonessential gene whiB6. Compared
with the outcome for the no-cleavage control, CRISPR-Cas12a cleavage killed most of
the bacteria, resulting in survival of approximately 1% of the transformants (Fig. S1A in
the supplemental material). Interestingly, the surviving cells were not precisely modi-
fied via HR as anticipated; they instead carried deletion mutations (Fig. S1B). Further
investigation showed that formation of this CRISPR-Cas12a cleavage-mediated genome
modification was independent of the presence of the Che9c system (Fig. 2A) but
required Ku and LigD (Fig. 2B), suggesting that it occurred via the NHEJ repair pathway.

FIG 1 Cartoon representation of CRISPR-Cas–NHEJ-assisted genome editing in mycobacteria. Genome editing is completed in two steps: (i)
cleavage by the CRISPR-Cas system and (ii) NHEJ-mediated repair. High expression of the MmNHEJ machinery (Ku, LigD, and NrgA from M.
marinum) facilitates efficient genome editing in M. marinum (bottom left, “With RecA”). Repression of RecA-dependent homologous recombi-
nation (HR) can increase the efficiency of NHEJ, thereby increasing genome-editing efficiency in M. smegmatis (bottom left, “Repression of RecA”).
NHEJ efficiency is higher when double-strand breaks are generated during stationary phase; thus, efficient genome editing can be achieved in
RecA-repressed M. tuberculosis cells in stationary phase (bottom right).
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Consistent with the observation that a ku and ligD double mutant M. smegmatis strain
did not simply phenocopy ligD and ku single mutant strains (31), deletion of the ku ligD
locus in M. marinum eliminated NHEJ repair but increased resistance to Cas12a cleav-
age (Fig. 2B). Complementation of the mutation using a plasmid containing the ku ligD
locus with the native promoter decreased transformant survival but increased NHEJ
repair efficiency (Fig. 2B). Sequencing analysis showed that the survivors that lacked the
desired mutations were not susceptible to Cas12a-mediated killing due to complete or
partial deletion of the Cas12a-encoding gene. We further determined the deletion sizes
via amplification of the repair junctions in the genome-edited strains. The sequence
analysis revealed that random deletions occurred around the cleavage site and that the
deletion sizes ranged from 2 bp to 10,179 bp (Fig. 2C). Whole-genome sequencing
revealed two to three single-nucleotide variants (SNVs) that were apparently not
caused by off-target effects in six independent M. marinum mutants, suggesting that
the genome editing mediated by this method is specific (Table S1).

A gene belonging to the phosphofructokinase B-type (PfkB) family of sugar kinase-
encoding genes (MMAR_4574), which we named nrgA (NHEJ-related gene A), lies
between the Ku and ligase D genes in the M. marinum chromosome (Fig. S2A). nrgA is
conserved in many mycobacteria, and it is usually associated with ku and ligD (Fig. S2A);
however, it is absent in M. tuberculosis. Mutation of nrgA significantly decreased the
genome-editing efficiency but did not affect the deletion size (Fig. 3), suggesting that
nrgA might play an important role in the M. marinum NHEJ repair pathway.

CRISPR-NHEJ-mediated genome editing in M. smegmatis. NHEJ-mediated ge-
nome editing could not be achieved in M. smegmatis using Cas12a nuclease in our
previous study (24). To increase NHEJ repair efficiency, we overexpressed MmNHEJ
using a plasmid containing the ku ligD locus from M. marinum in an M. smegmatis strain
carrying a chromosomally integrated green fluorescent protein (GFP) reporter (24) and
then tested for genome-editing efficiency by monitoring for loss of the GFP signal. To
our disappointment, only 0.75% of the transformants were mutated even when the
MmNHEJ machinery was expressed (Fig. 4A). As there is a dynamic interplay between
HR- and NHEJ-mediated DSB repair (31), we hypothesized that inhibiting HR might
stimulate NHEJ-mediated genome editing. To test this hypothesis, we examined the
NHEJ-mediated genome-editing efficiency in a recA null strain. Approximately 1.45% of
the transformants were genome edited in the recA null background, whereas more than
90% of the transformants were genome edited when MmNHEJ was expressed in the
recA null background (Fig. 4A).

FIG 2 CRISPR-Cas12a-assisted NHEJ genome editing in M. marinum. (A) Genome-editing efficiency in the presence of CRISPR-Cas12a cleavage in M. marinum.
Plasmids pYC1103, pYC1178, and pYC1521, expressing whiB6, recD, and nrgA-targeting crRNA, respectively, were transformed into M. marinum with the
Cas12a-expressing plasmid pMV261-Cas12a. (B) Genome-editing efficiency of whiB6 with CRISPR-Cas12a cleavage in wild-type M. marinum and its derivatives.
The whiB6 crRNA plasmid (pYC1103) was transformed into the wild type and its derivatives. Transformation efficiency was defined as the total number of CFU
generated per transformation. Editing efficiency was calculated as the ratio of the number of edited events to the total number of colonies analyzed by PCR
and sequencing. Survival was calculated by comparing the number of transformants to the number of control transformants carrying the empty vector. (A, B)
Bars represent mean values � standard deviations from two independent experiments. (C) Deletion length distribution of the indicated genes resulting from
CRISPR-Cas12-assisted genome editing. Bars represent the median deletion size for each strain.

Yan et al. ®

January/February 2020 Volume 11 Issue 1 e02364-19 mbio.asm.org 4

https://mbio.asm.org


To facilitate NHEJ-mediated genome editing in various strain backgrounds, we
sought to construct a system to limit RecA function without disrupting its gene. A
dominant-negative mutant RecA with an R60C mutation (RecAmu bearing a change of
R to C at position 60) can interact with wild-type RecA monomers to inhibit RecA
activity in Escherichia coli (41, 42). In addition, RecX negatively regulates RecA activity
by blocking RecA assembly onto ssDNA tracts (43–45) or by facilitating more rapid RecA
filament disassembly (46, 47). We constructed new plasmids carrying M. smegmatis
RecAmu or RecX together with MmNHEJ and Cas12a (Fig. S3D and E) and tested their
effects on genome-editing efficiency. The expression of RecAmu or RecX showed
phenotypes similar to that of recA deletion, i.e., enhanced NHEJ-mediated genome-
editing efficiency (Fig. 4B). Furthermore, Cas9Sth1 (Cas9 from Streptococcus thermophi-
lus), a Cas9 orthologue developed for regulated gene silencing in mycobacteria (48),
can also be used for genome editing in M. smegmatis (Fig. 4C). Compared with the
outcomes with the no-cleavage control, CRISPR-Cas12a- and Cas9Sth1-assisted NHEJ
genome editing usually resulted in the survival of approximately 20% of the transfor-
mants, of which more than 80% were genome edited (Fig. 4B and C). Investigation of
the end-joining patterns at the cleavage junctions showed that Cas9Sth1- and Cas12a-
assisted editing typically resulted in random deletions around the cleavage site that
ranged from 1 to more than 10 kb in length (Fig. 4D).

FIG 3 NrgA is involved in CRISPR-NHEJ genome editing in mycobacteria. (A) Genome-editing efficiency in M. marinum
derivatives. The whiB6 crRNA plasmid (pYC1103) was transformed into the wild-type, nrgA mutant, or nrgA-complemented
strain, and 24 colonies in each group were picked for PCR and sequencing analysis. Editing efficiency was calculated as the
ratio of the number of edited events to the total number of colonies tested by PCR. Normalized editing efficiency was
calculated as the editing efficiency � (total CFU obtained with whiB6 targeting sgRNA/total CFU obtained with control
sgRNA). (B) Deletion length distributions of whiB6 gene in wild-type and nrgA mutant strains in one experiment. Bars
represent median deletion size for each strain. NS, not significant. (C, D) NrgA increases the CRISPR-NHEJ genome-editing
efficiency in M. smegmatis (C) and M. tuberculosis (D). crRNA plasmids were electroporated into M. smegmatis and M.
tuberculosis cells with plasmids expressing the complete NHEJ machinery (pNHEJ-Cas12a-recX for M. smegmatis and
pNHEJ-recX for M. tuberculosis; Ku-NrgA-LigD) or the NHEJ machinery without NrgA (pYC1376 for M. smegmatis and
pYC1654 for M. tuberculosis; Ku-LigD). For M. smegmatis, a chromosomally integrated gfp reporter gene was edited.
Normalized efficiency was calculated as the frequency of GFP-negative (white) transformants � (total CFU obtained with
gfp-targeting sgRNA/total CFU obtained with control sgRNA). For M. tuberculosis, 24 colonies in each group were picked
for PCR and sequencing analysis. Normalized editing efficiency was calculated as the editing efficiency � (total CFU
obtained with target sgRNA/total CFU obtained with control sgRNA). (A, C, D) Bars represent mean values � standard
deviations from three independent experiments. P values were determined via Student’s unpaired t test.

CRISPR-NHEJ-Assisted Genome Editing in Mycobacteria ®

January/February 2020 Volume 11 Issue 1 e02364-19 mbio.asm.org 5

https://mbio.asm.org


CRISPR-NHEJ-mediated genome editing in M. tuberculosis. As CRISPR-assisted
NHEJ genome editing is highly efficient in M. marinum and M. smegmatis, we sought to
edit the M. tuberculosis genome using this system. However, neither Cas9- nor Cas12a-
assisted genome editing functioned when the plasmid system described above was
tested in M. tuberculosis (data not shown). Further analysis showed that the Cas12a
cleavage activity might be too weak for it to be useful as an editing tool in M.
tuberculosis (Fig. S4). In contrast, the Cas9Sth1 cleavage activity is too strong, and leaky
Cas9Sth1 expression results in DSB generation and cell death (Fig. S4). Given that NHEJ
activity is induced in stationary phase (49, 50), we speculated that delaying CRISPR-Cas
expression to allow DSB formation only during stationary phase might increase
genome-editing efficiency. To test this prediction, we constructed a new two-plasmid
cotransformation system in which one plasmid encodes the MmNHEJ machinery and M.
tuberculosis RecX/RecAmu (pNHEJ-recX-sacB and pNHEJ-recAmu-sacB) and the other
encodes Cas9 and the sgRNA (pYC1640 or pYC2085) (Fig. S5). To simplify the procedure
for curing the helper plasmids, we introduced a sacB cassette into the NHEJ-expressing
plasmid and used a plasmid vector containing the pMF1 replicon (51), which is unstable
in mycobacteria, for expression of Cas9 and the sgRNA (Fig. S5). Three genes were
chosen as editing targets, and 10% of transformants were obtained relative to the
number obtained with the vector control strain, more than 80% of which were genome
edited (Fig. 5A). Molecular analysis of the targeting loci in these transformants revealed
that most transformants carried small PAM-distal deletions exactly 3 bp upstream from
the PAM sequence that ranged from 1 to 324 bp in length, while a few transformants

FIG 4 CRISPR-NHEJ-assisted genome editing in M. smegmatis. (A) CRISPR-Cas12a–NHEJ genome-editing efficiency in M. smegmatis
derivatives. The gfp crRNA plasmid was transformed into wild-type and recA mutant strains harboring various plasmids. (B) RecX or
RecAmu expression mimicked recA deletion in M. smegmatis. Transformation and gfp-editing efficiency resulted from electroporation
of the indicated gfp crRNA plasmids into M. smegmatis expressing the MmNHEJ machinery, Cas12a, and RecX (or RecAmu). (C)
CRISPR-Cas9Sth1-assisted NHEJ genome editing in M. smegmatis. The gfp sgRNA plasmid was transformed into recA mutant and
wild-type strains containing the indicated plasmids. Bars represent mean values � standard deviations from three independent
experiments. (D) Comparison of the Cas9Sth1- and Cas12a-induced deletion sizes in PAM-proximal and PAM-distal regions. Transfor-
mation efficiency was defined as the total number of CFU obtained per transformation, and editing efficiency was calculated by
determining the proportion of GFP-negative colonies.
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FIG 5 CRISPR-NHEJ-assisted genome editing in M. tuberculosis. (A) CRISPR-Cas9Sth1 cleavage combined with NHEJ repair leads to efficient genome editing in
M. tuberculosis H37Ra. sgRNA-expressing plasmids were electroporated into M. tuberculosis cells harboring various NHEJ-expressing plasmids. Transformation
efficiency was defined as the total number of CFU obtained per transformation, and editing efficiency was calculated as the ratio of the number of edited events
to the total number of colonies tested. Bars represent mean values � standard deviations from two independent experiments. (B to D) Analysis of NHEJ
efficiencies induced by paired Cas9Sth1-sgRNAs in four different orientations. Four different Cas9Sth1-sgRNA orientations were guided by paired PAMs. C/C, C/W,
W/W, and W/C orientations were defined by the positioning of the paired PAMs on either the Watson strand (W) or the Crick strand (C). (E, F) Analysis of editing
efficiency induced by paired Cas9Sth1-sgRNAs at the RD1 regions (I, II, III, and IV represent four different Cas9Sth1-sgRNA orientations guided by paired PAMs;
see Fig. S2B). (G) Simultaneous generation of double mutations in M. tuberculosis using paired sgRNAs with Cas9Sth1 or Cas9Sth1-ssrA. Survival was defined as
the ratio of the number of CFU obtained from the indicated sgRNA to the number of CFU obtained from the control plasmids, and editing efficiency was
calculated as the ratio of the number of edited events to the total number of colonies tested; at least 32 colonies were analyzed by PCR and sequenced for
each group. DoDel, double deletion. (D, F) The frequencies of accurate deletion (AcDel), single deletion (SiDel), two individual deletions (TiDel), and deletion
(Del) were calculated as the ratios of the number of events from each group to the total number of edited events.
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carried insertions (Fig. S6). In addition, sequences with weak PAMs can also be effi-
ciently edited using our system (Table S2). To test for a possible nonspecific mutator
effect of this system, 6 independent M. tuberculosis mutants were chosen for whole-
genome sequencing. The results showed that no mutations or at most one mutation
was introduced during the genome editing (Table S1).

To explore the possibility of using this system to create larger deletions in M.
tuberculosis, we used paired sgRNAs with different PAM configurations to generate
large deletions within a gene (Fig. 5B). Approximately 0.95% to 6.77% transformants
were obtained relative to the number obtained with the vector control strain, among
which the editing was more efficient when the PAM sequences were located in a
combination of the Watson and Watson strands (W/W) (Fig. 5C). Upon investigation of
the end-joining patterns at the cleavage junctions, we noticed that accurate NHEJ (two
Cas9 cleavage sites were directly ligated, leading to accurate deletion) was more
efficient when the PAM sequences were located in a combination of the Crick and
Watson strands (C/W) (Fig. 5D). Next, we successfully deleted the region of difference
1 (RD1) region (Fig. 5E and F), which is more than 9 kb long and contains nine genes
(Fig. S2B).

Given that double mutations could be generated when two sgRNAs were used for
RD1 region deletion (Fig. 5F), we hypothesized that this system could be used to
simultaneously generate double mutations at different genomic sites in M. tuberculosis.
Confirming this hypothesis, the desired double mutations could be generated, but at
a low efficiency (Fig. 5G). The addition of an ssrA tag, a 13-amino-acid sequence
appended to the C terminus of Cas9 that decreases leaky expression by promoting
proteolytic degradation of the tagged nuclease (52), dramatically increased the
genome-editing efficiency for generation of the double mutant (Fig. 5G). To test
whether this system can be used for multiple rounds of genome editing, we sequen-
tially mutated four genes (Rv3408, Rv0059, Rv2494, and Rv2596) in M. tuberculosis H37Ra.
Finally, we showed that this system can be used for high-efficiency genome editing in
M. tuberculosis H37Rv and in Mycobacterium bovis BCG (Table S3).

Investigation of the roles of toxins in M. tuberculosis. Given the high efficiency
of this system, it could be used for pooled knockout (KO) library construction. As a proof
of concept, we sought to construct a mutant library of toxin-antitoxin (TA) systems.
Endonuclease-deficient Cas9Sth1 (dCas9Sth1) has been constructed in an L5-integrating
plasmid for use in CRISPR interference (CRISPRi) in mycobacteria (48). We modified this
plasmid by exchanging dCas9Sth1 with Cas9Sth1, resulting in plasmid pYC1446 (Fig. S5D).
We further designed 88 sgRNAs to target 44 toxin genes, including 43 whose products
are toxic when expressed in M. smegmatis and vapC5 (Rv0627), which is an essential
toxin gene predicted based on transposon library screening (53). These sgRNAs were
constructed in the integrating plasmid pYC1446, and then the resulting plasmids were
mixed and transformed into M. tuberculosis strain H37Ra harboring pNHEJ-recX-sacB
(Fig. 6A), yielding approximately 3 � 104 transformants. Three hundred one transfor-
mants were picked for PCR and sequencing analysis, among which 84% carried at least
one mutation in one of 41 toxin genes (Fig. 6B and C). Similar to the individually
generated mutants (Fig. S6), most of the mutants generated in this pool contained
deletions of less than 10 bp (Fig. 6D). In addition, contrary to a previous report that
vapC5 is an essential gene (53), this experiment yielded three vapC5 mutants using two
sgRNAs (Fig. 6B), suggesting that vapC5 is not an essential gene.

RecA repression improves CRISPR-NHEJ-mediated genome editing in E. coli.
Cas9 has been used with NHEJ repair for genome editing in prokaryotes and archaea,
such as E. coli and Methanosarcina acetivorans (23, 54); however, the genome-editing
efficiency in these bacteria is low. RecA has homologues in many organisms, suggesting
that inhibiting RecA activity might improve the efficiency of NHEJ-mediated repair. To
test this hypothesis, we took advantage of a Cas9-NHEJ genome-editing system that
has been used to generate gene deletions in E. coli (23). RecX overexpression resulted
in a more-than-5-fold increase in the efficiency of Cas9-NHEJ-mediated genome editing
of the lacZ gene in E. coli (Fig. 7). This result suggests that the strategy we have
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developed for CRISPR-NHEJ-mediated genome editing in mycobacteria can be used in
other organisms.

DISCUSSION

The system developed in this study will have a transformative impact on the speed,
scale, and scope of research that can be accomplished in mycobacteria. First, our
system represents the most efficient and convenient method for generating gene
deletions in mycobacteria. Current methods, such as ORBIT (9), need the experimenter
to be skilled in the preparation of highly efficient competent cells in order to obtain the
desired mutants. With our method, edited transformants are obtained at a rate of about
10% of the transformant control (Fig. 5A), making the technique easily used for all
experimenters. In addition, precise deletion of defined length in target genes can be
obtained via the use of paired sgRNAs. Moreover, our method can easily be used for
generation of gene deletions in M. marinum, which is difficult to genetically manipulate
using current methods. Second, genome editing using this system does not leave any
scars, which is important for vaccine development. Furthermore, following genome
editing, the bacteria can be easily cured of the helper plasmids in this system. Third, this
system can be used to simultaneously generate double mutations, which cannot be
achieved by the current methods, allowing us to generate N clean mutations in M.
tuberculosis within N � 2 months rather than the normal requirement for 4N or more
months using traditional methods. This trait is especially important when working with

FIG 6 Construction of the toxin gene knockout library. (A) Schematic overview of the construction of the CRISPR knockout toxin gene library. (B) Numbers of
colonies with different sgRNAs detected. Edited colonies are shown in gray, and nonedited colonies are shown in white. (C) Genome-editing efficiency in the
knockout library. Editing efficiency was calculated as the ratio of the number of edited events to the total number of colonies tested. (D) Frequencies of the
indicated mutation events among the mutants detected.
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this slowly growing mycobacterium, in which the generation of multiple mutations is
prohibitively time consuming. Finally, this system is scalable and can be used for
genome screening. Genomewide screens with CRISPRi technology have been widely
used in many organisms, including prokaryotes and eukaryotes (55–57), whereas
CRISPR KO screening has only been used in eukaryotes due to the low efficiency of
NHEJ-mediated genome editing in prokaryotes. Given the high efficiency of our system,
which allowed more than 104 mutants to be obtained from one transformation, the
generation of large mutant libraries for CRISPR KO screening is feasible. Moreover, each
sgRNA sequence functions as a barcode, allowing quantification of each knockout
strain in the pool using next-generation sequencing. Based on these features, the
system we have described here adds a key tool for simple construction of M. tubercu-
losis mutants that might facilitate the study of mycobacterial biology, the construction
of potential live M. tuberculosis vaccines, and the identification of essential drug targets.

NHEJ is the predominant DSB repair pathway in eukaryotes, and it depends on
multiple components, including the Ku70/Ku80 heterodimer, polymerases, nucleases,
and ligases (26, 27). Furthermore, multiple accessory proteins might be involved in
cleaning the DSB ends to make them suitable for repair (27). In contrast, the bacterial
NHEJ system was thought to consist of only two components until LigC1 was shown to
promote NHEJ in a strain harboring a point mutation in the LigD ligase domain
(LigD-LIG) (40). Here, we showed that NrgA might be also involved in NHEJ repair in
mycobacteria. This finding is supported by the following two pieces of evidence. First,
nrgA is closely linked to the genes encoding Ku and LigD in many mycobacteria
(Fig. S2A in the supplemental material), and second, NrgA expression increased the
genome-editing efficiency 2- to 3-fold in M. marinum, M. smegmatis, and M. tuberculosis
(Fig. 3). NrgA might act in concert with Ku and LigD to facilitate the DSB repair, which
might mirror the NHEJ system in eukaryotes, in which multiple accessory proteins are
involved in DSB repair. Furthermore, additional factors might also be involved in the
NHEJ repair pathway in mycobacteria, based on the observation that the deletion sizes
generated via NHEJ repair differ in M. tuberculosis, M. smegmatis, and M. marinum
(Fig. 2C and 4D; Fig. S6). The factors involved in the NHEJ repair pathway, and their
roles, remain to be elucidated.

RecA-dependent HR is the preferred DSB repair pathway in prokaryotes (42), and the
NHEJ pathway is inhibited in order to favor HR when possible (i.e., when a repair
template is available) (42). However, the dynamic relationship between NHEJ and HR is

FIG 7 RecA repression improves CRISPR-NHEJ genome editing in E. coli. (A) Transformation and
CRISPR-NHEJ genome-editing efficiency obtained by genome editing in E. coli with or without RecX
overexpression. Plasmid psgRNA-lacZ was transformed into E. coli MG1655 harboring pNHEJ and pZCas9
(or pZCas9-recX). Editing efficiency was calculated as the ratio of the number of edited events (i.e., white
colonies on the X-Gal plate) to the total number of transformants. (B) Normalized editing efficiency was
calculated as the ratio of edited events normalized against the transformation efficiency. Bars represent
the mean values � standard deviations from three independent experiments. For normalized editing
efficiency, P values were determined by Student’s unpaired t test.
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bidirectional, as repression of RecA-dependent HR also stimulates the NHEJ pathway
(Fig. 4A) (31). Given that RecA has homologues in every kingdom of life (42, 58),
repression of RecA might improve the efficiency of NHEJ-mediated genome editing in
other organisms, including prokaryotes and archaea. Thus, the paradigm of the CRISPR-
NHEJ system we developed in this study could be adapted for genome editing to
facilitate research on other organisms.

MATERIALS AND METHODS
Strains, media, and growth conditions. E. coli strain MG1655, M. marinum strain M, M. bovis BCG,

M. tuberculosis strains H37Ra and H37Rv, M. smegmatis strain mc2155, and their derivatives were used in
this study. Unless otherwise indicated, M. tuberculosis H37Ra was used. M. smegmatis was grown in
Middlebrook 7H9 broth (Difco) supplemented with 0.05% Tween 80 and 0.2% glycerol or on Middlebrook
7H10 plates supplemented with the appropriate antibiotics. M. marinum, M. bovis BCG, and M. tubercu-
losis were grown in Middlebrook 7H9 broth (Difco) supplemented with 0.05% Tween 80, 0.2% glycerol,
and oleic acid-albumin-dextrose-catalase (OADC; Becton Dickinson) or on 7H10 plates supplemented
with the appropriate antibiotics, 0.5% glycerol, and OADC (Becton Dickinson). When indicated, antibiotics
and small molecules were used at the following concentrations: kanamycin (25 �g/ml), hygromycin
(50 �g/ml), zeocin (50 �g/ml), and anhydrotetracycline (ATc) (50 ng/ml).

Plasmids. pMV261-Cas12a and pCR-Hyg (or pCR-Zeo) were used in M. marinum. The genes encoding
the MmNHEJ machinery (MMAR_4573, MMAR_4574, and MMAR_4575) were amplified from the M.
marinum chromosome. Plasmids containing cas9Sth1 were originally obtained from pLJR965 (48). pNHEJ-
Cas12a-recX and pNHEJ-Cas12a-recAmu (or pNHEJ-Cas9Sth1-recX) were used in M. smegmatis, and pYC1655
was constructed to express the cognate sgRNA. pNHEJ-recX-sacB (or pNHEJ-recAmu-sacB) were used in M.
tuberculosis. A codon-optimized cas9 gene under the control of the TetR-regulated promoter and the
sgRNA cassette under the control of an optimized TetR-regulated promoter were cloned into a plasmid
harboring the pMF1 replicon (51) to yield pYC1640 (or pYC2085). The sgRNA cassette contains two BbsI
restriction sites for insertion of the target sequence. A recX allele was amplified from the E. coli
chromosome and cloned into pZCas9 (23) to create pZCas9-recX. All plasmids used in this study are
described in Table S4 in the supplemental material. Details of plasmid constructions are available upon
request.

Genome editing in M. smegmatis. Cells harboring pNHEJ-Cas12a-recX (or pNHEJ-Cas9Sth1-recX) were
grown in 4 ml of 7H9 medium supplemented with 0.05% Tween 80, 0.2% glycerol, and 25 �g/ml
kanamycin. One or two milliliters of starter culture was used to inoculate 100 ml complete 7H9 broth in
a 250-ml flask, which was incubated at 37°C overnight. Competent M. smegmatis cells were prepared as
previously described (59). About 300 ng of the crRNA-expressing plasmid was mixed with the competent
cells. Electroporation was performed with the following settings: 2.5 kV, 25 �F, and 1,000-� resistance.
After electroporation, 1 ml of 7H9 broth was added to the cells, which were then immediately incubated
for 4 h at 30°C. Next, the cultures were plated on 7H10 agar supplemented with the appropriate
antibiotics and 50 ng/ml ATc. When targeting the gfp gene, the editing efficiency was calculated as the
frequency of GFP-negative (white) transformants. Each time, at least 24 GFP-negative colonies were
picked for PCR and sequencing analysis. To cure the helper plasmids, a single colony was picked and
grown to saturation in 7H9 medium at 37°C, followed by plating on 7H10 plates. The colonies from these
plates were streaked to screen for loss of antibiotic resistance, and more than 70% of the colonies had
lost the two helper plasmids in most cases.

Genome editing in M. marinum. Cells harboring pMV261-Cas12a were grown in 4 ml of 7H9
medium supplemented with 0.05% Tween 80, 0.2% glycerol, OADC, and 25 �g/ml kanamycin. One or two
milliliters of starter culture was used to inoculate 100 ml complete 7H9 broth in a 250-ml flask, which was
incubated at 30°C for 3 to 5 days. Competent M. marinum cells were prepared as previously described
(60). Electroporation of M. marinum was performed in a similar manner as for M. smegmatis. After
electroporation, the cells were cultured in 1 ml of 7H9 broth supplemented with OADC and incubated
overnight at 30°C. Next, the cultures were plated on 7H10 agar supplemented with OADC, the appro-
priate antibiotics, and 50 ng/ml ATc. The plates were incubated for 10 to 15 days at 30°C, after which time
transformants were picked for PCR and sequencing analysis. Target-specific primers were designed to
amplify sequences at least 1,000 bp upstream and downstream from the chromosomal sequences
flanking the cleavage sites. The PCR products were analyzed via agarose gel electrophoresis, and the
colonies with smaller or no PCR products were regarded as mutants. The PCR products amplified from
the transformants with sizes similar to that of the wild-type strain were further analyzed via sequencing.
The editing efficiency was calculated as the ratio of the number of edited events to the total number of
colonies analyzed by PCR and sequencing. To cure the helper plasmids, a single colony was picked and
grown to saturation in 7H9 medium supplemented with OADC at 30°C, followed by plating the cells on 7H10
plates supplemented with OADC. The colonies from these plates were streaked to screen for loss of antibiotic
resistance, and more than 50% of the colonies had lost the two helper plasmids in most cases.

Genome editing in M. tuberculosis. Cells harboring pNHEJ-recX-sacB (or pNHEJ-recAmu-sacB) were
grown in 10 ml of 7H9 medium supplemented with 0.05% Tween 80, 0.2% glycerol, OADC, and 25 �g/ml
kanamycin. One or two milliliters of starter culture was used to inoculate 100 ml complete 7H9 broth in
a roller bottle, which was incubated at 37°C for 5 to 7 days. At an optical density at 600 nm (OD600) of
�0.8, 10 ml of 15% sterilized glycine stock solution was added, yielding a final concentration of 1.5%, and
the incubation continued at 37°C with rolling for an additional 20 to 24 h. Competent M. bovis BCG and
M. tuberculosis cells were prepared as previously described (61). Electroporation of M. bovis BCG and M.
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tuberculosis was performed similarly to that of M. marinum and M. smegmatis with the following
modifications. After electroporation, the cells were cultured in 1 ml of 7H9 broth supplemented with
OADC and incubated for 2 days at 37°C to allow cells to grow at high density, mimicking the stationary-
phase environment. Next, the cultures were plated on 7H10 agar supplemented with OADC, the
appropriate antibiotics, and 50 ng/ml ATc. The plates were incubated for 20 to 30 days at 37°C, and
transformants were then picked for PCR and sequencing analysis. To cure the helper plasmids, a single
colony was picked and grown to saturation in 7H9 medium supplemented with OADC and 5 �g/ml
kanamycin at 37°C. The cells were then diluted 1:100 in 1 ml of 7H9 medium supplemented with OADC and
grown for 5 days. The cultures were diluted and plated on 7H10 plates supplemented with OADC and 2%
sucrose. The colonies from these plates were streaked to screen for loss of antibiotic resistance, and more than
70% of the colonies had lost the two helper plasmids in most cases.

For the sequential mutation of four genes in M. tuberculosis, the Rv3408 mutant was first constructed
as described above using a Zeor sgRNA-expressing plasmid. Next, a verified colony was picked to prepare
competent cells, which were then transformed with a Hygr sgRNA-expressing plasmid targeting Rv0059.
The transformants obtained were verified to have the Rv0059 mutation and loss of Zeocin resistance. A
verified colony was picked to prepare competent cells, which were then transformed with a Zeor plasmid
expressing double sgRNAs targeting Rv2494 and Rv2596 to simultaneously generate the double muta-
tions, generating an M. tuberculosis strain with mutations in four genes.

Genome editing in E. coli. Genome editing in E. coli was performed as described previously (23).
Briefly, the competent E. coli cells harboring the appropriate plasmids were transformed with control or
lacZ targeting the sgRNA plasmid and then plated on the appropriate selective LB plate supplemented
with X-Gal (5-bromo-4-chloro-3-indolyl-�-D-galactopyranoside) (40 �g/ml) and IPTG (isopropyl-�-D-
thiogalactopyranoside) (100 �M). Editing efficiency was calculated as the ratio of white colonies on the
X-Gal plate to the total number of transformants. Normalized editing efficiency was calculated as the
editing efficiency � (total CFU obtained with lacZ-targeting sgRNA/total CFU obtained with control
sgRNA).

Whole-genome sequencing. Edited strains and strain H37Ra harboring the helper plasmids pNHEJ-
recX or pNHEJ-recAmu were incubated at 37°C until they reached an OD600 of 0.6 to 0.8. M. marinum and
M. tuberculosis chromosomal DNA was extracted as previously described (62) and then sonicated into
fragments of less than 500 bp. The fragments were treated with End Prep enzyme mixture for end repair,
5=-end phosphorylation, and dA tailing in one reaction, followed by a T-A ligation reaction to add
adaptors to both ends. Size selection of the adaptor-ligated DNA was then performed using the AxyPrep
Mag PCR clean-up kit (Axygen), and fragments of approximately 410 bp (with an approximate insert size
of 350 bp) were recovered. Each sample was then amplified via PCR for eight cycles using the P5 and P7
primers, both of which carry sequences that can anneal with the flow cell to perform bridge PCR. The P7
primer also carries a 6-base index that allows multiplexing. The PCR products were cleaned up using the
AxyPrep Mag PCR clean-up kit (Axygen), validated using an Agilent 2100 Bioanalyzer (Agilent Technol-
ogies, Palo Alto, CA, USA), and quantified with a Qubit2.0 fluorometer (Invitrogen, Carlsbad, CA, USA).
Sequencing was carried out using a 2 � 150-bp read length, and approximately 500-fold coverage for the
genome size was expected.

Construction of the CRISPR knockout library. A total of 88 sgRNA-expressing plasmids targeting
44 toxin genes were constructed individually. Purified pooled plasmids were transformed into M.
tuberculosis H37Ra cells carrying pNHEJ-recX-sacB. The resulting transformants were first picked for
analysis of the transformed sgRNAs and then for verification of the genome editing via PCR and
sequencing analysis.

Data availability. The data that support the findings of this study are available from the corre-
sponding authors upon request. Short-read data in this study have been deposited at the NCBI Sequence
Read Archive (SRA) with the accession number PRJNA559662.
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