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BACKGROUND Familial hypercholesterolemia (FH) is a common genetic disorder that is strongly associated with

premature cardiovascular disease. Effective diagnosis and appropriate treatment of FH can reduce cardiovascular disease

risk; however, FH is underdiagnosed. Electronic health record (EHR)-based FH screening tools have been previously

described to enhance the detection of FH.

OBJECTIVES This scoping review explored the available literature on the performance and utility of existing EHR-based

FH screening algorithms or tools.

METHODS We searched PubMed, CINAHL, and Embase from inception to October 2023 for relevant literature on the

performance, utility, and/or implementation of EHR-based screening algorithms for FH.

RESULTS Of 14 screening algorithms and/or tools identified in the 27 studies included in this review, Familial

Hypercholesterolemia Case Ascertainment Tool (1, 2, and ML), FIND FH algorithm, Mayo SEARCH, and TARB-Ex

demonstrated the highest performance metrics for identifying patients with FH.

CONCLUSIONS EHR-based screening tools hold great potential for improving population-level FH detection. Lack

of established diagnostic criteria that can be applied across diverse populations and the lack of information about

the performance, utility, and implementation of current EHR-based screening tools across diverse populations limit

the current use of these tools. (JACC Adv. 2024;3:101297) Crown Copyright © 2024 Published by Elsevier on

behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

ASCVD = atherosclerotic

cardiovascular disease

CVD = cardiovascular disease

DLCN = Dutch Lipid Clinic

Network

EHR = electronic health record

FH = familial

hypercholesterolemia

LDL-C = low-density

lipoprotein cholesterol

LR = logistic regression

ML = machine learning

NPV = negative predictive

value

PPV = positive predictive value

SB = Simon Broome
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F amilial hypercholesterolemia (FH) is a
common autosomal dominant disor-
der, characterized by a cumulative

low-density lipoprotein cholesterol (LDL-C)
burden from birth leading to significantly
greater risk for premature cardiovascular dis-
eases (CVD). FH results from a functional mu-
tation in one of the 3 main genes regulating
LDL-C metabolism: LDL receptor (LDLR;
most common), apolipoprotein B (APOB), or
the proprotein convertase subtilisin/kexin
type 9 (PCSK9) gene.1-3 Other pathogenic var-
iants implicated in FH include mutations in
the apolipoprotein E (APOE) gene, signal
transducing adaptor family member 1
(STAP1), and LDL receptor adaptor protein 1
(LDLRAP1) gene.4 Globally, FH affects 1 in
250 to 1 in 500 individuals.5-8 Although
recent efforts have increased the awareness,
screening, diagnosis, and care of those living with
FH, it remains underdiagnosed with a detection rate
of <10% in the United States and lower in many coun-
tries (<5%).5,9,10 Early identification of individuals
with FH and timely interventions can reduce the
risk of premature atherosclerotic CVD (ASCVD) and
associated mortality by up to 80%.11-13

Although there are no universally accepted criteria
for the diagnosis of FH, the 3 most common tools
used globally include the Dutch Lipid Clinic Network
(DLCN) criteria, the UK Simon Broome diagnostic (SB)
criteria, and the U.S. Make Early Diagnosis to Prevent
Early Death criteria (Table 1).14-18 In 2015, the Amer-
ican Heart Association proposed a clinical classifica-
tion for FH that allows FH diagnosis based on clinical
criteria only or combined clinical and genetic infor-
mation.7 Scoring for most of these diagnostic criteria
relies on cholesterol profile, detailed family history
information, and physical examination findings, such
as tendon xanthoma and corneal arcus in addition to
genetic test results.14,17,18 However, when applied to
the general population, these criteria have significant
limitations because details such as a family history of
hypercholesterolemia, premature peripheral vascular
disease or coronary artery disease, and the physical
manifestations of severe hyperlipidemia are
frequently missing from health records. When recor-
ded, they are often miscoded.19 Additionally, these
criteria do not fully consider other potentially valu-
able, readily available information such as CVD risk
factors like age, sex, and diabetes status.20-22 Conse-
quently, there is a need for effective alternative
screening tools capable of incorporating available
information from electronic health records (EHRs).
There has been a growing interest in leveraging
machine learning (ML) and other established predic-
tive models trained on EHRs to enhance the detection
of FH. Studies have leveraged EHR data and ML al-
gorithms to predict the risk of CVD.23,24 For example,
Petrazzini et al and McGilvray et al demonstrated
improved accuracy, risk prediction, and reclassifica-
tion for coronary artery disease and 1-year all-cause
death or referral for heart failure surgical therapy,
respectively, using EHR-based ML algorithms.25,26

However, there is limited research in the field of FH
that examines the performance of the current EHR
screening tools, including ML algorithms, in identi-
fying FH and their utility in improving diagnoses.
Studies that describe the clinical validity (ability of a
test to accurately detect/predict a patient’s clinical
status) 27 and utility (ability of a test to improve di-
agnoses and health outcomes, considering the risks
and benefits associated with its use)27 of these novel
screening tools are limited. The evidence of how
these tools function and are implemented among
racial and ethnic minority groups, as well as in rural
areas, is limited. To address this gap, we conducted a
scoping review to explore the available literature on
existing EHR-based screening tools being used to
improve the detection and management of FH in
children and adult patients. We were interested in
answering the research questions: What is known
from the literature and what are important gaps in
knowledge regarding EHR-based FH screening tools,
including their performance, utility, and imple-
mentation in diverse populations?

We had 3 main goals: 1) identify and assess the
performance of existing EHR-based screening algo-
rithms for FH across diverse populations, including
racial and ethnic minority groups; 2) examine the
available evidence on utility and implementation of
these algorithms; and 3) understand the resulting
experiences of patients and health care professionals,
including gaps and challenges associated with the use
of these algorithms in clinical practice.

METHODS

PROTOCOL. The protocol and research question for
this review were formulated using the Population,
Concept, and Context guidelines outlined in the JBI
Manual of Evidence Synthesis28 (Table 2). A scoping
review format, which allows for a broader exploration
of the available evidence, key characteristics, and the
knowledge gaps related to a given field was used in
this study.29 The review was conducted in accordance
with the Preferred Reporting Items for Systematic



TABLE 1 Features of Commonly Used FH Diagnostic Criteria

DLCN SB MEDPED

Elevated LDL-C Present Present Present

Patient with premature CAD Present Absent Absent

Patient with premature PVD Present Absent Absent

Tendinous xanthomata in the patient Present Present Absent

Cornea arcus in the patient Present Absent Absent

Evidence of FH genetic mutation Present Present Absent

Family history of premature CAD Present Present Absent

Family history of hypercholesterolemia Present Present Present

Family history of tendinous xanthomata
or cornea arcus

Present Present Absent

DLCN ¼ Dutch Lipid Clinic Network; SB ¼ Simon Broome; MEDPED ¼ Make Early
Diagnosis to Prevent Early Death; FH ¼ familial hypercholesterolemia;
LDL-C ¼ low-density lipoprotein cholesterol; CAD ¼ coronary artery disease;
PVD ¼ peripheral vascular disease.
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Reviews and Meta-Analyses extension for Scoping
Reviews (PRISMA-ScR) recommendations.30 Institu-
tional Review Board approval was not required, as
publicly available data were used.

SEARCH STRATEGY. The search terms for this re-
view were selected following consultations with a
panel of experts, the research team, and a librarian
from Emory University. Medical Subject Heading
(MeSH) terms that aligned with the predefined in-
clusion criteria were used to construct a focused
search strategy for identifying relevant studies.
Terms such as familial hypercholesterolemia, algo-
rithm, model, tool, electronic health/medical records
were combined and refined based on the relevance
of the retrieved results to the research topic. An
initial literature search was performed on April 5,
2023, using PubMed. This search was subsequently
replicated in CINAHL via EBSCO, and Embase on
July 31, 2023. To ensure the review incorporated the
most current literature, a final search in all 3
databases was conducted on October 30, 2023.
TABLE 2 Inclusion Criteria Using the PCC Guideline by JBI Manual of

Popula

Primary care patients or patients (both pediatric and adults) from specialist c
EHR data from primary and/or secondary care

Individuals from the general population or community cohorts with EHR da

Conce

Studies on the performance and utility of EHR-based screening tools includ
Diagnostic accuracy test studies on models trained on clinical data availab
gaps associated with the implementation of such algorithms. Studies con
care professionals’ experience with the use of such screening tools.

Conte

The performance and implementation across all populations including subp

EHR ¼ electronic health record; FH ¼ familial hypercholesterolemia; JBI ¼ Joanna Brigg
The search strategy is included in the supplemental
file (Supplemental Table 1). The search was
restricted to studies published in English. Subse-
quently, downloaded search results from PubMed,
CINAHL, and Embase were imported into Covidence
systematic review software (Veritas Health Innova-
tion)31 for deduplication and screening. Additional
duplicates identified during screening were manu-
ally removed.

ELIGIBILITY CRITERIA AND STUDY SELECTION.

Studies that evaluated the performance, utility,
and/or implementation of EHR-based screening al-
gorithms for FH were considered eligible. Studies that
reported patients’ or health care professionals’ ex-
periences with the use of such algorithms were
included. Studies investigating other screening tools
or approaches, such as cascade screening or tools not
trained on EHR data, were excluded. Additional
exclusion criteria consisted of the following: 1)
studies examining outcomes other than FH; 2) studies
primarily focusing on the treatment and management
of FH; and 3) systematic reviews, conference ab-
stracts, research proposals, opinion papers, and
other reviews.

DATA EXTRACTION. Data extraction was done using
Covidence software. We extracted data on study
characteristics, including the first author’s name, year
of publication, title of publication, country, study
design, and study population. We also extracted in-
formation on the characteristics of FH screening
tools, including the method employed in developing
the screening model, the population setting used for
model development, the components of the model,
and a summary of the model’s performance. The
studies included in this review aimed to address
several objectives including 1) development, valida-
tion, and comparison of a novel algorithm for
Evidence Synthesis

tion

linics with EHR data, including outpatients and hospital-based patients, or

ta

pt

ing machine learning algorithms and established predictive models for FH.
le in EHRs. Studies that attempt to highlight the successes, challenges, and
ducted to examine the cost-effectiveness, utility, and patients’ and health

xt

opulations, racial, and minority ethnic groups as well as rural areas.

s Institute; PCC ¼ Population, concept, and context.

https://doi.org/10.1016/j.jacadv.2024.101297


FIGURE 1 Preferred Reporting Items for Systematic Reviews and Meta-Analysis Diagram for Selection of Studies
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identifying FH cases; 2) acceptability and feasibility
of using these novel algorithms, taking into account
the experiences of both health professionals and pa-
tients; 3) potential economic implications associated
with the use of the novel algorithms. Performance
metrics, such as sensitivity, specificity, positive pre-
dictive value (PPV), negative predictive value (NPV),
and area under the receiver operating curve, were
recorded as reported in the reviewed studies. All
studies referenced in the results are cited in the
supplemental materials (Supplemental Table 2).

RESULTS

STUDY CHARACTERISTICS. A comprehensive search
on PubMed, CINAHL, and Embase identified 5,872
articles. Following screening, 27 studies met the in-
clusion criteria. The PRISMA flow diagram (Figure 1)
shows the selection process and results of the
screening process. Among the 27 studies, 14 were
conducted in Europe, 7 in North America, 4 in Asia, 1
in Africa, and 1 in Australia. Nine studies were con-
ducted in the United Kingdom, 6 in the United States,
3 in China, 2 in Portugal, and 2 in the Netherlands.
The remaining studies were from Japan, South Africa,
Italy/Sweden, Canada/Australia, and Australia. Of the
27 studies, 3 included children between 2 to 17 years
(Supplemental Refs 7,13,21). Table 3 shows the char-
acteristics of the studies included in this review.
FH SCREENING TOOLS. The screening tools identi-
fied in the review differed in terms of methodology,
FH diagnostic criteria (reference standard), and
implementation settings. Study populations also
varied from patients from general practice and com-
munity cohorts to specialized populations, such as
patients undergoing coronary angiography, FH
screening programs, and lipid clinics. Three methods
were used to develop the screening tools:

https://doi.org/10.1016/j.jacadv.2024.101297
https://doi.org/10.1016/j.jacadv.2024.101297
https://doi.org/10.1016/j.jacadv.2024.101297
https://doi.org/10.1016/j.jacadv.2024.101297


TABLE 3 Characteristics of Selected Studies

Study ID First Author (Year) Title
Country of Study

Population Study Design
Study

Population

1 Gidding et al (2023) Yield of Familial Hypercholesterolemia Genetic and
Phenotypic Diagnoses After Electronic Health Record
and Genomic Data Screening.

United States Diagnostic test
accuracy study

Adults

2 Gratton et al (2023) A machine learning model to aid detection of familial
hypercholesterolaemia

United Kingdom Diagnostic test
accuracy study

Adults

3 Hesse et al (2022) Familial Hypercholesterolemia Identification by Machine
Learning Using Lipid Profile Data Performs as Well as
Clinical Diagnostic Criteria.

South Africa Diagnostic test
accuracy study

Adults

4 Wang et al (2022) Developing a Hybrid Risk Assessment Tool for Familial
Hypercholesterolemia: A Machine Learning Study of
Chinese Arteriosclerotic Cardiovascular Disease
Patients.

China Diagnostic test
accuracy study

Adults

5 Silva et al (2022) Introducing genetic testing with case finding for familial
hypercholesterolaemia in primary care: qualitative
study of patient and health professional experience.

United Kingdom Qualitative study of
patient and
health
professional
experience.

Adults

6 Jones et al (2022) Cost-Effectiveness of Screening Algorithms for Familial
Hypercholesterolaemia in Primary Care.

United Kingdom Cost-effectiveness
study

Adults

7 Albuquerque et al
(2022)

Performance comparison of different classification
algorithms applied to the diagnosis of familial
hypercholesterolemia in paediatric subjects.

Portugal Diagnostic test
accuracy study

Children

8 Mohammadnia et al
(2022)

Electronic health record-based facilitation of familial
hypercholesterolaemia detection sensitivity of
different algorithms in genetically confirmed
patients

the Netherlands Diagnostic test
accuracy study

Adults

9 Qureshi et al (2021) Comparing the performance of the novel FAMCAT
algorithms and established case-finding criteria for
familial hypercholesterolaemia in primary care.

United Kingdom Diagnostic test
accuracy study

Adults

10 Jones et al (2021) Acceptability, Appropriateness, and Feasibility of
Automated Screening Approaches and Family
Communication Methods for Identification of
Familial Hypercholesterolemia: Stakeholder
Engagement Results from the IMPACT-FH Study.

United States Qualitative study of
patient and
health
professional
experience.

Adults

11 Sheth et al (2021) Implementation of a Machine-Learning Algorithm in the
Electronic Health Record for Targeted Screening for
Familial Hypercholesterolemia: A Quality
Improvement Study.

United States Diagnostic test
accuracy study

Adults

12 Carvalho et al (2021) Application of a risk stratification tool for familial
hypercholesterolaemia in primary care: an
observational cross-sectional study in an unselected
urban population.

United Kingdom Diagnostic test
accuracy study

Adults

13 Correia et al (2021) Machine learning modelling of blood lipid biomarkers in
familial hypercholesterolaemia versus polygenic/
environmental dyslipidaemia.

Portugal Diagnostic test
accuracy study

Children

14 Tada et al (2021) Clinical diagnostic criteria of familial
hypercholesterolemia - A comparison of the Japan
atherosclerosis society and Dutch lipid clinic network
criteria.

Japan Diagnostic test
accuracy study

Adults

15 Akyea et al (2020a) Evaluating a clinical tool (FAMCAT) for identifying
familial hypercholesterolaemia in primary care: a
retrospective cohort study.

United Kingdom Diagnostic test
accuracy study

Adults

16 Akyea et al (2020b) Performance and clinical utility of supervised machine-
learning approaches in detecting familial
hypercholesterolaemia in primary care.

United Kingdom Diagnostic test
accuracy study

Adults

17 Pina et al (2020) Virtual genetic diagnosis for familial
hypercholesterolemia powered by machine learning.

Italy Diagnostic test
accuracy study

Adults

Sweden

18 Myers et al (2019) Precision screening for familial hypercholesterolaemia: a
machine learning study applied to electronic health
encounter data.

United States Diagnostic test
accuracy study

Adults

19 Sun et al (2019) A modified algorithm with lipoprotein(a) added for
diagnosis of familial hypercholesterolemia.

China Diagnostic test
accuracy study

Adults

20 Weng et al (2019) Detection of familial hypercholesterolaemia: external
validation of the FAMCAT clinical case-finding
algorithm to identify patients in primary care.

United Kingdom Diagnostic test
accuracy study

Adults

21 Banda et al (2019) Finding missed cases of familial hypercholesterolemia in
health systems using machine learning.

United States Diagnostic test
accuracy study

Children/Adults

22 Cao et al (2019) A Novel Modified System of Simplified Chinese Criteria
for Familial Hypercholesterolemia (SCCFH).

China Diagnostic test
accuracy study

Adults

Continued on the next page
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TABLE 3 Continued

Study ID First Author (Year) Title
Country of Study

Population Study Design
Study

Population

23 Ruel et al (2018) Simplified Canadian Definition for Familial
Hypercholesterolemia.

Canada Diagnostic test
accuracy study

Adults

Australia

24 Besseling et al (2017) Selection of individuals for genetic testing for familial
hypercholesterolaemia: development and external
validation of a prediction model for the presence of a
mutation causing familial hypercholesterolaemia.

the Netherlands Diagnostic test
accuracy study

Adults

25 Troeung et al (2016) A new electronic screening tool for identifying risk of
familial hypercholesterolaemia in general practice

Australia Diagnostic test
accuracy study/
Cost-
effectiveness
study

Adults

26 Safarova et al (2016) Rapid identification of familial hypercholesterolemia
from electronic health records: The SEARCH study.

United States Diagnostic test
accuracy study

Adults

27 Weng et al (2015) Improving identification of familial
hypercholesterolaemia in primary care: derivation
and validation of the familial hypercholesterolaemia
case ascertainment tool (FAMCAT).

United Kingdom Diagnostic test
accuracy study

Adults

References for all author groups mentioned in this table are included in Supplemental Table 2.

Osei et al J A C C : A D V A N C E S , V O L . 3 , N O . 1 2 , 2 0 2 4

EHR-Based Screening Algorithms for Familial Hypercholesterolemia D E C E M B E R 2 0 2 4 : 1 0 1 2 9 7

6

multivariable logistic regression (LR), simplified
clinical diagnostic criteria, and ML models (Table 4).

Patients with homozygous FH and secondary cau-
ses of hypercholesterolemia like severe or untreated
hypothyroidism, nephrotic syndrome, and liver dis-
eases were excluded from the training data sets to
ensure homogeneity of the study population and
robustness of the algorithms. Sex, age, lipid levels
(both treated and untreated), lipid-lowering
TABLE 4 Methods/Techniques Used in Deriving FH

Screening Tools

Methods/Techniques
Number of

Screening Tools

Machine learning techniques

Random forest 3

Logistic regressiona 5

Ensemble learning 3

Gradient boosting machine 3

Neural network 3

Decision tree 3

Deep learning 2

Naive Bayes 1

Classification tree 1

Lasso regression 1

Established multivariate analysis

Multivariable logistic regressionb 3

Other

Simplified clinical diagnostic criteriac 5

aThis is a machine learning-based logistic regression model. bThis is the standard
multivariable logistic regression used in the field of statistics. cThis covers modi-
fied diagnostic criteria other than the traditional criteria including the Dutch Lipid
Clinic Network (DLCN) criteria, Simon Broome diagnostic (SB) criteria, and Make
Early Diagnosis to Prevent Early Death (MEDPED) criteria.
medications, and a personal or family history of
ASCVD were among the predictors that were consis-
tent in most of the models. Algorithms derived from
ML models employed several types of ML techniques,
with random forest, ML-based LR, and ensemble
learning being the most utilized methods (Table 4).
While some tools were derived from a combination of
multiple ML models, others such as FIND FH utilized
a single ML method.

PERFORMANCE OF SCREENING TOOLS: CLINICAL

VALIDITY. The performance of these tools was
assessed based on the reported sensitivity, speci-
ficity, PPV, and NPV. Four different FH diagnostic
criteria were used as reference standards to estimate
the performance metrics: incident FH diagnosis
coded in health records, genetic diagnosis, DLCN, and
the SB criteria. In the majority of studies that used
reference standards other than traditional criteria
(DLCN, SB), the performance metrics were better in
the novel screening tools than in the traditional tools.
Most of the novel screening tools showed robust ev-
idence of clinical validity, with variable sensitivity
(12% to 100%), specificity (60% to 100%), PPV (0.68%
to 100%), and NPV (73% to 100%) (Table 5). These
estimates were based on varying probability thresh-
olds of population prevalence of FH as shown in
Table 5. The Familial Hypercholesterolemia Case
Ascertainment Tool (FAMCAT) (1 & 2) and FIND FH
algorithms were the most frequently validated
screening tools in most of the reviewed studies. Both
algorithms consistently demonstrated good perfor-
mance in FH detection in most of the study co-
horts (Table 5).

https://doi.org/10.1016/j.jacadv.2024.101297


TABLE 5 Summary of the Clinical Validity of Common FH Screening Algorithms Derived From Electronic Health Records

Model Method Used Country of Origin Component of Model
Study

Population Summary of Performance Metrics Summary of Other Findings

FAMCAT 1 Multivariable
logistic
regression

United
Kingdom

1. Sex
2. Age
3. Highest cholesterol

measurement recorded
4. Triglycerides

within 1 month of highest
measurement

5. Lipid-lowering drugs
used within 1 month of 3

6. Family history of FH
7. Family history of MI
8. Family history of

raised cholesterol
9. Type 1 or 2 DM
10. CKD

Primary care
patients
from general
practice

Weng 2015 (n ¼ 2,971,562;
CPRD data set):
Reference standard: incident
FH diagnosis coded in health
records. number of FH
cases ¼ 5,050
AUC:

� FAMCAT1: 0.860 (95% CI:
0.848-0.871)

� SB criteria: 0.749 (0.735,
0.763)

� DLCN: 0.737 (0.723, 0.752),
� Cholesterol criteria: 0.556

(0.527, 0.587).
Other performance metric for
FAMCAT1 at a prevalence of 1 in
500:
� Sensitivity: 70%
� Specificity: 88%

Weng 2019 (n ¼ 747,000;
QResearch database):
Reference standard: incident
FH diagnosis coded in health
records.
Number of FH cases ¼ 1,219
AUC:

� FAMCAT1: 0.832
(0.820, 0.845)

� SB criteria: 0.694
(0.681, 0.703)

� DLCN: 0.724 (0.710, 0.738)
� MEDPED: 0.624

(0.609, 0.638)
� Cholesterol criteria: 0.556

(0.527, 0.587).
Other performance metric for

FAMCAT1 at a prevalence of 1 in
500:

� Sensitivity: 84%
� Specificity: 60%
� PPV: 0.84%
� NPV: 99.2% prevalence of

1 in 250:
� Sensitivity: 72%
� Specificity: 84%
� PPV: 1.8%
� NPV: 98.2%

In the highest decile of
predicted probability, 752
cases were observed and
638 were predicted.
Performance of FAMCAT1
among ethnic groups:
AUC:

� White, White British, or
other White: 0.831 (0.816,
0.847)

� Asian, Asian British, or
other Asian: 0.767 (0.638,
0.905)

� Black, Black British, Afri-
can, or Caribbean: 0.850
(0.759, 0.942)

� Mixed or multiple ethnic
groups: 0.887 (0.827,
0.947)

� Other ethnic groups: 0.809
(0.728, 0.891)

� Unknown ethnicity- 0.832
(0.808, 0.855)

Akyea 2020 (n ¼ 1,030,183;
RCGP data set):

Reference standard: incident FH
diagnosis coded in health
records

Number of FH case ¼ 1,707

AUC:

� FAMCAT1: 0.844
(0.834, 0.854)

� FAMCAT2: 0.894
(0.885, 0.903)

� SB criteria: 0.730
(0.719, 0.741)

� DLCN: 0.766 (0.755, 0.778)
At a probability cutoff of 1 in

250 FAMCAT1 had

� Sensitivity: 77.5%
(75.4, 79.5)

� Specificity: 81.1%
(81.0, 81.2)

� PPV: 0.68% (0.64, 0.71)
� NPV: 100%
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TABLE 5 Continued

Model Method Used Country of Origin Component of Model
Study

Population Summary of Performance Metrics Summary of Other Findings

Carvalho 2021 (n ¼ 777,128):

FAMCAT1 was used to estimate
FH risk/diagnosis.

� At a probability threshold of
1 in 250, FAMCAT1 risk score
identified 11,736 (1.5%) as
likely FH cases

� At a probability threshold of
1 in 500, FAMCAT1 risk score
identified 23,798 (3.1%) as
likely FH cases

� Additionally, when the
algorithm was applied to
individuals with ischemic
heart disease, the estimated
prevalence of likely FH cases
increased significantly
(6.9%–11.8%).

Qureshi 2021 (n ¼ 260):
Reference standard: genetic
diagnosis (NGS)
Number of FH cases: 16
AUC:

� FAMCAT1 (at 0.140
threshold): 0.63 (0.51, 0.75)

� FAMCAT2 (at 0.0047
threshold): 0.82 (0.70,
0.94)

� SB possible FH: 0.64 (0.51,
0.76)

� DLCN score $6: 0.66 (0.54,
0.79)

� Cholesterol threshold: 0.68
(0.56, 0.81)

Sensitivity:
� FAMCAT1 (at 0.140

threshold): 31.2% (11.0,
58.7)

� FAMCAT2 (at 0.0047
threshold): 68.8% (41.3,
89.0)

� SB possible FH: 56.3% (29.9,
80.2)

� DLCN score $6: 37.5% (15.2,
64.6)

� Cholesterol threshold:
43.8% (19.8, 70.1)

Specificity:
� FAMCAT1 (at 0.140

threshold): 94.7% (91.1,
97.1)

� FAMCAT2 (at 0.0047
threshold): 94.7% (91.1,
97.1)

� SB possible FH: 70.9%
(64.8, 76.5)

� DLCN score $6: 95.5%
(92.1, 97.7)

� Cholesterol threshold:
92.6% (88.6, 95.6)

PPV, using an FH prevalence of
0.056:

� FAMCAT1 (at 0.140
threshold): 25.8% (12.8,
45.2)

� FAMCAT2 (at 0.0047
threshold): 43.4% (28.3,
57.4)

� SB possible FH: 10.3% (6.7,
15.3)

� DLCN score $6: 33.0% (17.5,
52.5)

� Cholesterol threshold:
26.0% (14.8, 40.9)
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TABLE 5 Continued
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Study
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NPV, using an FH prevalence of
0.056:

� FAMCAT1 (at 0.140
threshold): 95.9% (94.4,
97.0)

� FAMCAT2 (at 0.0047
threshold): 98.1% (96.1,
99.0)

� SB possible FH: 96.5%
(94.0, 97.9)

� DLCN score $6: 96.3%
(94.7, 97.4)

� Cholesterol threshold:
96.5% (94.8, 97.7)

FAMCAT 2 Multivariable
logistic
regression

United
Kingdom

1. Sex
2. Age
3. Highest cholesterol mea-

surement recorded (fitted as
a continuous variable)

4. Triglycerides within 1 month
of highest measurement
(fitted as a continuous
variable)

5. Lipid-lowering drugs used
within 1 month of 3

6. Family history of FH
7. Family history of MI
8. Family history of raised

cholesterol
9. Type 1 or 2 DM

10. CKD
11. Personal history of prema-

ture MI
12. History of PVD

Primary care
patients from
general
practice

Akyea 2020 (n ¼ 1,030,183;
RCGP data set):

Reference standard: FH
diagnosis coded in EHR

Number of FH case ¼ 1,707

AUC:

� FAMCAT2: 0.894 (0.885,
0.903)

� FAMCAT1: 0.844 (0.834,
0.854)

� SB criteria: 0.730 (0.719,
0.741)

� DLCN: 0.766 (0.755, 0.778)
At a probability cutoff of 1 in

250 FAMCAT2 had,

� Sensitivity: 69.4% (67.2,
71.6)

� Specificity: 92.8%
(92.8,92.9)

� PPV: 1.58% (1.49, 1.67)
� NPV: 100%

Qureshi 2021 (n ¼ 260):

Reference standard: genetic
diagnosis (NGS)

Number of FH cases: 16

AUC:

� FAMCAT2 (at 0.0047
threshold): 0.82 (0.70,
0.94)

� FAMCAT1 (at 0.140
threshold): 0.63 (0.51, 0.75)

� SB possible FH: 0.64 (0.51,
0.76)

� DLCN score $6: 0.66 (0.54,
0.79)

� Cholesterol threshold: 0.68
(0.56, 0.81)

Sensitivity:

� FAMCAT2 (at 0.0047
threshold): 68.8% (41.3,
89.0)

� FAMCAT1 (at 0.140
threshold): 31.2% (11.0,
58.7)

� SB possible FH: 56.3%
(29.9, 80.2)

� DLCN score $6: 37.5% (15.2,
64.6)

� Cholesterol threshold:
43.8% (19.8, 70.1)

Continued on the next page

J A C C : A D V A N C E S , V O L . 3 , N O . 1 2 , 2 0 2 4 Osei et al
D E C E M B E R 2 0 2 4 : 1 0 1 2 9 7 EHR-Based Screening Algorithms for Familial Hypercholesterolemia

9
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Specificity:

� FAMCAT2 (at 0.0047
threshold): 94.7% (91.1,
97.1)

� FAMCAT1 (at 0.140
threshold): 94.7% (91.1,
97.1)

� SB possible FH: 70.9%
(64.8, 76.5)

� DLCN score $6: 95.5%
(92.1, 97.7)

� Cholesterol threshold:
92.6% (88.6, 95.6)

PPV, using an FH prevalence of
0.056:

� FAMCAT2 (at 0.0047
threshold): 43.4% (28.3,
57.4)

� FAMCAT1 (at 0.140
threshold): 25.8%
(12.8, 45.2)

� SB possible FH: 10.3%
(6.7, 15.3)

� DLCN score $6: 33.0%
(17.5, 52.5)

� Cholesterol threshold:
26.0% (14.8, 40.9)

NPV, using an FH prevalence of
0.056:

� FAMCAT2 (at 0.0047
threshold): 98.1% (96.1,
99.0)

� FAMCAT1 (at 0.140
threshold): 95.9% (94.4,
97.0)

� SB possible FH: 96.5%
(94.0, 97.9)

� DLCN score $6: 96.3%
(94.7, 97.4)

� Cholesterol threshold:
96.5% (94.8, 97.7)

Mohammadnia 2022 (n ¼ 208
genetically confirmed
FH patients)

Sensitivity of models at the time
of genetic confirmation of
FH (T1) using EHR data:

� DLCN score $6: 19% (14, 25)
� FAMCAT2: 74% (67, 79)
Sensitivity of models during the

first visit (T2) using EHR data:

� DLCN score $6: 22% (17-28)
� FAMCAT2: 32% (26, 39)
Sensitivity of models at the time

of genetic confirmation of
FH (T1) using all data:

� DLCN score $6: 26% (20,
32)

� FAMCAT2: 81% (75, 86)
� MEDPED: 31% (25, 37)
� SB: 17% (13, 23)
Sensitivity of models during the

first visit (T2) using all data:

� DLCN score $6: 28%
(22-34)

� FAMCAT2: 45% (39, 52)
� MEDPED: 11% (7, 15)
� SB: 15% (11, 21)
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Study
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FAMCAT ML Supervised ML
models

� ML-based lo-
gistic
regression

� Random
forest

� Gradient
boosting

� Deep learning
� Ensemble

United
Kingdom

Top predictors in the models:
Highest total cholesterol,

triglycerides at highest total
cholesterol, age at highest
total cholesterol, hypertension
control at highest total
cholesterol, liver disease at
highest total cholesterol,
highest LDL-C, triglycerides at
highest LDL-C, age at highest
LDL-C, systolic BP at highest
LDL-C, hypothyroidism control
at highest LDL-C, kidney
disease at highest LDL-C,
family history of FH, family
history of all CHD, family,
history of premature CHD, sex,
any diagnosis of CHD, BMI,
statin potency at baseline,
tendon xanthoma, any
diagnosis of diabetes ever.

Primary care
patients
from
general
practice

Akyea 2020b (n ¼ 4, 027,775;
CPRD data set):

Reference standard: incident FH
diagnosis coded in health
records

Number of FH case ¼ 7,928

AUC:

� ML-based logistic regression:
0.812

� Random forest: 0.891
� Gradient boosting: 0.892
� Deep learning: 0.892
� Ensemble: 0.890
Other performance metric at a

prevalence of 1 in 250:

Sensitivity:

� ML-based logistic regression:
37.6% (35.5, 39.8)

� Random forest: 69.1%
(67.0, 71.2)

� Gradient boosting: 58.3%
(56.1, 60.5)

� Deep learning: 72.6% (70.6,
74.6)

� Ensemble: 30.5%
(28.4, 32.6)

Specificity:

� ML-based logistic regression:
96.7% (96.6, 96.7)

� Random forest: 92.0%
(92.0, 92.1)

� Gradient boosting: 95.8%
(95.8, 95.9)

� Deep learning: 90.0%
(89.9, 90.0)

� Ensemble: 99.3%
(99.3, 99.3)

PPV:

� ML-based logistic regression:
4.4% (4.1, 4.6)

� Random forest: 3.4%
(3.3, 3.5)

� Gradient boosting: 5.3%
(5.1, 5.5)

� Deep learning: 2.8%
(2.8, 2.9)

� Ensemble: 15.5%
(14.5, 16.4)

NPV:

� ML-based logistic regression:
99.7% (99.7, 99.8)

� Random forest: 99.9%
(99.9, 99.9)

� Gradient boosting: 99.8%
(99.8, 99.8)

� Deep learning: 99.9%
(99.9, 99.9)

� Ensemble: 99.7%
(99.7, 99.7

% high probability/probable FH
cases identified by models:

� ML-based logistic regres-
sion: 3.38

� Random forest: 8.09
� Gradient boosting: 4.27
� Deep-learning: 10.16
� Ensemble: 0.73
Although the ensemble model
could identify 0.73% (the least
among the 5 models) of the
population as probable FH cases
requiring clinical review, it had
the highest PPV (15.5%) and
positive likelihood ratio
(45.5%). These diagnostic char-
acteristics make the use of the
ensemble model more appro-
priate given resource implica-
tions and workload.
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PERFORMANCE OF SCREENING TOOLS: UTILITY.

Three of the 27 studies demonstrated evidence of
utility (Supplemental Refs 6,16,25). Troeung et al
concluded that screening patients from general
practice with TARB-Ex is a time- and cost-effective
method of identifying individuals suspected to have
FH, compared to manual review by a general practi-
tioner (Supplemental Ref 25). In the other 2 studies,
the utility of FAMCAT (1, 2, or ML) was assessed either
through a cost-effectiveness analysis or by likelihood
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https://doi.org/10.1016/j.jacadv.2024.101297
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https://doi.org/10.1016/j.jacadv.2024.101297


TABLE 5 Continued

Model Method Used Country of Origin Component of Model
Study

Population Summary of Performance Metrics Summary of Other Findings

Mayo SEARCH
ePhenotyping
algorithm

Clinical criteria
with natural
language
processing
component

United
States

Modified DLCN criteria using
both structured and
unstructured EHR data;

1. Family history of hypercho-
lesterolemia or premature
ASCVD

2. Personal history of hyper-
cholesterolemia or premature
ASCVD

3. Features of FH on physical
examination

4. Plasma LDL-C levels

Primary care
patients

Safarova 2016 (n ¼ 131,000):
Reference standard: DLCN criteria
Number of FH cases: 423
Performance metrics after blinded

expert review of 105 randomly
selected algorithm derived
cases, using a prevalence of 1
in 310:

Sensitivity: 97%
Specificity: 94%
PPV: 94%
NPV: 97%

However, when compared to
the gold standard, the
algorithm misclassified 19
individuals. Specifically, the
DLCN score was
overestimated in 13 patients
and underestimated in 6
patients.

Additionally, 5 patients were
reclassified from definite/
probable FH to possible FH,
while only one patient was
incorrectly grouped as
possible FH despite having a
probable FH diagnosis.

Gidding 20237 (n ¼ 59,729):

Reference standard: genetic
diagnosis (P/LP variants using
NGS) and phenotypic
diagnosis using DLCN

Number of FH cases: 280

Performance metrics using
genetic diagnosis as standard

Sensitivity:

� Mayo SEARCH: 69.3%
� FIND FH: 12.1%
� Mayo of FIND FH: 70.4%
Specificity:

� Mayo SEARCH: 82.8%
� FIND FH: 99.1%
� Mayo of FIND FH: 82.4%
PPV:

� Mayo SEARCH: 1.9%
� FIND FH: 5.9%
� Mayo of FIND FH: 1.8%
NPV:
� Mayo SEARCH: 99.8%
� FIND FH: 98.6%
� Mayo of FIND FH: 99.8%

Mayo SEARCH algorithm
flagged 10,415 as likely FH
cases, 195 (1.9%) had a P/LP
variant for FH.

FIND FH identified 573 as likely
FH cases, 34 (5.9%) had a
P/LP variant for FH.

Overall, 197 (70%) of the 280
with P/LP variant were
identified by at least 1
algorithm.

Phenotypic diagnosis was rarely
ascertained due to missing
data.

FIND FH Machine learning
model

� Random
forest

United
States

Demographic:
Age, sex
Conditional:
High LDL cholesterol with no lipid-

lowering therapies, high LDL
cholesterol with high-intensity
statin prescription, high LDL
cholesterol with moderate-
intensity statin prescription,
high LDL cholesterol with
statins and ezetimibe

Prescription based:
Total number of prescription codes,

number of atorvastatin
prescriptions, number of
rosuvastatin prescriptions,
number of evolocumab
prescriptions.

Diagnosis based:
Number of E78.00 codes

(hypercholesterolaemia), total
number of diagnosis codes,
number of E78.4 or E78.5 codes
(hyperlipidemia), number of I10
codes (hypertension).

Procedure based:
Total number of procedure codes,

number of 93,000 codes
(electrocardiogram), number of
99,214 codes (outpatient
services), number of 36,415
codes (venipuncture)

Laboratory result based:

Primary care
patients
including
pediatric
population

Banda 2019 (n ¼ 12,253):

Reference standard: genetic
testing/clinical diagnosis

Number of FH cases: 663

Performance metric for internal
validation (prevalenceof 1 in 30):

� AUC: 0.94
� AUPRC: 0.71
� Sensitivity: 0.75
� Specificity: 0.99
� PPV: 0.88
� F1 score: 0.81
Performance metric for external

validation (prevalence of 1 in 70):

� AUC: 0.94
� AUPRC: 0.68
� Sensitivity: 0.68
� Specificity: 0.99
� PPV: 0.85
� F1 score: 0.75

The model identified 56
individuals with a high
probability of FH. Of the 56
predictions, 39 had a DLCN
score of 3–5 (5 of these met
MEDPED criteria); 7 had a
DLCN score of 6–8 (3 of
these met MEDPED criteria);
and 1 had a DLCN score >8.
ie, 47/56 (84%) had a DLCN
score of $3 or were
MEDPED positive.

Myers 2019 (n ¼ 170,674,009):

Reference standard: genetic
testing/clinical diagnosis

Number of FH cases: 939 (out of
84,075, training data set)

Performance metric using a
prevalence of 1 in 71;

FIND FH identified 1,331,759
individuals as likely FH cases
among a population of
170,416,201 Americans. In a
subset review of 45 of these
likely FH cases, 87% were
confirmed to have possible,
probable, or definite FH by
at least one diagnostic
criterion or attending
physician.
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Maximum value of total cholesterol,
maximum value of LDL
cholesterol, average value of
LDL cholesterol, average value
of total cholesterol

� AUC: 0.89
� AUPRC: 0.55
� Sensitivity: 0.45
� PPV: 0.85

Further application of the
screening tool to a health
care delivery system data
set, encompassing
structured EHR data from
over 170,000 individuals,
flagged 866 patients as
likely FH cases. Upon review
of 103 of these likely FH
cases, 77% were confirmed
to have possible, probable,
or definite FH by at least one
diagnostic criterion or an FH
expert.

Sheth 202132 (n ¼ 1,607,606):
Reference standard: genetic

testing (NGS)/clinical
diagnosis

Using the algorithm, 8614
individuals were flagged as
likely FH among the
1,607,606 eligible patients.

Subsequently, 153 patients were
seen in the preventive
cardiology clinic. Among
these patients, 46 were
diagnosed with FH based on
physician assessment, DLCN
or MEDPED criteria, or the
presence of an FH mutation.

112 out of the 153 were tested.
16 out of the 112 tested
positive for FH after genetic
testing, confirming the
genetic basis of the disease
and 42 patients received an
FH diagnosis based on
clinical assessment or
diagnostic criteria.

With the DLCN or MEDPED
criteria only, 23 out of the
46 genetically confirmed
patients would have been
classified as possible FH

Gidding 20237 (n ¼ 59,729):

Reference standard: genetic
diagnosis (P/LP variants using
NGS) and phenotypic
diagnosis using DLCN

Number of FH cases: 280

Performance metrics using
genetic diagnosis as standard

Sensitivity:

� Mayo SEARCH: 69.3%
� FIND FH: 12.1%
� Mayo of FIND FH: 70.4%
Specificity:

� Mayo SEARCH: 82.8%
� FIND FH: 99.1%
� Mayo of FIND FH: 82.4%
PPV:

� Mayo SEARCH: 1.9%
� FIND FH: 5.9%
� Mayo of FIND FH: 1.8%
NPV:

� Mayo SEARCH: 99.8%
� FIND FH: 98.6%
� Mayo of FIND FH: 99.8%

Simplified
Canadian FH
algorithm

Simplified clinical
diagnostic
criteria

Canada
Australia

1. LDL-C levels ($4.0 mmol/L
for men and women younger
than 18 years, $4.5 mmol/L
for ages 18-39 years,
and $5.0 mmol/L for subjects
40 years of age and older)

1. Patients
from a lip-
idology unit
in Canada

2. Patients
from an FH

Ruel 2018 (n ¼ 5,987 for Canada,
947 for Australia);
The Canadian model was
compared to the SB and DLCN
criteria in 2 different cohorts
(Canadian and Australian).
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2. Major criteria:
a. FH causing mutation
b. LDL-C $8.5 mmol/L
c. Presence of tendon

xanthomas.
3. Minor criteria:

a. Family history of elevated
LDL-C>95th percentile,
according to the LDL-C
criteria

b. History of ASCVD in the
proband or in a first-
degree relative younger
than 55 years for men or
younger than 65 years for
women.

program in
Australia

Reference standard: SB and
DLCN criteria
Canadian model vs SB (in
Canadian cohort):

� Sensitivity: 99.7%
� Specificity: 98.9%
� PPV: 95.3%
� NPV: 99.9%.
Canadian model vs DLCN
(in Canadian cohort):
� Sensitivity: 100%
� Specificity: 98.8%
� PPV: 94.5%
� NPV: 100%.
Canadian model vs SB
(in Australian cohort):
� Sensitivity: 99.3%
� Specificity: 98.2%
� PPV: 96.1%
� NPV: 99.7%.
Canadian model vs DLCN
(in Australian cohort):
� Sensitivity: 80.8%
� Specificity: 100%
� PPV: 100%
� NPV: 88.6%.

Simplified Chinese
Criteria for FH
(SCCFH)

Simplified clinical
diagnostic
criteria

China A definite diagnosis of FH by this
model requires at least 2 of the
following 3 criteria:

1. Untreated LDL-C
$4.8 mmol/L;

2. Tendon xanthomas in the
proband;

3. FH pathogenic mutation in
the LDLR, APOB, or PCSK9
gene.

Possible FH diagnosis was defined
as: untreated LDL-C
$ 4.8 mmol/L and the family
history of premature CAD
(#55 years for men; #60 years for
women) or hypercholesterolemia.

Primary care
patients

Cao 2019 (n ¼ 12,921)
Using the SCCFH system, 205
(1.59%) were classified as
having definite FH, while the
DLCN and SB criteria classified
223 (1.73%) and 202 (1.56%)
FH cases, respectively.
Reference standard: SB and
DLCN criteria
Performance metric for
SCCFH:

SCCFH vs SB-

� Sensitivity: 100%
� Specificity: 99.9%
� PPV: 98.5%
� NPV: 100%.
SCCFH vs DLCN-

� Sensitivity: 91.9%
� Specificity: 100%
� PPV: 100%
� NPV: 99.8%.

Japan
Atherosclerosis
Society (JAS)
FH Criteria

Simplified clinical
diagnostic
criteria

Japan A definitive diagnosis of FH by this
model requires at least 2 of the
following 3 criteria:

1. LDL cholesterol $4.65 mmol/L
2. Tendon xanthomas on the

dorsal side of the hands, el-
bows, or knees or the pres-
ence of Achilles tendon
hypertrophy or xanthoma
tuberosum.

3. A family history of FH or
premature CAD within
second-degree relatives.

Patients with
dyslipidemia

Tada 2021 (n ¼ 680):
Reference standard: genetic
diagnosis
Performance metric
Sensitivity:

� JAS FH criteria: 0.863
� DLCN criteria: definitive FH

0.520, probable FH 0.691,
possible FH 0.971

Specificity:
� JAS FH criteria: 0.956
� DLCN criteria: definitive FH

0.982, probable FH 0.929,
possible FH 0.717

PPV:
� JAS FH criteria: 0.873
� DLCN criteria: definitive FH

0.910, probable FH 0.771,
possible FH 0.543

NPV
� JAS FH criteria: 0.953
� DLCN criteria: definitive FH

0.855, probable FH 0.897,
possible FH 0.986

Positive likelihood ratio:
� JAS FH criteria: 19.806
� DLCN criteria: definitive FH

29.178, probable FH 9.699,
possible FH 3.431

The JAS FH criteria classified 173
(25.4%) as definite FH cases,
and the DLCN criteria
classified 100 as definitive-
FH patients, 57 as probable-
FH patients, and 156 as
possible-FH patients.

Among those classified as likely
FH cases using the JAS FH
criteria, 151(87%) had FH
genetic mutations. For those
classified as non-FH by the
JAS FH criteria, 24 (5%) FH
mutation-positive patients
were found.

In contrast, using the DLCN
criteria, 91 (91%) of patients
were identified as definitive
FH cases, 30 (52.6%) of
patients identified as
probable FH cases, 49
(31.4%) of patients
identified as possible FH
cases and 5 (1.4%) of
patients identified as
unlikely FH patients were
found to have FH genetic
mutations.
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Negative likelihood ratio:
� JAS FH criteria: 0.143
� DLCN criteria: definitive FH

0.489, probable FH 0.332,
possible FH 0.040

Simple prediction
model

Multivariable
logistic
regression

Netherlands 1. Age (square root)
2. Sex
3. History of CVD*
4. Age of first CVD* event
5. Current statin use
6. Levels of LDL-C (square

root), high-density
lipoprotein cholesterol (HDL-
C- log-transformed), and
triglycerides
(log-transformed)

7. Presence of hypertension
8. Current smoking
9. Current alcohol use
* CVD was defined as a history of
myocardial infarction, coronary
artery bypass graft, percutaneous
transluminal coronary
angioplasty, or ischemic cerebro-
vascular accident.

Patients from a
national
cascade
screening
program
and a lipid
clinic

Besseling 2017 (n ¼ 67,309):
Reference standard: genetic
diagnosis
Number of FH cases: 27,603
Performance metrics:
AUC:

� Development cohort: 85.4%
� Validation cohort: 95.4%
Calibration slope:
� Development cohort: 1.02
� Validation cohort: 1.06
Other performance metrics in the
development cohort:
Sensitivity:
� Cutoff probability of 0.30:

85.3 (85.1-85.5)
� Cutoff probability of 0.70:

49.2 (48.9-49.5)
Specificity:
� Cutoff probability of 0.30:

67.1 (66.9-67.4)
� Cutoff probability of 0.70:

94.5 (94.4-94.6)
PPV:
� Cutoff probability of 0.30:

64.2 (63.9-64.4)
� Cutoff probability of 0.70:

86.1 (85.9-86.4)
NPV:
� Cutoff probability of 0.30:

86.8 (86.7-87.0)
� Cutoff probability of 0.70:

73.0 (72.8-73.1)

Modified DLCN
score with
Lp(a)

Simplified clinical
diagnostic
criteria

China 1. Untreated LDL-C
2. Lp(a)
3. Premature CHD
4. Tendon xanthomas
5. Family history of CHD or

hypercholesterolemia

Patients
undergoing
coronary
angiography

Sun 2019 (n ¼ 10,449):
Reference standard: DLCN
Number of FH cases: 342
Performance metrics:
AUC:

� Development cohort: 99.1%
� Validation cohort: 99.0%
Sensitivity:
� Development cohort:

85.77% (80.71, 89.71)
� Validation cohort: 87.64%

(78.55, 93.37)
Specificity:
� Development cohort:

98.79% (98.52, 99.02)
� Validation cohort: 97.93%

(97.27, 98.43)
PPV:
� Development cohort:

70.45% (64.96, 75.43)
� Validation cohort: 60.0%

(51.02, 68.38)
NPV:

� Development cohort:
99.52% (99.33, 99.66)

� Validation cohort: 99.55%
(99.18, 99.76)

Continued on the next page
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TABLE 5 Continued

Model Method Used Country of Origin Component of Model
Study

Population Summary of Performance Metrics Summary of Other Findings

TARB-Ex Electronic
screening
using
structured
query
language

Australia Components of the DLCN criteria
A DLCN score $5 is considered

potential risk patients

Patients from
general
practice

Troeung 2016 (n ¼ 3,708)
Reference standard: Manual
review of EMR/DLCN
Performance metrics using
TARB-Ex:

� Sensitivity: 95.5% (77.2% to
99.9%)

� Specificity: 96.7% (94.3% to
98.3%

� PPV: 65.6% (46.9% to
81.4%)

� NPV: 99.7% (98.3% to
100%)

TARB-Ex identified 32 patients
with DLCN $5 whilst GP
manual review identified 22
patients. Using TARB-Ex,
screening was completed in
10 min for 360 patients
while GP manual review took
60 hours for same number
of patients. Notably, TARB-
Ex derived higher DLCN
scores where the manual
review indicated very low FH
risk (DLCN #3).

Hybrid Risk
Assessment
Tool for FH

Machine learning
model

� Stacking
ensemble

China 1. LDL-C
2. Premature CHD identified in

Taiwan FH diagnostic criteria
3. Family history of premature

CHD identified in Taiwan FH
diagnostic criteria

4. Family history of premature
stroke

5. Premature stroke
6. Premature peripheral

vascular disease
7. Tendon xanthomas
8. Age
9. Lipid-lowering medications

Patients with
ASCVD

Wang 2022 (n ¼ 5,597)
Reference standard: DLCN
Prevalence of FH: 2.57%
Performance metric:

� AUC: 94.85 (�0.47)
� Sensitivity: 97.06% (�0.86)
� ACC: ACC of 93.52 (�0.47)

Fusion/Combined
FH model

Machine learning
models

� ML-based lo-
gistic
regression

� Deep learning
� Decision tree

South Africa 1. Age at the time of lipid
profile

2. Sex
3. Total cholesterol
4. HDL-C
5. LDL-C
6. Triglycerides
Preference was given to results
obtained before initiation of lipid-
lowering drugs

Patients from
lipid clinics

Hesse 2022 (n ¼ 6,851):
Reference standard: genetic
diagnosis
Number of FH cases: 1,871
Performance metrics of model
at an FH prevalence of 64%
AUROC:

� ML: 71.1%
� LDL-C cutoff: 64.2%
� DLCN: 70.5%
Performance metrics of model at
an FH prevalence of 20%
AUROC:
� ML: 80.1%
Performance metrics of model at
an FH prevalence of 1%
AUROC:
� ML: 85.6%

For each selected probability
cutoff, the model had the
best accuracy and F score in
both internal and external
data sets.

Machine learning
model

Machine learning
model –

Lasso regression

United
Kingdom

1. LDL-C
2. LDL-C x LDL-C
3. LDL-C x statin use
4. Statin use
5. Apo-A1
6. Triglycerides
7. ALT
8. C-reactive protein
9. LDL-C polygenic score (PGS)
10. LDL-C x LDL-C PGS
11. Diastolic BP
12. BMI
13. Prevalent type 2 diabetes
14. Family history of CHD

Population
based-
cohort (UK
Biobank)

Gratton 2022 (n ¼ 139,779):
Reference standard: genetic
diagnosis.
488 FH variant carriers were
identified.
Performance metric:
AUC:

� Model with PGS for LDL-C:
0.77 (0.71-0.83)

� Model without PGS for LDL-C:
0.76 (0.71, 0.82)

� Simple model with LDL-C and
an indicator for statin
prescription: 0.71 (0.65-
0.77).

When considering a
classification threshold of
0.0013 (0.13%), the model
with LDL-C PGS showed the
highest net benefit among
all the models tested and
was able to reduce the
number of subjects referred
to genetic sequencing.

Machine learning
modela

Machine learning
classification
models –

� ML-based
logistic
regression

� Decision tree
� Random

forest
� Naïve Bayes

Portugal 1. LDL-C
2. Triglycerides
3. Apo-A1
4. BMI
5. Sex
6. Lp(a)

Children (aged
2-17 years)
from a
population
based-
cohort
(Portuguese
FH study)

Albuquerque 2022 (n ¼ 286):
Reference standard: genetic
diagnosis
104 FH variant carriers were
identified.
Performance metric under
cutoff value of 0.5:
Acc:

� LR: 0.84
� RF: 0.84
� NB: 0.84

Continued on the next page
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TABLE 5 Continued

Model Method Used Country of Origin Component of Model
Study

Population Summary of Performance Metrics Summary of Other Findings

Sensitivity:
� LR: 0.75
� RF: 0.71
� NB: 0.70
Specificity:
� LR: 0.90
� RF: 0.91
� NB: 0.92
PPV:
� LR: 0.82
� RF: 0.85
� NB: 0.84
NPV:
� LR: 0.86
� RF: 0.84
� NB: 0.84
Performance metric by maximizing

Youden index:
Acc:
� LR: 0.84
� RF: 0.83
� NB: 0.83
Sensitivity:
� LR: 0.84
� RF: 0.86
� NB: 0.79
Specificity:
� LR: 0.85
� RF: 0.81
� NB: 0.86
PPV:
� LR: 0.79
� RF: 0.72
� NB: 0.77
NPV:
� LR: 0.90
� RF: 0.91
� NB: 0.88

Machine learning
modela

Machine learning
classification
models – 10
different
models

Portugal 1. LDL-C
2. ApoB
3. Apo-AI
4. Triglyceride
5. LDL1
6. ApoC-III
7. Total cholesterol
8. BMI
9. Age
10. HDL-C
11. Apo-AII
12. ApoC-II
13. ApoC-III

Children (aged
2-17 years)
from a
population
based-
cohort
(Portuguese
FH study)

Correia 2021 (n ¼ 211):
Reference standard: genetic

diagnosis
88 FH variant carriers were

identified.
Performance metric for top

10 models;
Model 1: Acc-0.84; Sensitivity-

0.91; Specificity-0.86;
AUC-0.92

Model 2: Acc-0.84; Sensitivity-
0.83; Specificity-0.92;
AUC-0.91

Model 3: Acc-0.77; Sensitivity-
0.82; Specificity-0.90;
AUC-0.89

Model 4: Acc-0.77; Sensitivity-
0.82; Specificity-0.80;
AUC-0.88

Model 5: Acc-0.74; Sensitivity-
0.82; Specificity-0.85;
AUC-0.88

Model 6: Acc-0.81; Sensitivity-
0.82; Specificity-0.85; AUC-
0.87

Model 7: Acc-0.77; Sensitivity-
0.82; Specificity-0.90;
AUC-0.87

Model 8: Acc-0.77; Sensitivity-
0.73; Specificity-0.75;
AUC-0.76

Model 9: Acc-0.77; Sensitivity-
0.91; Specificity-0.60;
AUC-0.75

Model 10: Acc-0.85; Sensitivity-
0.73; Specificity-0.65;
AUC-0.75
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TABLE 5 Continued

Model Method Used Country of Origin Component of Model
Study

Population Summary of Performance Metrics Summary of Other Findings

Machine learning
model

Machine learning
classification
models –

� Classification
tree

� Gradient
boosting
machine

� Neural
network

Italy
Sweden

1. LDL-C/age
2. Triglycerides/LDL-C
3. HDL-C

Patients from
lipid clinics

Pina 2020 (n ¼ 612):
Reference standard: genetic
diagnosis.
418 FH variant carriers were
identified.
Performance metric in
Gothenburg (Sweden) cohort:
AUC:

� CT: 0.790 (0.782, 0.799)
� GBM: 0.829 (0.820, 0.838)
� NN: 0.833 (0.774, 0.910)
� DLCN: 0.683 (0.672, 0.693)
Sensitivity:
� CT: 0.739 (0.711, 0.768)
� GBM: 0.732 (0.721, 0.743)
� NN: 0.853 (0.756, 0.939)
� DLCN: 0.676 (0.066, 0.690)
Specificity:
� CT: 0.79 (0.767, 0.816)
� GBM: 0.813 (0.799, 0.826)
� NN: 0.579 (0.390, 0.770)
� DLCN: 0.606 (0.594, 0.619)
Acc:
� CT: 0.766 (0.750, 0.783)
� GBM: 0.776 (0.768, 0.785)
� NN: 0.794 (0.716, 0.860)
� DLCN: 0.636 (0.626, 0.646)
PPV:
� CT: 0.743 (0.720, 0.766)
� GBM: 0.765 (0.752, 0.777)
� NN: 0.813 (0.672, 0.936)
� DLCN: 0.580 (0.570, 0.590)
NPV:
� CT: 0.791 (0.772, 0.810)
� GBM: 0.790 (0.783, 0.798)
� NN: 0.784 (0.667, 0.876)
� DLCN: 0.699 (0.688, 0.709)

Performance metric in Milan
(Italy) cohort:
AUC:

� CT: 0.701 (0.702b, 0.710)
� GBM: 0.779 (0.776, 0.784)
� NN: 0.762 (0.727, 0.784)
� DLCN: 0.64
Sensitivity:
� CT: 0.693 (0.678, 0.707)
� GBM: 0.726 (0.722, 0.730)
� NN: 0.121 (0.061, 0.190)
� DLCN: 0.83
Specificity:
� CT: 0.693 (0.704b, 0.763)
� GBM: 0.658 (0.645,

0.670)
� NN: 0.947 (0.895, 0.982)
� DLCN: 0.46
Acc:
� CT: 0.70 (0.692, 0.710)
� GBM: 0.715 (0.712, 0.719)
� NN: 0.818 (0.792, 0.834)
� DLCN: 0.77
PPV:
� CT: 0.935 (0.929, 0.941)
� GBM: 0.920 (0.917, 0.923)
� NN: 0.872 (0.857, 0.891)
� DLCN: 0.89
NPV:
� CT: 0.308 (0.304, 0.313)
� GBM: 0.308 (0.304, 0.313)
� NN: 0.386 (0.326, 0.445)
� DLCN: 0.33

aStudies conducted among pediatric subjects only. bValue reported as seen in the original paper.

Acc ¼ accuracy; ALT ¼ alanine aminotransferase; ApoB ¼ apolipoprotein B; ASCVD ¼ atherosclerotic cardiovascular disease; AUC ¼ area under the receiver operating curves; AUPRC ¼ area under the precision-
recall curve; BMI ¼ body mass index; BP ¼ blood pressure; CAD ¼ coronary artery disease; CHD ¼ coronary heart disease; CKD ¼ chronic kidney disease; CPRD ¼ Clinical Practice Research Datalink;
CVD ¼ cardiovascular disease; CT ¼ classification tree; DM ¼ diabetes mellitus; DLCN ¼ Dutch Lipid Clinic Network; EMR ¼ electronic medical records; EHR ¼ electronic health record; FH ¼ familial hyper-
cholesterolemia; GBM ¼ gradient boosting machine; HDL-C ¼ high-density lipoprotein cholesterol; NGS ¼ next generation sequencing; MI ¼ myocardial infarction; LDL-C ¼ low-density lipoprotein cholesterol;
Lp(a) ¼ lipoprotein (a); LR ¼ logistic regression; NB ¼ naïve bayes; NN ¼ neural network; NPV ¼ negative predictive value; P/LP ¼ pathogenic/likely pathogenic; PPV ¼ positive predictive value; PVD ¼ peripheral
vascular disease; RF ¼ random forest; SB ¼ Simon Broome.

Osei et al J A C C : A D V A N C E S , V O L . 3 , N O . 1 2 , 2 0 2 4

EHR-Based Screening Algorithms for Familial Hypercholesterolemia D E C E M B E R 2 0 2 4 : 1 0 1 2 9 7

18
ratios and expected case-review workload. FAMCAT 2
emerged as the preferred screening method in the
study by Jones et al, as it was found to be cheaper and
effective compared to FAMCAT1, simple cholesterol
criteria, SB, and DLCN (Supplemental Ref 6). Akyea
et al also found that FAMCAT ML model derived with
ensemble learning had the best positive likelihood
ratio and was found more appropriate than 4 other
ML models (ML-based LR, random forest, gradient
boosting, and deep learning) given resource implica-
tions and workload (Supplemental Ref 16).
PERFORMANCE OF SCREENING TOOLS IN MINORITY

GROUPS AND LOW-RESOURCE SETTINGS. Overall,
the representation of racial and ethnic minority
groups in the reviewed studies was low. Of the 24
studies focusing on diagnostic test accuracy, only 6
provided information on the racial and ethnic
composition of the study populations used for both
development and validation of the screening tools.
The participation of African American/Black Carib-
bean/Black African people in these 6 studies ranged
from 1.2% to 13.4%, indicating the underrepresenta-
tion of this population in the reviewed studies. Hesse
et al, the only study conducted in Africa, included
only 3.2% Black individuals in the training data set
(Supplemental Ref 3). Except for 4 studies conducted
among Asian populations, the participation of Asian
people in studies conducted outside of Asia varied

https://doi.org/10.1016/j.jacadv.2024.101297
https://doi.org/10.1016/j.jacadv.2024.101297
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from 1.8% to 26%. The performance of FAMCAT1 was
specifically evaluated among diverse ethnic groups in
Carvalho et al (Supplemental Ref 12) and Weng et al
(Supplemental Ref 20). According to Carvalho et al,
among patients with ischemic heart disease, the
likelihood of FH using the FAMCAT 1 screening tool
was highest in White people and lowest in Black
people (Supplemental Ref 12). The authors of the
study attributed this finding to the lower sensitivity
of the FAMCAT 1 screening tool in Black and South
Asian ethnic groups. In that same study, the cohort
was made up of individuals with high levels of so-
cioeconomic deprivation, relative to UK national av-
erages. For Weng et al, while the predictive accuracy
of FAMCAT 1 varied among the ethnic groups exam-
ined, overall, the algorithm performed well in these
groups (Supplemental Ref 20). Among the qualitative
studies included in our review, representation of
Black and South Asian adults was limited. For 1 study,
Black adults made up only 4.2% and South Asian only
16.6% of the patient population (Supplemental Ref 5).
PATIENT AND HEALTH CARE PROFESSIONALS’

EXPERIENCE WITH SCREENING TOOLS. We identi-
fied 2 qualitative studies that explored the perspec-
tives of individuals living with FH and health care
professionals regarding the use of some of the
screening tools identified in this review
(Supplemental Refs 5,10). For Silva et al, a diverse
group of 24 patients with varying family histories and
FH test outcomes along with 17 primary care providers
found the FAMCAT tool to be helpful, simple to use,
and a good opportunity to enhance CVD prevention
(Supplemental Ref 5). In the second qualitative study,
individuals with FH (including those who were pre-
viously exposed to the FIND FH approach/algorithm)
and clinicians with expertise in this field found the
algorithm to be feasible, acceptable, and appropriate
to identify individuals with FH (Supplemental Ref
10). Study participants viewed the algorithm as a
valuable tool for FH detection. Similarly, the health
professionals and patients emphasized the impor-
tance of addressing the non-familiarity with FH as a
potential barrier to the successful implementation of
the FIND FH algorithm.

DISCUSSION

We report the first comprehensive evaluation of EHR-
based screening tools for FH (Central Illustration). The
main findings are the wide range of characteristics
exhibited by these tools, including sensitivity and
specificity, as well as clinically relevant parameters
such as PPV and NPV. The variability in the latter may
be attributed, in part, to the differing prevalence of
FH across populations and health care systems. The
heterogeneity among the study cohorts likely
impacted the variation in the diagnostic accuracy.
Among the screening tools, FAMCAT (1, 2, and ML),
FIND FH, Mayo SEARCH, and TARB-Ex had the
highest performance metrics for the identification of
FH. While FAMCAT (1 and 2) and FIND-FH algorithms
were tested across multiple cohorts, Mayo SEARCH
and TARB-Ex were used in only 2 and 1 of 27 identi-
fied studies, respectively. We found that very few
tools other than FAMCAT (1 and 2), FIND FH, Mayo
SEARCH, and TARB-Ex have been validated and/or
demonstrated strong performance for FH detection.
Additionally, our review highlights a paucity of
studies evaluating the utility of the identified models
for FH detection.

Although the FAMCAT2 and FIND FH algorithms
yielded similar performance metrics for the identifi-
cation of FH, considering the different algorithm
components may facilitate an improved understand-
ing for FH detection. FAMCAT 2 was built from the
FAMCAT 1 model and includes total cholesterol or
LDL-C, age during cholesterol measurement, tri-
glycerides, lipid-lowering drug usage, family history
of FH, family history of coronary heart disease, family
history of premature coronary heart disease, family
history of raised cholesterol, diabetes, and chronic
kidney disease (Supplemental Ref 9). In contrast, the
FIND FH algorithm includes a combination of de-
mographic (age, race), conditional (eg, high LDL-C
with no lipid lowering therapy), prescription (eg,
number of atorvastatin prescriptions), diagnosis (eg,
number of hypercholesterolemia International Clas-
sification of Diseases, Tenth Revision codes), pro-
cedure (eg, number of venepunctures), and
laboratory (eg, maximum value of LDL-C)
(Supplemental Ref 21). Assessing the components of
these 2 algorithms suggests that there may not be a
1-size fits all approach to implementing ML ap-
proaches within EHRs for identifying probable FH
cases and linking such patients to preventive cardio-
vascular services. Studies that directly compare the
performance of these novel tools are lacking, with the
notable exception of the Gidding study
(Supplemental Ref 1) that applied 2 algorithms, the
Mayo SEARCH and the FIND FH algorithms, to the
same study population finding improved, but
incomplete, case finding. Additionally, there has been
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a dearth of studies performed for FH algorithms in
children. The use of FH algorithms to identify FH
cases in childhood has the potential to reduce the risk
and severity of ASCVD, as well as facilitate cascade
testing.32-36 However, this would require more
frequent lipid testing in children and adolescent
beyond what is currently recommended.37

We compared ML approaches with established
multivariable LR and simplified diagnostic categori-
zation. Although the sample sizes of the studies
varied, LR models from multivariable regression
models showed better sensitivity and lower speci-
ficity when compared with ML models, even with
tools like FAMCAT, where both multivariable LR and
ML algorithms were utilized in different studies.
Despite using relatively fewer predictors, LR models
achieved a comparable area under the receiver
operating curve when compared to ML algorithms.
This aligns with prior research indicating that there
was no clear performance advantage of ML over LR
in clinical prediction models.38 Simplified diagnostic
criteria, on the other hand, demonstrated strong
diagnostic accuracy, albeit based on single studies,
and offered a more straightforward method for cat-
egorizing patients into likely/unlikely FH groups.
However, their validation, implementation, and
utility in other populations remain limited. Findings
from our study also show that most of the novel
EHR-based FH algorithms exhibit superior diagnostic
accuracy compared to existing FH tools. Yet, only a
few of these tools have demonstrated clear evidence
of utility. Important evidence gaps in utility include
direct evidence that EHR-based FH algorithms
implemented in diverse practice settings and pop-
ulations effectively align patient management de-
cisions with clinical guidelines and improve health
outcomes. Given the need for long-term follow-up
care of FH patients after an initial diagnosis, evalu-
ation of the cost-effectiveness of these tools is
warranted.

In addition to the test characteristics themselves,
the consideration of pretest probability is essential
when interpreting clinically relevant characteristics,
including PPV and NPV. Pretest probability of FH has
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a considerable effect on PPV and NPV performance
metrics, which was evident when comparing studies.
For example, applying the FAMCAT (1 and 2) and
FIND FH algorithms to general population EHR da-
tabases yielded very low PPV and high NPV, whereas
the opposite was found for the Simplified Canadian
FH algorithm applied to lipid clinic patients. Our re-
view further underlines the importance of generating
training data sets from samples that have a higher
pretest probability of FH, including specialized lipid
clinics globally. Future efforts can be focused on
creating large data sets derived from lipid clinics
across the globe to train a universal FH detection al-
gorithm. However, several current gaps and chal-
lenges related to race and socioeconomic status
remain among specialized lipid clinics. Systems-level
approaches to increase access to specialized lipid care
in lower socioeconomic communities should be pur-
sued concurrently with efforts to maximize diag-
nostic accuracy of FH detection algorithms.

Despite the development of EHR-based screening
tools to aid in diagnosing FH cases over the past
decade, previous research has highlighted challenges
in their implementation into clinical practice.39 Pre-
vious implementation studies have indicated that
over half of the patients identified by the FIND FH
were either unreachable and/or did not receive re-
sponses to their initial requests for further
testing.40,41 Additionally, many patients lack the
awareness or education regarding the cardiovascular
risk of FH, which hinders their follow-up with genetic
testing, even when it is offered free of charge.
Furthermore, systems-level barriers, such as privacy
policies and reduced access to medical services, make
it difficult to reach all identified patients. Lastly, the
lack of diversity in training data sets for the EHR-
based tools for FH limits the generalizability of the
tools to other populations and eventually worsens
disparities in CVD care. However, efforts to diversify
data, such as testing and implementing FH diagnostic
algorithms in blood donor screening programs have
been proposed.42

STRENGTHS AND LIMITATIONS. This review compre-
hensively assessed the diagnostic performance and
utility of EHR-based screening tools across diverse
populations, whereas prior reviews mainly focused
on strategies and interventions aimed at improving
screening and detection of FH.39,43,44 Although we
adhered to established guidelines and adopted a
thorough methodology for conducting and presenting
our review, we still acknowledge some limitations to
our study. Our search strategy and the decision to
include papers published exclusively in English may
have resulted in the exclusion of potentially eligible
studies. Scoping reviews typically do not include a
quality assessment of the included studies. Thus, the
assessment of potential biases was not considered in
this review. Additionally, the populations among the
included studies varied significantly. This limitation
precluded us from making meaningful comparisons
among these screening tools or assessing their actual
impact on FH management.

FUTURE DIRECTIONS. Our findings of reasonable
clinical validity and utility of primary care EHR tools
for the identification of FH are consistent with cur-
rent evidence of the potential to improve population-
level detection and management of high-risk groups
of patients with FH. However, several challenges
persist, including inconsistent FH diagnostic criteria
and limited representation of racial minority pop-
ulations and individuals in rural areas. These chal-
lenges currently impact our ability to determine the
most effective tool for FH detection in different
populations and settings. Importantly, although there
is no uniform gold standard for EHR-based detection
of FH, several ML algorithms have shown promise for
improving FH identification, including the FAMCAT
(1 and 2), FIND FH, Mayo SEARCH, and TARB-
Ex algorithms.

CONCLUSIONS

As we chart the future of EHR-based screening algo-
rithms for FH, further investigation will be needed to
address several key areas: establishing universally
accepted diagnostic criteria to serve as a benchmark
for all diagnostic test accuracy studies, validating and
replicating the performance (including model cali-
bration) of current EHR-based screening tools in
diverse populations, and evaluating the utility of the
existing EHR-based screening tools. Rigorous evalu-
ation of the utility of these tools is needed to guar-
antee their effectiveness in real-world health care
settings. Additionally, objective assessment that
compares EHR-based algorithms originating from
diverse patient populations to a robust reference
standard, in this case, genetic testing using the latest
next-generation sequencing, will be informative.



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: EHR

screening tools hold great potential for improving

population-level detection and management of

patients with FH.

TRANSLATIONAL OUTLOOK: Rigorous evaluation

of the utility of EHR-based FH screening tools is

needed to ensure their effectiveness in healthcare

settings. Additionally, the involvement of diverse

populations in future research could improve the

generalizability and equitable adoption of the FH

tools.
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Diverse and inclusive participation in future research
endeavors will be essential to improve the general-
izability, equitable adoption, and long-term sustain-
ability of FH screening tools in the general
population.
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