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In comparison with entanglement and Bell nonlocality, Einstein-Podolsky-Rosen steering is a newly
emerged research topic and in its incipient stage. Although Einstein-Podolsky-Rosen steering has been
explored via violations of steering inequalities both theoretically and experimentally, the known inequalities
in the literatures are far from well-developed. As a result, it is not yet possible to observe
Einstein-Podolsky-Rosen steering for some steerable mixed states. Recently, a simple approach was
presented to identify Einstein-Podolsky-Rosen steering based on all-versus-nothing argument, offering a
strong condition to witness the steerability of a family of two-qubit (pure or mixed) entangled states. In this
work, we show that the all-versus-nothing proof of Einstein-Podolsky-Rosen steering can be tested by
measuring the projective probabilities. Through the bound of probabilities imposed by local-hidden-state
model, the proposed test shows that steering can be detected by the all-versus-nothing argument
experimentally even in the presence of imprecision and errors. Our test can be implemented in many
physical systems and we discuss the possible realizations of our scheme with non-Abelian anyons and
trapped ions.

I
n 1935, Einstein, Podolsky, and Rosen (EPR) questioned the completeness of quantum mechanics (QM) based
on local realism1. Many efforts have been devoted to a deeper understanding of QM in the form of three types
of quantum nonlocalities: quantum entanglement, EPR steering, and Bell nonlocality2. Within the hierarchy of

nonlocalities, the set of EPR steerable states is a subset of entangled states and a superset of Bell nonlocal states.
Quantum entanglement and Bell nonlocality have attained flourishing developments since 1964. However, EPR
steering is a newly emerged research topic and, to date, is far from being completely understood. Steering
inequalities for EPR steering are the analog of Bell inequalities for Bell nonlocality. Their violations, predicted
by quantum mechanics, reveal EPR steering. Such a violation rules out the existence of a local-hidden-state (LHS)
model, the same way the violation of a Bell inequality rules out the existence of a local-hidden-variable (LHV)
model. In comparison to the development of Bell nonlocality, the research on EPR steering is in its developing
stages, even though Schrödinger discussed the concept in 19353. A reason for this is the absence of a rigorous
formulation of the concept of EPR steering, which did not appear until the work of Wiseman, Jones, and Doherty2

in 2007. Indeed, EPR steering answers a question of fundamental quantum physics as well as opens new
possibilities for quantum communication, thus it has inspired some recent research in quantum information
theory4.

For a pure entangled state shared by two separated observers Alice and Bob, Bob’s qubit can be ‘‘steered’’ into
different states although Alice has no access to the qubit. Schrödinger adopted the word steering to describe this
type of nonlocality. This means that Alice has the ability to remotely prepare Bob’s particle in different states by
measuring her particle using different settings, and here we use ~rA

a to denote the conditional state Bob gets if Alice
measures her particle with measurement Â and obtains result a. While Bob suspects that Alice may send him
some non-entangled particles and fabricate the results based her knowledge of LHS. If Bob’s system admits a LHS
model {2jrj}, where rj’s are states that Bob does not know (but Alice knows), and2j . 0 is the probability of rj,
then Alice could attempt to fabricate the results using her knowledge of j, in other words,
~rA

a ~
X

j
2 ajÂ,j
� �

2jrj, with
X

a
2 ajÂ,j
� �

¼ 1. If Bob finds there is a LHS model which can describe his
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conditional states after he asks Alice to perform the measurement on
her particle, then he is not convinced the existence of EPR steering.

Very recently many results have been achieved to show violations
of steering inequalities both theoretically and experimentally, thus
rendering LHS model untenable5–11. However, the existed steering
inequalities in the literatures are far from well-developed, and there-
fore it is not yet possible to observe EPR steering for some steerable
mixed states12. Another elegant approach to explore the contradic-
tion between QM and LHS model is the all-versus-nothing (AVN)
proof of the existence of EPR steering. This can be considered as the
steering analog of Greenberger-Horne-Zeilinger (GHZ) argument
without inequalities for Bell nonlocality13. Currently such an AVN
proof for EPR steering has been shown to be a strong condition to
witness the steerability of a family of two-qubit (pure or mixed)
entangled states and have the ability of detecting asymmetric steer-
ing12. This also offers an effective way to detect EPR steering for two
qubits experimentally.

In this work, we investigate the test of EPR steering according to its
AVN argument and demonstrate directly the contradiction between
LHS model and QM. We show that by observing projective prob-
abilities, the existence of steering can be verified by defining a prob-
ability bound imposed by LHS model. Our test is the first one
proposed to detect EPR steering based on the AVN proof and it is
suitable for all the two-qubit entangled states specified in Ref. 12,
both pure and mixed. The possible implementation of our test is
discussed by using non-Abelian Fibonacci anyons and trapped ions,
but it is not limited to these systems. Our test is also applicable to
many other physical systems, such as photons, atoms as well as
superconductors, etc. In a system of non-Abelian Fibonacci anyons,
each logical qubit is encoded into triplet of Fibonacci anyons and the
corresponding operations are carried out by braiding the anyons. As
braids are performed by taking an anyon either around another or
not, which will not cause small errors from slight imprecisions in the
way that anyons are moved. Therefore, the test is fault-tolerant to
errors and offers high experimental precision. In an ion-trap experi-
ment, present experimental achievements on high-fidelity state initi-
alization, quantum gates and state readout make our scheme of
detecting steering possibly testable.

Results
First let Alice and Bob share a pure entangled state jYæAB 5 cos
hj00æAB 1 sin hj11æAB. In the steering scenario, Alice adopts the
following settings: Â[ P ẑ

a,P x̂
a

� �
, where P ẑ

a and P x̂
z denote Alice’s

projective measurements in ẑ-and x̂-directions, and a (with a 5 0,
1) is measurement result. After Alice’s measurements, Bob’s con-
ditional states become

~rẑ,0
B ~ cos2 h 0j iB 0h j,

~rẑ,1
B ~ sin2 h 1j iB 1h j,

~rx̂,0
B ~

1
2

yj iB yh j,

~rx̂,1
B ~

1
2

Qj iB Qh j,

ð1Þ

where ~rÂ,a
B describes Bob’s state after Alice performs measurement Â

and obtains result a, and jyæB 5 cos hj0æB 1 sin hj1æB, jQæB 5 cos
hj0æB 2 sin hj1æB. If there exists a LHS model can fake the results (1),
i.e., there exists a suitable ensemble {2jrj} and a stochastic map

2 ajÂ,j
� �

satisfying ~rÂ,a
B ~

X
j
2 ajÂ,j
� �

2jrj, then Bob is not

convinced that Alice can steer his conditional states. Otherwise the
LHS model contradicts with QM.

According to the AVN proof12, the entangled state jYæAB cannot
be described by any LHS model except h 5 0 or p/2. The incisive
contradiction between QM and LHS model is due to different

predicted projective probabilities as stated in the following. For
QM, Bob obtains zero probabilities after he performs some appro-
priate projective measurements on his qubit

PQM
1 ~Tr 1j iB 1h j~rẑ,0

B

h i
~0,

PQM
2 ~Tr 0j iB 0h j~rẑ,1

B

h i
~0,

PQM
3 ~Tr y\

�� �
B

y\� ��~rx̂,0
B

h i
~0,

PQM
4 ~Tr Q\

�� �
B

Q\� ��~rx̂,1
B

h i
~0,

ð2Þ

where jyHæB 5 sin hj0æB 2 cos hj1æB and jQHæB 5 sin hj0æB 1 cos
hj1æB are orthogonal to jyæB and jQæB, respectively. However, for a
LHS model, it predicts the corresponding probabilities as follows,

PLHS
1 ~Tr 1j iB 1h j

X
j

2 a~0jẑ,jð Þ2jrj

" #
,

PLHS
2 ~Tr 0j iB 0h j

X
j

2 a~1jẑ,jð Þ2jrj

" #
,

PLHS
3 ~Tr y\

�� �
B y\� ��X

j

2 a~0jx̂,jð Þ2jrj

" #
,

PLHS
4 ~Tr Q\

�� �
B

Q\� ��X
j

2 a~1jx̂,jð Þ2jrj

" #
:

ð3Þ

From the AVN proof12, we know that the state jYæAB possesses EPR
steering if h ? 0 or p/2, and this tells us there exists no LHS model of
the state such that ~rA

a ~
X

j
2 ajÂ,j
� �

2jrj. When h 5 0 or p/2, the

state is separable, and hence it is possible to find a LHS model to
describe it. Therefore, we know that the probabilities (3) cannot be
zero simultaneously except h 5 0 or p/2.

In an ideal test for EPR steering, after Alice performs projective
measurement on her qubit of the state jYæAB, Bob then measures the
probabilities by projecting the states j0æB, j1æB, jyHæB and jQHæB on his
qubits. If he finds the four probabilities PB

i i~1,2,3,4ð Þ are all zero,
then EPR steering is demonstrated. Nevertheless, in real experiments
(Exp), measurement results are inevitably affected by experimental
precision and errors. It is possible that the probabilities obtained
experimentally may deviate from the theoretical values slightly, i.e.,
PExp

i ~PQM
i zei (here ei are small numbers caused by errors). We

then investigate how close a LHS model could be to simulate Eq.
(2). We have shown that for the state jYæAB the probabilities
PLHS

i ~0 i~1,2,3,4ð Þ only if the state shared by Alice and Bob is
not steerable, otherwise, some of PLHS

i cannot be zero. For the sake of
simplicity, consider the inevitable errors ei 5 e for all i, we can detect
steerability if PLHS

i we for some i. Therefore, the optimal LHS model
for this experiment is the one making PLHS

i approach to PQM
i as

closely as possible for all i. We define

D~ min
LHS

max
i[ 1,2,3,4f g

PLHS
i {PQM

i

�� ��� �	 

, ð4Þ

where D describes the bound of probabilities imposed by the optimal
LHS model. In our test, EPR steering can be detected when D . e.
Fig. 1(a) shows the relation between parameter h and D obtained
numerically (see the Methods section). We find that D is of order
1022 when h is not closed to 0 or p/2. This implies that the EPR
steering of state jYæAB can be revealed by the experiments with
precision e , 1023. In Fig. 1(a), it is observed that D changes sym-
metrically with respect to h and approaches to its maximal value

www.nature.com/scientificreports
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when h 5 p/4. This shows the more entangled the state is, the easier
to detect EPR steering in the experiment.

We next consider a two-qubit mixed state

rAB~ cos2 h yz
�� �

AB
yz
� ��z sin2 h Qzj iAB Qzh j: ð5Þ

Here yz
�� �

AB~
1ffiffiffi
2
p 00j iABz 11j iAB

� �
and

Qzj iAB~
1ffiffiffi
2
p 01j iABz 10j iAB

� �
are two Bell states. The measure-

ment settings of Alice are still Â[ P ẑ
a,P x̂

a

� �
, and after Alice performs

measurement Â and obtains result a, Bob’s conditional states can be

expressed as ~rÂ,a
B ~

X
j
2 ajÂ,j
� �

2jr
j

provided with a LHS model

{2jrj} and a stochastic map 2 ajÂ,j
� �

. Similarly, for the state rAB,
Bob obtains quantum probabilities of measuring his qubit in the
states j0æB, j1æB, j1æB and j2æB as

PQM
1 ~Tr 1j iB 1h j~rẑ,0

B

h i
~

sin2 h

2
,

PQM
2 ~Tr 0j iB 0h j~rẑ,1

B

h i
~

sin2 h

2
,

PQM
3 ~Tr {j iB {h j~rx̂,0

B

h i
~0,

PQM
4 ~Tr zj iB zh j~rx̂,1

B

h i
~0,

ð6Þ

where +j iB~
1ffiffiffi
2
p 0j iB+ 1j iB
� �

, and ~rẑ,a
B is Bob’s conditional state

after Alice performs projective measurement in ẑ-direction, etc. It
has been proved that there does not exist any LHS model for rAB with

h=+
p

4
12 such that probability equations in (6) can be satisfied

simultaneously. If Bob observes experimentally these four probabil-
ities PQM

i ’s, then EPR steering of the state is exhibited, or there exists
no LHS model. Consider experimental imprecision and errors, we
also investigate the condition to detect EPR steering of rAB by plot-
ting the variation of LHS bound D versus h, see Fig. 1 (b). It can be
found that for the experiments with precision e , 1023, the EPR
steering of rAB can be observed when h is not close to p/4. It is worthy
of pointing out that our test of EPR steering is not limited to the states
jYæAB and rAB, but also applicable to the family of two-qubit entang-
led states specified in Ref. 12, regardless of pure or mixed.

Discussions
Let us make some discussions on the possible realization of our test in
physical systems. We first consider non-Abelian Fibonacci anyons
which are shown to be the simplest non-Abelian quasiparticles for

universal topological quantum computation14. Follow Freedman
et al.’s work15, we encode logical qubits into triplets of anyons with
total topological charge 1: j0æL 5 j((?, ?)I, ?)tæ and j1æL 5 j((?, ?)t, ?)tæ
(here L denotes ‘‘logical’’). The so-called noncomputational state
jNCæ 5 j((?, ?)t, ?)Iæ is the only state of three anyons that has total
topological charge 0. Quantum operations can be constructed by
using two elementary braiding operations R1, R2 acting on the
Hilbert space of three Fibonacci anyons and their inverses16,17. The
obtained quantum gates, together with the controlled-NOT gate
obtained in Refs. 16–18 are useful in the construction of EPR steering
test by preparing logical-qubit states and achieving required opera-
tions (see the Methods section). Several candidates for realizing non-
Abelian anyons have been suggested in physical systems, such as
fractional quantum Hall liquid19, rotating Bose-Einstein conden-
sates20, as well as quantum spin systems21,22.

Another possible system to explore the realization of our test
experimentally is trapped ion. Refs. 23–25 have reported experi-
mental results of high-fidelity state preparation, quantum gate opera-
tions, and state measurement for optical qubits stored in 40Ca1 held
in a trap. State preparation is usually done by precisely manipulating
the internal levels of ion utilizing laser pulses and the Blatt group
realized state initialization with fidelity more than 99.8%24. By a
Mølmer-Sørensen-type gate operation26,27, a Bell-type entangled
state of ions with a fidelity of 99.3(1)% was realized in the same
work24. The Blatt group also presented single-qubit gates with fidelity
exceeding 99.9% in trapped ions23. As for state measurement cap-
ability in an ion-trap experiment, A. H. Myerson et al.25 achieved
99.991(1)% readout fidelity, sufficient for fault-tolerant quantum
computation by measuring population of states using time-resolved
photon counting. For the entangled state realized in Ref. 24, the
probability bound is found to be D 5 0.0732, and this means that
the EPR steering of the entangled state can be verified experimentally
with precision e , 0.0732. The experimental achievements in the
literatures23–25 tell us that our test of EPR steering based on the AVN
proof is possibly realizable with current techniques in ion-trap
experiments.

To summarize, we have presented a test to identify EPR steering
based on the AVN argument by measuring projective probabilities.
Our test is applicable to the family of two-qubit entangled states
specified in Ref. 12 regardless of pure or mixed. We have provided
the condition on experimental implementation of our scheme
through expression (4) that EPR steering can be observed in the
presence of experimental imprecision and errors. Our result is the
first experimental test presented to detect EPR steering by resorting
to the AVN proof, and it can be implemented in systems such as non-
Abelian anyons and trapped ions. The primary advantage of our test
based on non-Abelian anyons is that it is fault-tolerant, or the logical
quantum state used is robust against local perturbations. Specifically,

Figure 1 | Numerical results of the bound D imposed by the optimal LHS model versus h. For (a) |YæAB and (b) rAB.

www.nature.com/scientificreports
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it has been proven that these logical qubits might be robust to ran-
dom perturbations28. Our test can also be realizable in ion-trap
experiments based on current experimental techniques as recent
progress in trapped ion offers high-fidelity state preparation,
quantum gate operations, and state measurement for optical qubits
stored in it. Let us point out that the realization of our test is not
limited to the two systems but also applicable to many other physical
systems like photons, atoms and superconductors, etc. We expect
further investigations in this direction, both theoretically and
experimentally.

Methods
To find the optimal LHS model. We here present a theorem which is used to find the
optimal LHS model for a given two-qubit state. Theorem – For any given two-qubit
state rAB in a N -setting protocol, if there is a LHS model for the state, then there is a
LHS model with the number of hidden states no larger than 2N. The proof of the
Theorem needs two lemmas associated with the concept of deterministic LHS (dLHS)
model which is a LHS satisfying 2 ajÂ,j

� �
[ 0,1f g, VÂ, j, a. We also briefly restate the

notations to be used, ~rÂ
a is the conditional states of Bob after Alice measures Â and

gets result a g {0, 1}, the tilde here denotes this state is unnormalized and its norm is

PÂ
a , the probability associated with the output a.

Lemma 1. For any given two-qubit state rAB, if there is a LHS model for rAB then there
is a dLHS model for rAB.

In a general N-setting protocol, we have Â[ Â1,Â2,Â3, . . . ,ÂN
� �

. Suppose rAB has a
LHS description thus there is an ensemble {2jrj} and an associated probability
2 ajÂ,j
� �

fulfilling ~rA
a ~

X
j
2 ajÂ,j
� �

2jrj . We note that

2 1jÂ,j
� �

~1{2 0jÂ,j
� �

. Now if V j,Â
� �

,2 0jÂ,j
� �

[ 0,1f g, then it is a dLHS model.

We next check each j to see whether 2 0jÂ,j
� �

[ 0,1f g. For any j with

2 0jÂ,j
� �

[ 0,1f g, we keep these terms unchanged. For j~k 2 0jÂ,k
� ��� =[ 0,1f g, we

decompose this term into 2N separate terms as follows. First we define a new term

ma~
XN

i~1
2N{iaiz1, where ai denote the measurement results of Ai (ai 5 0, 1). It

is not difficult to find that ma ranges from 1 to 2N depending on ai. We then do the
decomposion by choosing

r
mað Þ

k ~rk, ð7Þ

2
mað Þ

k ~ P
N

i~1
2 ai Âi

�� ,k
� �

2k, ð8Þ

2 0jÂi,k
mað Þ

� 

~

1 if ai~0

0 else

	
ð9Þ

where r
mað Þ

k is the hidden state and 2
mað Þ

k is its weight. By direct calculations it can be

verified that 2 ajÂ,k
� �

2krk~
X2N

ma~1
2 ajÂ,k mað Þ
� 


2
mað Þ

k r
mað Þ

k . Eq. (9) shows the

reconstructed stochastic maps are all deterministic. Thus by this way, we get a dLHS
model that satisfies ~rA

a ~
X

j
2 ajÂ,j
� �

2jrj .

Lemma 2. For a dLHS model, ~rA
a ~

X
j
2 ajÂ,j
� �

2jrj can be rewritten as

PÂ
a rÂ

a ~
X

j[HÂ
a
2jrj , where HÂ

a stands for the set of hidden states that contribute to

rÂ
a indicating the corresponding 2 ajÂ,j

� �
~1. The equality holds if and only if the

following equalities are fulfilled,

PÂ
a ~

P
j[HÂ

a

2j

PÂ
a ra
!Â

~
P

j[HÂ
a

2j rj
!

8>>><
>>>:

ð10Þ

where ra
!Â

and rj
! are the Bloch vectors of rÂ

a and rj respectively.

Let us look at the proof of the lemma. We have rÂ
a ~ 1zra

!Â: s!
� 
.

2 and

rj~ 1zrj
!: s!

� ��
2, where 1 describes identity matrix. So the equality of

PÂ
a rÂ

a ~
X

j[HÂ
a
2jrj gives PÂ

a 1zPÂ
a ra
!Â: s!~

X
j[HÂ

a
2j1z

X
j[HÂ

a
2j rj
!: s!.

Thus we obtain Eq. (10).
We would like to point out that Eq. (10) is similar to the problem describing center

of mass if we treat the probabilities 2j and PÂ
a as masses, as well as Bloch vectors (rj

!

and ra
!Â

) as the position vectors of various masses. Lemma 2 shows that the task to

find a dLHS model for a state rÂ
a with probability PÂ

a is equivalent to find a distri-

bution of masses in the Bloch sphere with total mass PÂ
a and center of mass being

located at ra
!Â

. We show in the following that with the aid of Eq. (10), we can impose
constraints on measurement settings to find a dLHS model. If we cannot find a dLHS
model for rAB, Lemma 1 shows that we can neither find a LHS model, and this thus
affirms the steerability of rAB. For any given rj, we can always assign a N-length bit
string constructed from 2 ajÂ1,j

� �
2 ajÂ2,j
� �

� � �2 ajÂN ,j
� �

considering

2 ajÂi,j
� �

[ 0,1f g. Next let us describe the LHS model by dividing hidden states {rj}
into many subsets with each subset containing all of the rj that has the same N-length
bit string. Thus in this way, each subset is unique, or not overlapping with others. We
can take each of the subsets as one new hidden state by resorting to Lemma 2. We use
the fact that hidden state can be treated as mass point so we can consider the centre of
mass of each subset as the new state and the weight of the new state is the corre-
spoinding total mass. It is not difficult to find that there are totally 2N such new states,
and thus the LHS model has only 2N hidden states. This ends our proof of the
Theorem.

Figure 3 | Variations of D for | YæAB versus n/h. (a) h 5 p/8 and n ranges from 20 to 120, (b) h 5 p/6 and n ranges from 20 to 120, as well as (c) n 5 46, 50,

100 and h ranges from 0 to p/2. From (a) and (b), we find that the variation of D is negligibly small when n . 45 since the variation is in the ten-

thousandths place. From (c) it is clear that the three curves are almost overlapped and the results show that n 5 46 is large enough to obtain a reasonable

value of D.

Figure 2 | Approximating quantum gates Uh by braiding Fibonacci
anyons. In the plotting, time flows from left to right, U1 represents Up/6 and

U2 represents U2p/3.

www.nature.com/scientificreports
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Therefore we conclude that the optimal LHS model contains an ensemble with four
pure hidden states in the two-setting protocol, and more hidden states make no
improvement. The optimal LHS model is numerically obtained by minimizing

function Fn~
X4

i~1
vn

i for a large n, where vi~ PLHS
i {PQM

i

�� ��. In this approach, we
utilize the knowledge of vector norm. First we have (Fn)1/n which is the ln-norm of
vector~v~ v1,v2,v3,v4ð ÞT . We know that l‘ -norm of a vector is just its maximum
element and hence by definition D equals to the minimum of l‘-norm of the vector
~v~ v1,v2,v3,v4ð ÞT . So for a large enough n we can get a good approximation of D from
minimizing (Fn)1/n with varied rj. In our calculations, we use n 5 46 since we find
numerically the improvement of D by choosing a number larger than 46 is negligibly
small. As shown in Fig. 3 (a) and (b), we find the values of D by choosing h 5 p/8, p/6
for jYæAB with different n (ranging from 20 to 120). It is clear that the values of D do
not change substantially and the change is in the ten-thousandths place when n is
greater than 45. The results show us that n 5 46 is large enough to obtain a reasonable
value of D. Apparemently we can choose other values of n as long as n . 45 and the
choice will not affect the value of D much. We also plot the variation of D versus h by
choosing different n for jYæAB in Fig. 3 (c). Seen from Fig. 3 (c), the three curves
corresponding to n 5 46, n 5 50, n 5 100 respectively are almost overlapped. Hence
we know that n 5 46 is large enough to obtain a reasonable value of D.

Approximation of quantum gates in non-Abelian Fibonacci anyons. Quantum
operations can be constructed by using two elementary braiding operations R1, R2

acting on the Hilbert space of three Fibonacci anyons and their inverses16,17. In Fig. 2,
we plot the braids that approximate the quantum gate

Uh~
cos h sin h

sin h {cos h

� �
ð11Þ

with U1 5 Up/6 and U2 5 U2p/3. Any other quantum gate Uh can be obtained in a
similar way. The approximations are obtained by performing brute force searches and
the distance between two matrices and 9 is defined as the square root of the
largest eigenvalues of ( 2 9){( 2 9)16,17. The distances between the required
operations and the gates resulting from actual braiding are about 5.7 3 1025 for U1

and U2. In fact, these gates can be systematically improved to any required accuracy
due to the Solovay-Kitaev theorem29. The above quantum gates, together with the
controlled-NOT gate obtained in Refs. 16–18 are useful in the construction of EPR
steering test by preparing logical-qubit states. We apply the operation Uh (with h g
(0, p/2)) on the logical qubit A of initial state Yj iL0~ 0j iLA6 0j iLB and a controlled-
NOT gate is followed on the two logical qubits, then we have the two-logical-qubit
pure states Yj iLAB . To prepare mixed state, we need an ancilla logical qubit C, and
initially assume that the logical qubits are in the state Yj iL0~ 0j iL

A6 0j iLB6 0j iLC . We
apply Hadamard gate on logical qubit A, Uh on logical qubit C, then a controlled-
NOT gate on logical qubits A and B, and finally a controlled-NOT gate on logical

qubits C and B, we then have Yj iLABC~cos h yz
�� �L

AB
0j iLCzsin h Qzj iLAB 1j iLC . Look at

the first two qubits only, we successfully have the state rL
AB as in (5). All the operations

involved in our scheme, such as P ẑ
a and P x̂

a for Alice, y\
�� �L

B
y\� �� and Q\

�� �L

B
Q\
� �� for

Bob, can be carried out by braiding the Fibonacci anyons. For instance, the single-

logical-qubit states y\
�� �L

B
and Q\

�� �L

B
of Bob can be realized by using the action of U6h

on 1j iLB (up to a global phase).
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