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The infiltration of tumor-reactive T cells in the tumor site is associated with better survival
and immunotherapy response. However, tumor-reactive T cells were often represented
by the infiltration of total CD8+ T cells, which was confounded by the presence of
bystander T cells. To identify tumor-reactive T cells at the cancer lesion, we performed
integration analyses of three scRNA-seq data sets of T cells in melanoma. Extensive
heterogeneous functional states of T cells were revealed in the tumor microenvironment.
Among these states, we identified a subset of tumor-reactive T cells which specifically
expressed tumor-reactive markers and T cell activation signature, and were strongly
enriched for larger T cell receptor (TCR) clones. We further identified and validated a
tumor-reactive T cell signature (TRS) to evaluate the tumor reactivity of T cells in tumor
patients. Patients with high TRS scores have strong immune activity and high mutation
burden in the TCGA-SKCM cohort. We also demonstrated a significant association of the
TRS with the clinical outcomes of melanoma patients, with higher TRS scores
representing better survival, which was validated in four external independent cohorts.
Furthermore, the TRS scores exhibited greater performance on prognosis prediction than
infiltration levels of CD8+ T cells and previously published prognosis-related signatures.
Finally, we observed the capability of TRS to predict immunotherapy response in
melanoma. Together, based on integrated analysis of single-cell RNA-sequencing, we
developed and validated a tumor-reactive-related signature that demonstrated significant
association with clinical outcomes and response to immunotherapy.
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INTRODUCTION

Cancer immunotherapies by immune checkpoint blockade (ICB)
aim to reactivate the T cell responses to kill tumor cells. The
canonical targets of ICB therapy are cytotoxic T lymphocyte-
associated antigen 4 (CTLA4) and programmed cell death protein
1 (PD1).Both treatments eventually dependonthe activity of tumor
infiltration T cell pool to achieve tumor elimination (1). Compared
to conventional cancer therapies, ICB therapies have resulted in
durable response in tumor patients. However, the response to ICB
treatments vary among patients, only about one-third of patients
benefit from immunotherapy in most cancer types (2). It has long
been known thatmultiple factors can affect the effectiveness of ICB,
such as tumor mutation burden, expression level of PD-L1,
interferon signaling and T cell infiltration (3). Among these, the
levels of cytotoxic T cell infiltration of tumorwerewidely associated
with patient prognosis in many cancer types (4), with higher T cell
infiltration associated with better clinical outcome. Especially, the
presence of active T cells is associated with increased disease-free
survival and/or overall survival in human melanoma (5).

Tumor infiltration of CD8+ T cells are primed in lymph
nodes and migrated via blood to the tumor site, where they exert
their effector functions. During the process, T cells received
numerous signals and different tumor-specific antigens (TSAs)
that influenced their states and functions. Therefore, many single
cell researches revealed the high diversity of tumor-infiltrating T
cell states in various human cancer types, including melanoma
(6), head and neck (7), breast (8), colorectal (9), pancreas and
lung cancer (10). Meanwhile, recent literatures have validated
that only a proportion of infiltrating T cells that reside in the
tumor microenvironment are able to recognize TSAs or tumor
associated antigens (TAAs), which we called tumor-reactive T
cells (11, 12). Contrarily, there exist another type of infiltrating T
cells called bystander T cells, which have been shown to reactive
against viruses-related antigens and recognize a range of epitopes
unrelated to tumor cells (13). Previous studies have revealed that
the efficacy of ICB immunotherapies is dependent on the subset
of tumor-reactive T cells with tumor-reactive T cell receptor
(TCR) repertoire rather than the bystander T cells (14).
However, there is a lack of powerful signatures to efficiently
identify tumor-reactive T cells and further to indicate clinical
outcomes and response to immunotherapies of tumor patients.

In this study, we utilized scRNA-seq profiles of CD8+ T cells
in melanoma to derive a cluster of tumor-reactive T cells, and
further developed a tumor-reactive signature (TRS) to indicate
the tumor reactivity of tumor samples. We validated the ability of
distinguishing tumor-reactive cells or cell groups of the TRS in
multiple cohorts. Furthermore, we demonstrated significant
correlation of the TRS with clinical outcomes and response to
immunotherapy of melanoma patients.
MATERIALS AND METHODS

Data Collection and Processing
Three scRNA-seq datasets of melanoma patients were downloaded
from GEO database under accession numbers GSE72056 (6),
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GSE115978 (15) and GSE120575 (16). For GSE120575, we
extracted expression profiles of candidate T cells in the clusters
G5-G11. For GSE115978 and GSE120575, candidate T cells were
extracted according to the cell labels (“T.CD4”, “T.CD8” and
“T.cell”) defined in the original studies. We further investigated
the expression distribution of CD8 (average expression of CD8A
andCD8) and CD4 in these T cells, and retained only CD8+T cells
for subsequent analysis,whichweredefinedasCD8>2andCD4<2
(FiguresS1A-C).Thenwe integratedall theseCD8+Tcells through
the CCA algorithm (17) implemented in Seurat (18). The standard
workflow of cell clustering in Seurat was utilized to identify distinct
groups of cells based on the integrated data. In brief, PCA was
performed on the scaled data, and the top 30 PCs were used for
graph-based clustering to identify cell clusters. Cluster-specific
genes were identified using the FindAllMarkers function in Seurat
based on the “RNA” assay. All datasets used in this studywere listed
in Table S1.

TCR Analysis
The T cell receptors (TCR) sequences of single cells were kindly
provided by the corresponding author of the original study (16).
A total of 3078 cells with TCR sequences were used for the TCR
analysis. Each unique alpha-beta sequence pair was defined as a
clonotype, and the number of cells harboring the same clonotype
was calculated as the clonal size. If one clonotype was present in
at least three cells, cells harboring this clonotype would be
considered as clonal. The within-sample diversity score of TCR
repertoire (clonality score) was evaluated by the downsampling-
based Shannon’s entropy to correct for differences in repertoire
size, through utilizing the iNEXT R package.

Identifying Tumor-Reactive CD8+
T Cell Signature
In order to characterize tumor-reactive T cells and explore the
relationship between tumor reactivity and patient clinical
outcome, we developed the tumor reactive signature (TRS). The
clusters C1, C2 and C5 all had the characteristics of exhaustion
and tumor reactive phenotype. However, C2 and C5 were strongly
interfered by cell cycle and IFNG signals, respectively, which were
considered as confounding factors of T cell status in the previous
studies (19, 20). Therefore, we only used the specifically expressed
genes of cluster C1 as the candidate tumor-reactive signature
genes through Wilcoxon rank-sum test with false discovery rate
adjusted p values (FDR) < 0.05. Then we performed receiver
operating characteristics (ROC) analysis for each gene to measure
its ability to discriminate cluster C1 from the remaining clusters.
Each highly expressed gene was treated as a predictor, and cells
inside and outside of cluster C1 was treated as the positive and
negative sets, respectively. The tumor-reactive signature genes
(TRS) were extracted as the top 20 genes with highest AUC.

Signature Validation Across Different
Cancer Types and Protocols
To validate the tumor-reactive T cell signature, we downloaded 4
scRNA-seq datasets of different cancer types (including
hepatocellular carcinoma, non-small cell lung cancer, colorectal
cancer and melanoma) from the GEO database under accession
November 2021 | Volume 12 | Article 758288
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numbers GSE98638, GSE99254, GSE108989 and GSE123139,
respectively. For the Smart-seq2 datasets (i.e., GSE98638,
GSE99254 and GSE108989), we downloaded the TPM-
normalized expression profiles. Then we extracted CD8+ T cells
in tumor samples, and retained genes with average expression
greater than 0.5 and detection rate greater than 0.1. For the
MARS-seq dataset GSE123139, we downloaded the raw count
profiles. Then we retained CD8+ T cells with number of
expressed genes between 500 and 3000, and retained genes with
detection rate higher than 0.01. Meanwhile, we obtained 4 bulk
datasets containing tumor-reactive T cells or cell groups from the
GEO database under accession numbers GSE114944, GSE132810,
GSE141878 and GSE145596. For the microarray dataset
GSE114944, we downloaded the processed probe expression
matrix file and converted it to gene expression profile. For
datasets GSE132810 and GSE141878, we downloaded raw count
profiles, and for GSE145596 we downloaded the TPM-normalized
expression profiles for subsequent analysis. The tumor-reactive T
cell signature score for each sample was calculated by using gene set
variation analysis (GSVA) (21). We implemented GSVA with
default parameters (kcdf=“Gaussian”, min.sz=1) to calculate the
TRS scores for all microarray datasets and for RNA-seq datasets
with TPM-normalized expression profiles. For RNA-seq datasets
with raw count profiles (i.e., GSE132810 and GSE141878), we set
the parameter kcdf as “Poisson”. In addition, we also used ssgsea
(22), zscore (23) and plage (24) with default parameters to calculate
the TRS scores. For single-cell data, we calculated the TRS scores
using AUCell (25) and Vision (26) with default parameters. Global
significance of differences across multiple groups was evaluated by
Kruskal-Wallis test. TheWilcoxon rank-sum test was used to assess
the statistical difference between tumor-reactive group and others.

To further validate the correlation between T cell infiltration
proportion and the tumor-reactive signature score, we obtained 7
datasets of melanoma, including 4 microarray datasets from the
GEO database (GSE22153, GSE65904, GSE19234, and GSE53118),
one cohort (Allen2015) kindly provided by the corresponding
author (27), one cohort from the ENA database under accession
ERP105482 (28), and the TCGA-SKCM cohort from TCGA
database. For the four microarray datasets, we downloaded the
processed probe expression matrix files and then converted to gene
expression profiles. For GSE22153, we also implemented k-
nearest-neighbor imputation for missing expression values using
the impute R package (29). For the ERP105482 cohort, we used
kallisto (30) to quantify gene expression which were then
converted to TPM and log2-transformed as described in our
previous study (31). The expression profile of the TCGA-SKCM
cohort was downloaded from the UCSC Xena platform. The
proportion of CD8+ T cells was calculated by the CIBERSORT
algorithm (32). Spearman’s rank correlation coefficient and
regression line were calculated and visualized by ggscatter
function in ggpubr R package.

Differential Expression and Mutation
Burden Analysis of the TCGA-SKCM Cohort
We calculated the TRS scores for all samples, and then divided
them into two groups based on the median score. We used t-test
to identify differentially expressed genes between the two groups.
Frontiers in Immunology | www.frontiersin.org 3
Genes with log2 fold change > 1.5 and FDR < 0.01 were
considered as significantly differentially expressed. The
functional enrichment analysis of differential genes was
performed using Metascape (33). The somatic mutation
profiles of the TCGA-SKCM cohort in the form of mutation
annotation format (MAF) were obtained from the UCSC Xena
platform (34), and analyzed by the maftools R package (35),
including calculation of mutation burden, identification of
frequently mutated genes and differentially mutated genes. The
intratumor heterogeneity, Wound Healing, Homologous
Recombination Defects, and Th17 Cells score of patients were
downloaded from previous study (36).

Assessing Relationship Between the
TRS and Clinical Outcome of
Melanoma Patients
We collected five cohorts of melanoma patients to assess the
association of TRS with overall survival, including 2 cohorts from
the GEO database under accessions GSE22153 (37) and
GSE65904 (38), one cohort (Allen2015) kindly provided by the
corresponding author (27), one cohort from the ENA database
under accession ERP105482 (28), and the melanoma cohort
from TCGA which was retrieved from the UCSC Xena
platform (34). The median level of the GSVA scores of TRS in
each cohort was used as the cutoff to stratify patients into two
groups. Kaplan-Meier curves were used to visualize survival
differences between the two groups, and log rank test was
utilized to assess the significance.

Refinement of the TRS Signature
In order to test whether all genes in the TRS were necessary to
predict prognosis of melanoma patients, we performed stepwise
Akaike’s Information Criterion (AIC) estimation to refine the
TRS using the TCGA-SKCM cohort. In brief, we first calculated
the original AIC for the univariate Cox regression model
constructed based on the GSVA scores for the whole TRS. We
then tried to remove each gene and re-calculated the AIC based
on the GSVA scores of the remaining genes, and we finally
discarded the gene resulting in the lowest AIC which was lower
than the original AIC. In the next steps, we iteratively discarded
one gene until the AIC didn’t decrease compared to the
previous step.

Comparison of Prognosis Prediction
Performance With Published Prognostic
Signatures In Melanoma
To assess the performance of the TRS, we compared it with the
infiltration levels of CD8+ T cells and 8 published prognostic
signatures of melanoma (39–46). The infiltration levels of CD8+ T
cells in melanoma patients were calculated with the CIBERSORT
algorithm (32). The risk scores of the 8 signatures were calculated
as the summation of product of the coefficient, which were
collected from the corresponding manuscripts, and the
expression level of each gene in the signatures. Higher risk
scores represented higher risk of poor survival probability. To
keep consistency of the scores in prognosis prediction, we
calculated the negative value of TRS scores and CD8+ T cell
November 2021 | Volume 12 | Article 758288
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infiltration levels as the corresponding risk scores. The median
level of each signature in each cohort was chosen as the cutoff to
stratify patients into two groups. We compared the performance
of these signatures in terms of hazard ratio, area under time-
dependent ROC curves (AUC), concordance index (C-index) and
restricted mean survival time (RMST) ratio. For each cohort, only
signatures, among which all genes were detected, were considered.

Statistical Analysis
Kaplan-Meier curves and forest plot were visualized using the
survminer (47) package. Significance of survival differences
between two groups of patients were determined by log rank
tests. Time-dependent AUCs were calculated using the
survivalROC (48) package. The hazard ratios and C-index were
calculated with survival (49) package, and comparison of C-
index was performed using compareC (50) package. The
restricted mean survival time (RMST) ratio was estimated with
survRM2 (51) package. The PLAGE, ssGSEA and zscore scoring
algorithms were implemented in the GSVA package. All analyses
were performed in R version 4.0.2.
RESULTS

Tumor Infiltrating T Cells Exhibit Highly
Heterogeneous Transcriptional States
In order to explore the transcriptional heterogeneity of CD8+ T
cells within tumor microenvironment, we downloaded three
Smart-seq2 datasets [GSE120575 (16), GSE72056 (6) and
GSE115978 (15)] of single-cell RNA sequencing (scRNA-seq)
in melanoma from GEO database. A total of 8262 CD8+ T cells
from 80 samples (see Methods, Table S1, and Figures S1A–C)
were retained after initial quality control. Through canonical
correlation analysis (CCA) (17), we integrated these three
datasets with cohort information successfully corrected
(Figure 1A). With graph-based clustering on the integrated
expression profile, 7 cell clusters were identified (Figure 1B).
Notably, we found that clusters C0 and C1 were the major
population present in all patients (Figure 1C), suggesting the two
clusters were shared among melanoma patients. Contrarily,
other clusters had relatively small numbers of cells, and some
were exclusively observed in a part of patients, which reflected
the T cell heterogeneity among patients.

We characterized the identity of each cluster through
differential gene identification of each cluster compared with
all other T cells and by assessing the expression of well-known
marker genes associated with T cell lineages and states
(Figures 1D, E). We denoted the cluster C4 as the C4_naive
state which specifically expressed naive marker genes such as
SELL, TCF7, CCR7 and LEF1 (Figure 1D). The cluster C3 was
characterized by CX3CR1, PRF1, GZMH and GZMB, which were
related to the effector state of T cells, and by lack of co-inhibitory
molecules (Figure 1D, Figure S1D), thus we denoted it as the
C3_effect state. The cluster C6 was denoted as the C6_transition
state as it moderately expressed naive markers and highly
expressed GZMK (Figure 1D), which widely featured the
intermediate state between naive and exhaustion T cell states
Frontiers in Immunology | www.frontiersin.org 4
(52). The cluster C0 was denoted as the C0_memory state due to
the low levels of co-inhibitory and effector molecules and high
level of IL7R (Figure 1E), which was associated with the memory
state (53). Gene set enrichment analysis (GSEA) also revealed
that the differentially expressed genes between cluster
C0_memory and C4_naive were associated with CD8+ T cell
memory signatures (Figure 1F). The remaining clusters were
denoted as the C1_exhausted, C2_cellcycle and C5_interferon
states because of the high levels of cytotoxic molecules and
numerous inhibitory checkpoints, including PDCD1, CTLA4
and HAVCR2, suggesting the exhausted states (54). In addition
to the exhausted characteristics, the C2_cellcycle also had the
highest levels of cell cycle markers and highest proportion of
proliferative cells (Figures 1G, H, Figure S1E). And the cluster
C5_interferon was characterized by the interferon signal and
the signature genes of C5_interferon were involved in defense
response to virus, response to interferon-gamma (Figures
S1F, G).

Exhausted CD8+ T Cells Exhibit Tumor
Reactivity and Form Large TCR Clones
Recent studies have shown that tumor-reactive T cells exhibit
exhausted phenotype (55–57). And the coupled expression of
inhibitory molecules and effector molecules indicated that
exhaustive T cells have not completely lost their effector
functions. These motivated us to explore whether the exhausted
clusters (C1_exhausted, C2_cellcycle and C5_IFNG) were
enriched for tumor-reactive cells. We first assessed the
expression of T cell activation markers CD38 and HLA-DRA
(58), and observed high expression of CD38 and HLA-DRA in
all of the exhausted clusters (Figure 2A), potentially reflecting
recent antigen encounter. Furthermore, exhausted clusters
specifically expressed tumor-reactive T cell markers (ENTPD1
and ITGAE), while the effect cluster rarely expressed them
(Figure 2B), indicating that cells belonging to the effect cluster
were potentially bystander cells. In addition, we curated two tissue
resident memory signatures (29942092_rm, 28930685_rm) and a
T cell activation signature (31359002_act). The 29942092_rm is
comprised of the differentially expressed genes of a tissue-resident
memory T (TRM) cell cluster in breast cancer (8), the
28930685_rm is a core transcriptional and phenotypic signature
which defines human tissue-resident memory for both CD4+ and
CD8+ T cells (59), and the 31359002_act is a T cell activation
signature, which consisted of the top 50 genes correlated with
IFNG (60). We observed that the exhausted clusters displayed
elevated levels of T cell activation signatures and tumor reside
memory signatures (Figure 2C, Figure S2A), which were
frequently observed in tumor-reactive T cells (61). These results
indicated that cells in the exhausted clusters (C1_exhausted,
C2_cellcycle and C5_IFNG) could potentially be tumor-reactive
T cells.

T cell clonality has long been used as a marker of tumor
reactivity (62). Previous studies have proven that the majority of
TCR clones with high clonal expansion have been shown to be
associated with tumor reactivity in melanomas (11, 63). In order
to understand the T cell clonality across different clusters, we
obtained the TCR sequences and explored the degrees of clonal
November 2021 | Volume 12 | Article 758288
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expansion.We obtained TCR alpha and beta chains of 3078 T cells
from Moshe et al. (16), with 1381 cells harboring unique TCRs,
500 cells harboring repeated TCRs, and 1197 cells with clonally
expand TCRs (Figure S2B), with clonal size ranging from 3 to 59
(Figure S2C). Notably, different states exhibited different degrees
Frontiers in Immunology | www.frontiersin.org 5
of clonal expansion, with C0_memory state and C1_exhausted
state showing relatively more clonal TCRs (Figure S2D). TCR
clonotype composition were highly variable across patients, and
different patients had different degrees of clonal expansion
(Figure 2D middle panel). Patients with more clonal TCRs had
A

D

F

G H

B C

E

FIGURE 1 | The T cell landscape of melanoma reveals transcriptionally heterogeneous cell states. (A, B) UMAP plots of CCA-integrated profiles of all CD8+ T cells
used in this study colored by datasets (A) and by cell states (B). (C) The composition of T cell states in each patient. (D) Dot plot showing distribution of
checkpoints, effect molecules and naïve markers in each T cell state. Color denotes the average expression of each gene in each cluster. Circle size denotes the
percentage of cells that expresses the gene within the indicated cluster. (E) Heatmap showing expression levels of differential genes in each cell state. (F) GSEA plot
showing enrichment of the gene sets upregulated in memory CD8+ T cells in the cluster C0_memory T cells when compared to C4_naive T cells. (G) UMAP feature
plot representation of cell cycle markers (MKI67, CCNB1) within individual T cell state. (H) The proportion of proliferative cells in each T cell state.
November 2021 | Volume 12 | Article 758288
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FIGURE 2 | Comprehensive transcriptional analysis and T cell receptor analysis reveals enrichment of tumor-reactive CD8+ T cells in the C1_exhausted T cell state.
(A, B) UMAP feature plot representation of T cell activation markers (CD38, HLA-DRA) and tumor reactive markers (ENTPD1, ITGAE) within individual T cell state.
Boxplots showing the significance of the expression difference among T cell state. (C) UMAP feature plot representation of AUCell scores of T cell reside memory
signatures and T cell activation signature within individual T cell state. Boxplots showing the significance of the expression difference among T cell state. (D) Clonal
composition of T cells in each patient showing from top to bottom the number of T cells of which the TCR was retrieved, the number of clonotypes, the clonality
score (defined by Shannon Entropy), the composition of clone size (size=1, size=2, and size>2), and the pie charts showing the cell states composition of each
patient stratified by clone size. Patients are ordered by the proportions of size-one clones decreasingly. (E) The difference of cluster C0/C1 proportion between two
sample groups, with high and low proportions of clonal cells. (F) Spearman correlation between the fraction of cells in C1_exhausted state and number of cells with
TCRs across patients. ns denoted non-significant, *** denoted p < 0.001, and **** denoted p < 0.0001.
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higher proportion of cells in the C1_exhausted state, indicating the
clonal expansion of exhausted state (Figure 2D down panel,
Figure 2E). For instance, C1_exhauted T cells account for 74%,
69% and 82% of clonal TCR in patient Pre_P2, Post_P12, and
Post_P2. On the contrary, memory state (C0) was dominant in
patients with more unique TCRs (Figure 2D down panel,
Figure 2E). Furthermore, cell proportion of the cluster C1
positively correlated with the number of T cells which the TCR
was retrieved (Figure 2F), and correlated with the number of
clonotypes (Figure S2E). In addition, we found samples with
higher cluster C1 proportion have lower TCR diversity (Figure
S2E), which was consistent with the previous study (64). These
results highlighted that the C1_exhausted state was strongly
enriched for larger clones and contributed to the TCR clonal
expansion of patients. Collectively, given the high levels of T cell
cytotoxicity, activation markers and signatures, and the greatest
clonal expansion of C1_exhausted, we believed that the
C1_exhausted state could reflect tumor reactivity.

Identifying and Validating a Tumor-
Reactive T Cell Signature
To assess T cell reactive status of tumor samples, we attempted to
develop a gene expression signature to specifically indicate tumor
reactivity of T cells. Based on the integrated expression profile of
all T cells, we applied Wilcoxon rank-sum test to identify the
significantly highly expressed genes in the C1_exhausted state,
and further employed the area under the ROC curve (AUC) to
extract the specific genes which could efficiently distinguish the
C1_exhausted state from the others, resulting in 20 genes
(Figure 3A). These genes were defined as the tumor reactive
signature (TRS), including co-inhibitory receptors (CTLA4,
PDCD1, TIGIT and HAVCR2), reactive markers (CD38 and
ENTPD1), effector molecules (NKG7 and PRF1), tumor necrosis
factor TNFRSF9 and critical exhaustion-related regulator TOX
(Figure 3B). The genes in TRS are widely involved in T cell
activation, cell killing, response to tumor cell, chemokine
production, cytokine secretion, and chronic inflammatory
response (Figure 3C).

We performed multiple assessment to validate the
performance and robustness of the TRS. First, we collected four
independent gene expression datasets which contained samples
enriched for tumor-reactive CD8+ T cells. We calculated the
tumor reactivity score for each sample based on this 20-gene
signature using the GSVA algorithm (21). Notably, almost in all
cases, tumor-reactive group showed the highest tumor reactivity
scores (Figure 3D), even calculating scores with different
algorithms (Figure S3A). Second, we downloaded four
additional scRNA-seq datasets, including hepatocellular
carcinoma, non-small cell lung cancer, colorectal cancer and
melanoma. We observed significantly higher tumor reactivity
scores in exhausted states than the other T cell states (Figure 3E
and Figure S3B), suggesting that the tumor-reactive signature was
robust and widely present in a variety of cancer types. Third, we
obtained seven bulk expression datasets of melanoma and
estimated their infiltration levels of CD8+ T cells using the
CIBERSORT algorithm (32). And we found that the TRS scores
were highly correlated with proportions of CD8+ T cell infiltration
Frontiers in Immunology | www.frontiersin.org 7
(Figure 3F). These results demonstrated the robustness of the TRS
to define tumor-reactive status in bulk tumor samples.

Patients With High TRS Score Have
Strong Immune Activity and High
Mutation Burden
To characterize potential molecular mechanisms associated with
tumor reactivity, we stratified melanoma patients from the
TCGA-SKCM cohort into two groups according to the median
GSVA scores of the TRS (Figure 4A). We first identified
significantly differentially expressed genes between the two
groups using t-test with log2 fold change > 1.5 and FDR <
0.01. Strikingly, differentially expressed genes were mostly up-
regulated in the TRS-high group compared to the TRS-low
group, including chemokines and cytotoxic-related genes
(Figure 4B), indicating that patients in the TRS-high group
were immune activated. We then performed functional
enrichment analysis on the up-regulated genes through
Metascape (33), and we did observe significant enrichment of
pathways related to immune activation, such as lymphocyte
activation, cytokine signaling in immune system, and
inflammatory response (Figure 4C).

In order to identify mutations that primed T cell response to
generate protective endogenous immunity against tumor, we
comprehensively analyzed the mutation frequency of genes in
patients with different TRS scores. Top 20 most frequently
mutated genes in each group were displayed in Figures 4D, E.
Although there were some overlap of top mutated genes between
the two groups, we identified more frequently mutated genes in
the TRS-high (Figure 4F), including melanosome-related gene
AP3B1, apoptosis-related gene PRKC1, all of which showed the
higher mutation frequencies in the group with higher TRS scores
(Figure 4F). Moreover, there were higher tumor mutation
burden in the TRS-high group (Figure 4G). In addition, we
found that TRS_high group exhibited higher scores of
intratumor heterogeneity and Th17 cell, and lower scores of
wounding healing and homologous recombination defects
(Figure 4H) (36).

TRS Contributes to Longer Overall Survival
Times in Melanoma Patients
We next attempted to explore the relationship between the TRS
and the clinical outcomes of melanoma patients. We observed
significant differences of survival probabilities between patient
groups stratified based on the TRS scores using the TCGA-
SKCM cohort (Figure 5A, log rank test, p-value < 0.0001). In
order to examine robustness of the TRS, we performed stepwise
AIC estimation (see Methods) and refined a 6-gene signature
including CTLA4, CXCR6, LYST, CD38, GBP2 and HLA-DRB5,
which was enough for prognosis prediction (Figure 5B, log rank
test, p-value < 0.0001). We also performed different scoring
algorithms (including mean, PLAGE, ssGSEA and zscore) on the
refined TRS to examine their impact on prognosis prediction.
We demonstrated that the refined TRS could significantly stratify
SKCM patients independent of the scoring algorithms (Figures
S4A–D). Moreover, the refined TRS remained as an independent
prognostic factor adjusting for CD8+ T cell infiltration levels,
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TMB and clinical characteristics, including age, gender, AJCC
stage and metastatic status (Figure 5C). These indicated that
prognostic value of the refined TRS was beyond the impact of
CD8+ T cell infiltration or TMB despite their positive
correlation. Furthermore, we verified the prognostic association
of the refined TRS in another 4 cohorts of melanoma patients
(Figure 5D, log rank tests, p-values <0.0001, = 0.00029, =
0.00019 and =0.23 for GSE65904, ERP105482, GSE22153 and
Allen2015, respectively). Although it was not significant enough
for Allen2015 due to the limit sample size, we observed obvious
distinction of survival probabilities between two groups stratified
by the refined TRS.
Frontiers in Immunology | www.frontiersin.org 8
To further estimate the performance of the refined TRS on
prognosis prediction, we collected 8 published gene signatures (39–
46) and compared their performance in the five cohorts. To keep
consistency of the scores in prognosis prediction, we calculated the
negative value of TRS scores and CD8+ T cell infiltration levels as
the corresponding risk scores. For the 8 published signatures, we
calculated their risk scores as summation of the product of
coefficient and expression level of each gene, which was exactly as
described in the corresponding study. Notably, TRS was the only
one which showed consistent risk trend and significant
stratification of melanoma patients in terms of overall survival
(Figure 5E). In addition, TRS was among the top-performance
A

D

F

B

C

E

FIGURE 3 | Development and validation of the TRS signature. (A) The framework to screen the TRS. (B) Heatmap showing the expression of the TRS in single
cells. (C) (Left panel) Enriched GO terms of TRS. (Right panel) Genes involved in each GO term (D) Distribution of the TRS scores of tumor-reactive T cell group
(colored by red) and other T cell groups. (E) Distribution of the TRS scores of T cell states in additional scRNA-seq datasets of liver cancer (GSE986398), non-small
cell lung cancer (GSE99254), colorectal cancer (GSE108989) and melanoma (GSE123139). The exhausted T cell state is colored by red. Wilcoxon rank-sum tests
were used to assess the significance of pairwise comparisons, and Kruskal-Wallis tests were used for overall comparisons. ns denoted non-significant, * denoted p <
0.05, ** denoted p <0.01, *** denoted p < 0.001, and **** denoted p < 0.0001. (F) Spearman correlation between the TRS scores and the proportions of T cell
infiltration in bulk melanoma samples obtained from GSE65904, Allen2015, ERP105482, SKCM, GSE53118, GSE19234, and GSE22153.
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signatures in all cohorts in terms of time-dependentAUCs,C-index
and RMST ratio (Figures 5F–H). We also calculated GSVA scores
for the 8 published signatures, which was the same scoring
algorithm for the TRS. The results still displayed higher and
Frontiers in Immunology | www.frontiersin.org 9
consistent performance of the refined TRS than the other
signatures (Figures S4E–H). These results suggested that the TRS
was widely applicable and achieved consistently high performance
in multiple cohorts in different platforms.
A

D

B C

F

E

G H

FIGURE 4 | Comprehensive characterization of enriched pathways and genomic aberrations related to tumor reactivity. (A) (Up panel) Principle component
analysis with the expression levels of TRS in SKCM. Barplot showing the TRS scores of SKCM patients. (B) Volcano plot showing differentially expressed genes
between the TRS_high and TRS_low groups in TCGA cohort. Effect molecules were colored by blue, and chemokine were colored by green. (C) Barplots
showing functional gene sets enriched in the significantly upregulated genes. (D, E) Top 20 most frequently mutated genes were illustrated in the TRS_low (D)
and TRS_high (E) group. (F) Significantly differentially mutated genes between the two groups were displayed. Genes with p-value < 0.001 were considered as
significant. (G) Boxplots showing differences of log transformed tumor mutation burden (TMB) between the TRS_high and TRS_low groups. (H) Boxplots
showing differences of intratumor heterogeneity, Wound Healing, Homologous Recombination Defects, and Th17 Cells score between the TRS_high and
TRS_low groups. *** denoted p < 0.001.
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Tumor Reactive Signature Predicts
Immunotherapy Response
ICB therapies were designed to reinvigorate efficacious anti-
tumor immune responses by targeting inhibitory receptors on
Frontiers in Immunology | www.frontiersin.org 10
T cells. We noted that a canonical immune checkpoint
molecules CTLA4 (65) were included in the refined TRS.
Therefore, we next examined whether the refined TRS could
predict ICB clinical response utilizing two cohorts (Allen2015
A

D

F

G

H

B C E

FIGURE 5 | Prognostic assessment of the TRS in melanoma. (A) Kaplan-Meier survival curves showing significant differences of survival probabilities for patients
stratification based on the median TRS score in the TCGA-SKCM cohort. (B) Kaplan-Meier survival curve analysis for the refined TRS. (C) Forest plot showing
independent prognostic value of the TRS score adjusting for infiltration levels of CD8+ T cells and clinical characteristics in the TCGA-SKCM cohort. (D) Kaplan-Meier
survival curves showing significant association of the TRS with overall survival in melanoma patients obtained from GSE65904, ERP105482, GSE22153 and
Allen2015. (E-H) Comparison of prognostic performance of the TRS with CD8+ T cell infiltration and 8 published prognostic-related signatures in melanoma in terms
of significance of patient stratification (E), time-dependent AUC (F), C-index (G) and restricted mean survival time (RMST) ratio between high-risk and low-risk groups
(H). In order to keep consistency of the scores in prognosis prediction, we calculated the negative value of TRS scores and CD8+ T cell infiltration levels as the
corresponding risk scores. Colors in (E) denoted hazard ratios of the signatures in univariate Cox proportional hazard regression analysis, and * indicated significant
stratification of melanoma patients in terms of survival probabilities based on the corresponding signatures. Comparisons of C-index between the TRS and the other
signatures were performed using the compareC package (G). ns denoted non-significant, * denoted p <0.05, ** denoted p <0.01, *** denotes p < 0.001.
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and ERP105482) of melanoma patients treated with anti-PD1
or anti-CTLA4 ICB therapies. We first investigated the
relationship between the refined TRS scores and the
expression of ICB therapy targets (Figure S5), and observed
significant correlation between them, indicating the potential of
the TRS to predict immunotherapy response. In the two
cohorts, all patients were classified as responders or non-
responders according to the RECIST criteria. Our results
showed that the responders had significantly higher TRS
scores than the non-responders (Figure 6). Finally, receiver
operating characteristic curve analysis of the TRS scores in
predicting response to ICB therapies yielded high performance
(AUC = 0.68 and 0.73 for Allen2015 and ERP105482,
respectively). In addition, we also evaluated the predictive
performance of the refined TRS in a cohort (GSE35640) of
patients received the MAGE-A3 immunotherapy. Similarly,
patients with higher TRS scores exhibited higher proportions
of responders, and the AUC of predicting response to MAGE-
A3 therapy reached 0.75 (Figure 6). In summary, these results
suggested that the TRS scores could be used to predict response
to immunotherapies of melanoma patients.
Frontiers in Immunology | www.frontiersin.org 11
DISCUSSION

In this study, we integrated three scRNA-seq datasets of T cells in
melanoma, and identified a subgroup of tumor-reactive T cells. A
22-gene signature (TRS) was developed and validated to evaluate
the degree of T cell reactivity to tumor cells in melanoma patients.
Applying TRS to the TCGA-SKCM cohorts, we characterized the
pathways and mutations related to tumor reactivity. Next, through
analyzing the TRS scores in multiple cohorts, we validated that the
tumor-reactive signature could act as an independent prognostic
factor for overall survival of melanoma patients and a predictor for
the response to cancer immunotherapy.

Infiltration of T cells were conventionally thought to correlate
with better survival of tumor patients. However, the association
between tumor infiltrating T cells and tumor-reactive T cells were
confounded by the bystander and non-tumor-reactive T cells.
Therefore, it was important to efficiently identify and estimate
infiltration levels of the tumor-reactive T cells in tumor patients.
A previous study showed that the strength of exhausted signature of
melanoma was positively correlated with the presence of tumor-
reactive T cells, while the strength of cytotoxic signature was
A

B

C

FIGURE 6 | The TRS score predicts response to immunotherapy in melanoma. (A) (Left panel) Waterfall plot of the TRS scores depicting immunotherapy response
of melanoma patients from the Allen2015 cohort. (Middle panel) Boxplots showing differences of the TRS scores between responders and non-responders. (Right
panel) ROC curves for the performance of TRS in predicting response to immunotherapy. (B, C) Same as (A) for the ERP105482 cohort (B) and the GSE35640
cohort (C).
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negatively correlated with it (19). Consistent with this study, our
results demonstrated that the tumor-reactive T cells were enriched
in the exhausted T cell compartment, which exhibited specific
expression of tumor-reactive markers and TCR clonal expansion.
While the cytotoxic effect T cells were considered as bystanders,
whichmight beactivatedbyviruses (66). Inaddition, T cell clonality
and expression of CD39 andCD103were used asmarkers of tumor
reactivity (55). Interestingly, we did observe TCR clonal expansion
of T cells in the C1_exhausted state, which we believed to be the
tumor-reactive T cell cluster.

Although T cell clonality and expression of CD39 and CD103
were thought to reflect tumor reactivity, using them alone was not
robust to identify tumor-reactive T cells. For instance, TCR
expanded T cells which did not reactive against cancer cells
were also observed in the tumor microenvironment (11), and
CD39- T cells also showed the ability to kill cancer cells (67).
Therefore, it was important to develop a robust and efficient
signature to identify tumor-reactive T cells, which was beneficial
for patient stratification in clinical management such as prognosis
and cancer immunotherapy. In our study, we developed a 22-gene
signature which we called the TRS. In addition to tumor reactive
markers, the TRS also consisted of multiple factors related to
tumor reactivity, including co-inhibitory receptors, T cell
activation markers and effect molecules. The combination of
these genes enhanced the robustness of the TRS in evaluating
the strength of tumor reactivity, which were verified in multiple
cohorts (Figures 3C–E). In addition, we utilized alternative
scoring methods to calculate the TRS scores both for single-cell
data and bulk data. The results showed a high degree of
consistency, further demonstrating the robustness of the signature.

Current knowledge of tumor-immune ecosystem has allowed a
rational stratificationof patients basedon the Immunoscore,which is
a robust, consensus, and standardized scoring system of lymphocyte
populations (68). According to the Immunoscore, tumors can be
classified into “hot” (highly infiltrated, T cell inflamed) or “cold”
(non-infiltrated, non-T cell-inflamed). In our study, the TRS scores
were highly correlated with the levels of T cell infiltration. Patients
with high TRS scores corresponded to hot tumors (69),
demonstrating strong immune activity such as T cell activation,
inflammatory response and cytokine production, and exhibited
better survival. However, the prognostic value of the TRS was not
merely reflection of T cell infiltration, as we demonstrated higher
performance of the TRS than infiltration levels of CD8+ T cells, in
multiple melanoma cohorts. Furthermore, we demonstrated better
performance and robustness of the TRS in prognosis prediction than
previously published prognostic signatures in melanoma.Moreover,
we also demonstrated significant association of the TRS scores with
response to immunotherapy of melanoma patients.

In summary, we identified a subset of exhausted T cells enriched
for tumor-reactive T cells, and developed and validated a tumor-
reactive signature to evaluate the tumor reactivity. Through
comprehensive analyses of multiple independent cohorts, we
proved that the TRS scores could be used to predict prognosis
and immunotherapy response. In order to apply the TRS to predict
prognosis or response to immunotherapy, we recommend to use
the TPM-normalized log-transformed expression profile for bulk
Frontiers in Immunology | www.frontiersin.org 12
RNA-seq data, and RMA-normalized log-transformed profile for
microarraydata. Then,GSVAcouldbe implemented to evaluate the
enrichment scores of the refined TRS with default parameters.
Alternatively, other algorithms such asPLAGE, ssGSEA, zscore and
even simply mean expression could also be employed to calculate
the TRS scores. Patients with higher TRS scores could have better
survival and better response rate to immunotherapy. While for the
PLAGE scores, higher scores may not indicate higher activities as
PLAGE calculates the first principal component as the gene-set
score. We could also apply the TRS to indicate potential tumor-
reactive T cells. In this case with single-cell data, we recommend to
use the Seurat R package to filter noise and low-quality cells, and
then use AUCell orVISION tools to calculate TRS scores for CD8+
T cells. Cells with higher scores could potentially be tumor-reactive.
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