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Abstract: Fabrics comprised of porous fibres could provide effective passive protection against
chemical and biological (CB) threats whilst maintaining high air permeability (breathability). Here, we
fabricate hierarchically porous fibres consisting of regenerated silk fibroin (RSF) and activated-carbon
(AC) prepared through two fibre spinning techniques in combination with ice-templating—namely
cryogenic solution blow spinning (Cryo-SBS) and cryogenic wet-spinning (Cryo-WS). The Cryo-WS
RSF fibres had exceptionally small macropores (as low as 0.1 µm) and high specific surface areas
(SSAs) of up to 79 m2

·g−1. The incorporation of AC could further increase the SSA to 210 m2
·g−1

(25 wt.% loading) whilst also increasing adsorption capacity for volatile organic compounds (VOCs).

Keywords: porous fibres; activated carbon; ice-templating; ice segregation induced self-assembly;
silk fibroin; wet spinning; solution blow spinning; freeze casting

1. Introduction

The current generation of air-permeable chemical and biological (CB) resistant clothing, such
as Joint Service Lightweight Integrated Suit Technology (JSLIST), consists of a particulate activated
carbon (AC) adsorbent layer laminated between multiple layers of fabric—including a hydrophobic
outer layer and soft inner layer [1,2]. Combining the properties of these layers into a single material
could reduce the physiological burden on the user through mass reduction and enhanced diffusive
and evaporative heat transport. Fabrics comprised of porous fibres with a significant capacity to
adsorb and repel volatile organic compounds (VOCs) could help achieve this goal. In particular, a
hierarchical structure of pores—where networks of larger macropores (> 50 nm) provide effective
diffusion and access to smaller meso- (2–50 nm) and micropores (< 2 nm)—could provide effective rapid
adsorption activity whilst maintaining high permeability and relatively low mass [3]. Furthermore,
fibres with micron-scale surface features could also enhance liquid repellence through a ‘lotus-leaf’
type effect—repelling liquid VOC droplets as well as dirt, dust and mud [4].

Although other highly porous materials such as metal organic frameworks (MOFs) and silicates
have demonstrated exceptional adsorption and degradation activity against various chemical warfare
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agents (CWAs), [1,5–7] their relatively poor chemical and physical stability and high cost of manufacture
mean they are unlikely to replace low-cost ACs (which can also effectively catalyse the degradation of
CWAs [8]) for general applications. The brittle nature and poor mechanical properties of microporous
materials such as ACs, MOFs and silicates make them unsuitable for use as stand-alone materials in
fabrics; instead, they need to be combined with another material with suitable physical properties in
order to be incorporated into a garment. This can be achieved by decorating the surface of fibres with
a porous material, [1,5,6] but loss of physical attachment means durability can be a significant issue.

In this work, we reprocess silkworm silk into aqueous regenerated silk fibroin (RSF) solutions
before spinning into porous fibres via two cryogenic spinning techniques, namely Cryogenic Solution
Blow Spinning (Cryo-SBS) and Cryogenic Wet Spinning (Cryo-WS). Cryogenically freezing hydrated
fibres results in ice-segregation-induced self-assembly (ISISA) which, after freeze-drying, produces a
macroporous ice-templated structure (Figure 1) [9–18]. By spinning colloidal suspensions of AC in
RSF, macroporous fibres loaded with AC can be obtained—increasing the specific surface area (SSA),
hydrophobicity and adsorption capacity for VOCs. A summary of the conditions employed to prepare
samples, along with the most relevant physical properties, is given in Table 1.Molecules 2020, 25, x FOR PEER REVIEW 3 of 8 
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Figure 1. Schematic representation of (a) the cryogenic solution blow spinning (Cryo-SBS) and (b) the
cryogenic wet-spinning (Cryo-WS) fibre spinning rigs. (c) Visible light and SEM images of RSF fibres
produced by Cryo-SBS with increasing AC loading (left to right, 0, 4 and 10 wt. %). (d) Visible light
and SEM images of RSF fibres produced by Cryo-WS with increasing AC loading (left to right, 0, 10, 20
and 25 wt. %).
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Table 1. Summary of the physical properties of the porous regenerated silk fibroin (RSF) and
RSF/activated carbon (AC) fibres produced. Approximate fibre and macropore diameters (Ø) determined
through multiple measurements from SEM images (± standard deviation).

Method
AC

Loading
[wt.%]

Average
Fibre Ø

[µm]

Average
Macropore Ø

[µm]

N2 BET
SSA

[m2
·g−1]

Accessible
SSA
[%]

Micropore
Vol.

[cm3
·g−1]

Max. Cyclohexane
Uptake
[w/w%]

(AC only) 100 n/a n/a 697 100 0.358 22.8
Cryo-SBS 0 43 ± 9 1.1 ± 0.4 34 100 0.038 n/a
Cryo-SBS 4 23 ± 4 1.8 ± 0.5 17 28 0.015 n/a
Cryo-SBS 10 55 ± 6 10.4 ± 3.1 44 44 0.051 n/a
Cryo-WS 0 160 ± 25 1.6 ± 1.0 79 100 0.032 12.9
Cryo-WS 10 124 ± 14 0.1 ± 0.04 121 86 0.035 26.6
Cryo-WS 15 110 ± 16 0.68 ± 0.30 134 79 0.018 27.0
Cryo-WS 20 180 ± 30 0.14 ± 0.05 143 71 0.047 25.5
Cryo-WS 25 190 ± 29 0.54 ± 0.45 210 90 0.156 22.4

2. Results

RSF spinning dopes were prepared following a previously published protocol detailed in the
SI [11,19]. Porous RSF fibres were prepared via Cryo-SBS (Figure 1a) following a protocol previously
developed within our group, [10,11,20] however, the Cryo-WS method (Figure 1b) has, to the authors’
knowledge, not been reported previously. For the Cryo-SBS method, RSF and colloidal RSF-AC
mixtures were spun directly into a liquid nitrogen (LN2) bath, collected and freeze dried (Figure 1a).
This rapid freezing induces the formation of macropores via ISISA [9–14]. The obtained fibres were
approximately 0.2–1 cm in length and 25–60 µm in diameter, and darkened uniformly with increasing
AC content (Figure 1c). Fibres with an AC content greater than 10 wt.% could not be produced
due to instability of the fibre jet—resulting in droplet formation rather than a continuous stream of
fibres. Their relatively short length meant they would be unsuitable for processing into a woven
fabric, but could potentially be employed as a non-woven material (i.e., a felt). Scanning electron
microscopy (SEM) imaging revealed macropores with average diameters ranging from 1–13 µm in
diameter (Figure 1c), which are fairly small for a freeze-casting method—which typically produces
pores in the range of 5–50 µm [21,22] The relatively small pores are likely due to rapid freezing from
the high surface area-to-volume ratio of the fibres and high temperature differential between the
fibres and LN2, since the pore sizes from freeze-casting methods are inversely proportional to the
velocity of ice crystal growth [22]. It can also be observed from the SEM images that the fibres have a
seemingly non-porous outer sheath. This likely arises from evaporation-induced phase separation at
the surface of the fibre as it travels through the air gap between the nozzle and the cryogenic bath; a
phenomenon also observed for some dry-jet wet spun fibres [23]. For the Cryo-WS method, RSF and
colloidal RSF-AC mixtures were wet-spun into an ethanol coagulation bath akin to previous literature
reports for wet-spun RSF fibres (Figure 1b) [24–28]. The wet fibres were then subjected to solvent
exchange in deionised (DI) water, before being rapidly frozen by submersion in LN2 followed by
freeze-drying. The dry fibres were continuous in length and had diameters ranging from 100–220
µm (Figure 1d); smaller diameter fibres could feasibly be produced by employing a smaller diameter
extrusion nozzle or by employing post-spin drawing. The fibres were fairly flexible to handle and also
darkened with increasing AC content. AC loadings in excess of 25 wt.% could not be achieved since
these fibres’ mechanical properties after spinning were too poor and could not be collected without
breaking apart. The fibres had average macropore diameters ranging from 0.1–1 µm, which—to the
author’s knowledge—are among the smallest reported for an ice-templating based method (where
water is the solvent). This is likely due to the rapid freezing resulting in relatively small ice crystals and
hence small pores after freeze-dying [22]. Xia and co-workers produced porous fibres with similarly
small (~ 0.1 µm) macropores via a cryogenic electrospinning technique (employing organic solvents
rather than water), suggesting a similar underlying pore formation mechanism [13].
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The SSA and micropore volume of the fibres were determined through N2 gas sorption and
Brunauer–Emmett–Teller (BET) analysis (Figure 2 and Table 1). The surface area of the Cryo-SBS fibres
with 0% AC was 34 m2

·g−1, which is fairly high for ISISA-derived pores which typically have SSAs
less than 15 m2

·g−1 [21,22]. This relatively high surface area is likely a result of the relatively small
macropores as observed by SEM. A 4% AC loading saw a decrease in SSA to 17 m2

·g−1, only 28% of the
theoretical SSA considering the masses of the silk (at 34 m2

·g−1) and AC (at 697 m2
·g−1) individually,

suggesting that most pores were inaccessible. A 10% AC loading yielded an SSA of 44 m2
·g−1, which

was 44% of the theoretical SSA (100 m2
·g−1). This relatively poor performance could be attributed

to the outer non-porous sheath restricting gaseous diffusion to the AC, or rapid freezing resulting in
smothering of the AC particles within the RSF polymer. Analysis of the isotherms revealed an increase
in micropore volume from 0.038 to 0.05 cm3

·g−1 with a 10% AC loading, suggesting the increase
in SSA was largely from the microporous AC. The Cryo-WS fibres with 0% AC had a significantly
higher SSA at 79 m2

·g−1 which—to the best of our knowledge—is the highest reported SSA for an
ice-templated polymeric material. Incorporation of AC gradually increased the SSA to a maximum
value of 210 m2

·g−1 with a 25% AC loading—corresponding to an accessible surface area of 90%
(Figure 2c). Use of ACs with higher SSAs (the employed AC had a SSA of 697 m2

·g−1, but some ACs
can exceed 4000 m2

·g−1) [29] or other highly microporous materials such as MOFs would likely result
in fibres with significantly higher SSAs.
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Figure 2. N2 gas sorption isotherms for porous RSF fibres produced by (a) Cryo-SBS with 0, 4 and
10 wt.% AC loading and (b) Cryo-WS with 0, 10, 15, 20 and 25 wt. % AC loading. Dashed lines
indicate desorption, 100% AC included for comparison. (c) Relationship between AC loading and both
% accessible SSA and actual SSA for RSF fibres produced by Cryo-WS. (d) Cyclohexane adsorption
isotherms for RSF fibres produced through Cryo-WS with 0–25 wt. % AC loading. 100% AC included
for comparison.

The efficacy of the fibres for adsorption of VOCs was assessed through Dynamic Vapour Sorption
(DVS); here, cyclohexane was employed as a representative VOC for proof of principle. Porous fibres
produced via Cryo-WS displayed significant adsorption capacity for VOCs (Table 1, Figure 2d.), with
the majority of adsorption occurring at relatively high partial pressures—suggesting macropores
from ISISA were largely contributing to adsorption rather than micropores from the AC. This was
corroborated by the fact that an increase in AC loading from 10% to 25% had little effect on cyclohexane
adsorption, although 0% AC loading had a smaller adsorption capacity. No significant cyclohexane
adsorption could be detected for the Cryo-SBS fibres however, possibly due their lower SSAs or the
presence of the non-porous sheath outer restricting diffusion to the porous core.

The mechanical properties for the fibres were investigated through uniaxial tensile testing
(Figure S1), however the highly porous nature of the fibres meant the true cross-sectional surface area
of the fibres (needed to convert force to stress) could not be accurately determined, and therefore
calculation of the tensile strength was not possible. Contact angle measurements on RSF fibre mats
produced by Cryo-SBS with 0% and 4% AC loading revealed increased hydrophobicity with an
increasing AC content (Figure S2.). This is likely due to the relatively hydrophobic nature of AC
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on the surface of the fibres reducing their wettability, but may also be a result of enhanced surface
roughness causing a “lotus-leaf” type repellence effect (Figure S2c)—a more in depth study is needed
to confirm this possibility however. Contact angle data could not be obtained for Cryo-WS fibres since
their relatively bulky nature meant adequately uniform mats could not be produced. Visible light
and cross-polarised microscopy was also performed on the fibres to visualise the distribution of AC,
a technique which was recently employed to visualise the distribution of graphene within hollow
aramid fibres (Figure S3) [30]. This revealed a fairly uniform distribution of AC within the fibres (i.e.,
no significant agglomeration observed).

The composition and microstructure of the dry fibres were analysed through wide angle
X-ray diffraction (WAXD) and Fourier-transform infrared spectroscopy (FTIR). Natural silk has
a polycrystalline structure arising from ordered β-sheet domains, which has also been observed in
some RSF-derived materials [24–26]. The obtained WAXD patterns were, however, indistinguishable
from a background measurement, suggesting low crystallinity within these porous fibres (Figure S4).
The high void volume in the porous fibres could also account for the low WAXD signal strength.
FTIR was employed to probe the protein secondary structure of the RSF fibres through analysis of the
amide I region of the spectrum (1600–1700 cm−1), allowing determination of the relative percentage of
secondary structural features (i.e., random coils, α-helixes, β-sheets and β-turns). This revealed a high
content of amorphous features relative to crystalline β-sheets, in concordance with the WAXD data.
Post-treatment of the RSF fibres with ethanol, which has been shown to induce β-sheet formation, [11]
was also performed—resulting in a significant increase (approx. 1.7-fold) in β-sheet features for the
porous RSF fibres from both fibre spinning techniques. Post-treatment with ethanol could therefore be
exploited to moderate the mechanical properties of the fibres, since a higher β-sheet content typically
results in stronger, stiffer fibres [31].

3. Conclusions

In this work, hierarchically porous RSF fibres loaded with AC were produced through two
cryogenic fibre spinning techniques—namely Cryo-SBS and a novel Cryo-WS method. Both of these
techniques produced fibres with significantly different properties; notably Cryo-SBS fibres had a porous
core and non-porous outer sheath which likely restricted gaseous diffusion, compromising accessible
SSA and hence VOC adsorption capacity, these fibres were also discontinuous in length. Cryo-WS
fibres, on the other hand, were continuous in length and porous throughout, with exceptionally small
macropores for an ice-templating method (c.a., 0.1 µm) with significant VOC adsorption capacity.
Further refinement of the spinning techniques may produce mesoporous (0.05 µm) fibres with further
improved VOC adsorption, and the use of ultra-high surface area ACs or other microporous materials
may also offer improvements. With further development, fibres such as these could be incorporated
into woven or non-woven materials where their hierarchically porous structure in tandem with high
VOC adsorption capacity could provide passive protection against CWAs or other airborne toxins.
Drawbacks of such fibres include relatively poor mechanical properties, difficulty of dying/colouration
and higher costs than materials typically employed in military uniforms (e.g., 50:50 cotton and polyester
blends); but these issues could potentially be mitigated by bonding/knitting the porous fabrics as
backing or lining layers to existing established materials. Porous RSF fibres such as these, loaded with
other functional substances rather than AC, could have applications in a range of fields, particularly
tissue regeneration and controlled drug delivery [32–35]. Finally, the use of genetically engineered
silks such as recombinant spider silk could tune the mechanical and textural properties of the silk, or
introduce chemical functionality such as additional lysine groups (-NH2) to neutralise toxic VOCs or
other substances [36].
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