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A B S T R A C T

Background: Cardiac conduction properties exhibit large variability, and affect patient-specific arrhythmia
mechanisms. However, it is challenging to clinically measure conduction velocity (CV), anisotropy and fibre
direction. Our aim is to develop a technique to estimate conduction anisotropy and fibre direction from clinically
available electrical recordings.
Methods: We developed and validated automated algorithms for estimating cardiac CV anisotropy, from any
distribution of recording locations on the atrial surface. The first algorithm is for elliptical wavefront fitting to a
single activation map (method 1), which works well close to the pacing location, but decreases in accuracy
further from the pacing location (due to spatial heterogeneity in the conductivity and fibre fields). As such, we
developed a second methodology for measuring local conduction anisotropy, using data from two or three
activation maps (method 2: ellipse fitting to wavefront propagation velocity vectors from multiple activation
maps).
Results: Ellipse fitting to CV vectors from two activation maps (method 2) leads to an improved estimation of
longitudinal and transverse CV compared to method 1, but fibre direction estimation is still relatively poor.
Using three activation maps with method 2 provides accurate estimation, with approximately 70% of atrial fibres
estimated within 20 . We applied the technique to clinical activation maps to demonstrate the presence of
heterogeneous conduction anisotropy, and then tested the effects of this conduction anisotropy on predicted
arrhythmia dynamics using computational simulation.
Conclusions: We have developed novel algorithms for calculating CV and measuring the direction dependency of
atrial activation to estimate atrial fibre direction, without the need for specialised pacing protocols, using
clinically available electrical recordings.

1. Introduction

Patient specific electrophysiology, anatomy and structure affect
atrial fibrillation (AF) mechanisms. These features exhibit large varia-
bility between patients, and also change with AF progression. As such,
determining each of their individual contributions to AF dynamics and
sustaining mechanisms in an individual patient is both important and
challenging. Changes that occur during AF that modify atrial conduc-
tion include down-regulation and lateralisation of connexins, deposi-
tion of collagen and interstitial fibrosis, as well as changes in atrial fibre
direction, including fibre disarray [1,2]. Each of these factors affect the

heterogeneity and anisotropy of atrial conduction. However, the
quantitative relationship between fibrotic remodelling and longitudinal
and transverse conduction velocity (CV), and the effects of each of these
on AF in individual patients are unknown.

Measurements of the velocity and directional dependency of the
propagation of the electrical signal across cardiac tissue can indicate
properties of the underlying myocardium, where slower CV is thought
to occur in diseased tissue [3]. Calculating CV and its anisotropy in
clinical electrophysiology cases is a challenge, and there is currently no
agreement on the best technique to quantify CV clinically [4–8]. Ty-
pically clinical measurements of conduction properties calculate the
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overall conduction speed and previous studies have found correlations
between this measurement and other properties, including measures of
atrial fibrosis from structural imaging data [9], electrogram amplitude
and fractionation [10], and arrhythmia properties such as critical driver
locations [11]. These varied and often weak correlations may represent
the presence of distinct direction dependent changes in conduction
[12], requiring the measurement of both longitudinal and transverse CV
to show a clear relationship.

Previous studies have estimated longitudinal and transverse CV
from a single activation map [13,14]. However, these methodologies
require manual selection of longitudinal fiber direction, which is not
feasible for analysing high-density global activation maps. We pre-
viously developed an automated technique for estimating CV and
source location, assuming a planar or circular wavefront and constant
CV [15], using recordings from an arbitrary arrangement of points. This
algorithm may be applied to any multipolar catheter arrangement,
provided the measuring point locations can be approximated locally as
lying on plane.

Here we initially extend our algorithm to consider an elliptical
wavefront of activation, to automatically provide estimates of both
longitudinal and transverse CV from a single activation map (method 1:
elliptical wavefront fitting to a single activation map). The algorithm works
in cases of surface curvature by determining for each subset of re-
cording points on the atrial surface a two-dimensional flattening that
preserves geodesic distances between these surface points. This meth-
odology performs well in the vicinity of the pacing location, but the
accuracy decreases further from this location due to the effects of het-
erogeneities in the fibre field. As such, we develop a second metho-
dology for estimating conduction anisotropy using ellipse fitting to
planar estimates of CV measured from two or three pacing directions to
estimate the longitudinal fibre direction, and longitudinal and trans-
verse CV magnitudes (method 2: ellipse fitting to wavefront propagation
velocity vectors from multiple activation maps). Our aim is to develop a
technique that may be used to estimate conduction anisotropy and fibre
direction from clinically available electrical recordings.

2. Methods

We initially describe a novel methodology for automatically esti-
mating longitudinal and transverse CV by elliptical wavefront fitting to
a single activation map using a methodology that incorporates surface
curvature (method 1; Sections 2.1- 2.3); we then develop a technique
for estimating fibre direction and anisotropy by ellipse fitting to wa-
vefront propagation velocity vectors estimated from two or three acti-
vation maps (method 2; Section 2.4). Finally, we describe the clinical
data (Section 2.5) and the simulation data (Section 2.6) used for testing
the algorithms.

2.1. CV estimation: assuming a planar or circular wavefront

We previously developed a methodology for calculating the propa-
gation CV assuming a planar or circular wavefront with isotropic con-
ductivity measured at an arbitrary arrangement of points. For these two
cases we quote the equations, and direct the interested reader to [15]
for a derivation. We will then go on to derive the equation for an el-
liptical wavefront in Section 2.2 as might be observed on a homo-
geneous anisotropic plane.

Referring to Fig. 1 (A), we consider a wavefront that originates from
an unknown source location =s s s( , )x y at an unknown time T, which
propagates with unknown constant speed v. Our known recordings are
at measuring locations =x x y( , )i i i , for n measuring points corre-
sponding to = …i n0, , 1, ordered by activation time ti. We then ex-
press our equations in terms of these parameters together with the
following unknown parameters: 0, the angle subtended at s by the x-
axis and the earliest measuring point x0, and the radius of curvature

= x sd || ||0 0 , which represents the unknown distance from the source

location s to the earliest measuring point x0.
For planar wavefronts, the activation time of measuring location xi

can be derived geometrically as

= + +t X Y ,i i i0 1 2 (1)

where =X x xi i 0, =Y y yi i 0 are the differences in the coordinates to
the first measuring points, and = T v v( , cos , sin )1

0
1

0 . This is a
linear least squares problem, for which the unknown parameters are
solved to give estimates for v, 0 and T.

For circular wavefronts, the activation time of point xi can be de-
rived to be
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Note that for this case, the source location is given by

=s x
d
d

cos
sin0

0 0

0 0
.

To solve, we consider
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where the coefficients = T v d d( , , cos , sin )1
0 0 0 0 .

Equation (3) is a non-linear least-squares problem in , which can be
solved by minimising = t t( ˆ )i

m
i i0

1 2 . It is solved using lsqnonlin in
Matlab, with initial estimates for 0 and v derived from the planar fit.
The unknowns are then easily deduced from the values of .

2.2. CV estimation: ellipse fitting to CV vectors from multiple activation
maps (method 1)

For the case of elliptical wavefronts, we consider an equivalent set-
up with measurements at known recording locations xi, again ordered
by activation time ti, and the following unknowns: a source location s
with activation time T, longitudinal and transverse velocity (CVL and
CVT respectively), and ellipse long axis orientation θ. Our approach is to
apply a linear transformation to map the elliptical wavefront to a cir-
cular wavefront, such that the transformed coordinates satisfy Equation
(2). The necessary transformation M (see Fig. 1 (B)) consists of a ro-
tation by to align the ellipse long axis onto the x-axis, followed by a
y-axis scaling to stretch the ellipse short axis to equal the long, that is:

Fig. 1. Conduction velocity is estimated assuming planar, circular or el-
liptical wavefront propagation. (A) Set-up considered for estimating the CV
and source location of a circular wavefront, from Ref. [15] with permission. (B)
An elliptical wavefront is mapped to a circular wavefront by first rotating by

and then scaling the y-axis, such that the circular wavefront algorithm can
be applied.
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Let d̂0, ˆ
0 be the distance and angle from the activation source to the

first activation point after the transformation M is applied. Observe that
the transformed Xi, Yi (i.e. X̂i and Ŷi) are unknown functions of CVL, CVT
and θ:

= +X X Yˆ cos sin ,i i i (5)
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Equation (2) then becomes:
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Substituting forˆXi and Ŷi in terms of knowns Xi and Yi , we get:
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where the coefficients = ( )T d d, , ˆ cos ˆ , ˆ sin ˆ , , sinCV
CV
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Upon numerically solving for γ and deducing ŝ, the original source

location is found by applying the inverse transformation M 1:

=s scos sin
sin cos

1 0
0 ˆ.CV

CV
T
L (9)

2.3. Geodesic distances

We assume that the atrium is thin-walled with fibers running tan-
gentially, and that it is transmurally homogeneous. CV calculations
were performed on atrial surface meshes generated from an electro-
anatomic mapping (EAM) system, or on simulation meshes down-
sampled to match the resolution of the EAM system meshes. For method
1, CV vectors were calculated for each element of the mesh using re-
cording locations within an area of 1 cm × 1 cm around the element
mid-point, to model recordings from electrodes on a multi-polar ca-
theter, and provide a sufficient number of points for fitting. For method
2, a smaller area of 0.5 cm × 0.5 cm was used to calculate a more local
planar CV (mean number of points included in the fit: 19.97 ± 0.41,
range 12–20). These areas were determined in initial parameter sensi-
tivity testing.

To reduce the dimensionality of the 3D recording locations to 2D
space, a representation that best preserves the geodesic distances in the
locality of the selected recordings was used; shown in Fig. 2. First of all,
a subset of the mesh was taken for analysis, by selecting the vertices
that are within a bounding box of the recording point subset (Fig. 2 A).
The geodesic distances between all of these vertices were calculated
using Dijkstra's algorithm, which finds the shortest path between ver-
tices (Fig. 2 B). We then use the multi-dimensional scaling approach of
Zigelman et al. on the matrix of geodesic distances to give 2D co-
ordinates that best preserve geodesic distances [16,17] (Fig. 2C).

To estimate CV for the 2D locations with associated activation
times, we considered each of the planar, circular and elliptical wave-
front equations. CV estimates were calculated for random selections
(using randperm in Matlab) of twenty recording locations together with
their activation times (Fig. 2 D). In the instance that there were fewer
than twenty recording locations in a region, all recordings were used for

Fig. 2. Methodology for estimating CV on an atrial surface mesh. (A) Select a local patch of tissue (1 cm × 1 cm) from an activation time map for analysis, centred
around a measurement location. (B) Calculate geodesic distances on this patch of tissue. These are shown from an example vertex (indicated by the asterisk) to all
other vertices, and then calculated with each vertex as a starting node to obtain a matrix of geodesic distances. (C) Flatten this patch to 2D using a geodesic method to
preserve distances. (D) Estimate the speed and direction of the wave propagation for a subset of 20 of the recording locations. Assign the CV vector to the central
measurement location. (E) Repeat for each point of the geometry to build up a spatial map of wavefront propagation velocity assuming a planar wavefront, or of
longitudinal and transverse CV with ellipse orientation indicating the longitudinal fibre direction assuming an elliptical wavefront.
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the fit. CV vectors were estimated in 2D (see Fig. 2 D, bottom left arrow)
and translated to start at the mid-point of the element closest to the
centre of the patch of tissue (see Fig. 2 D, central arrow). CV vectors
were then projected back to the 3D geometry using barycentric co-
ordinates to preserve the relative location within the element of the CV
vector start point (centre of the element) and end points (Fig. 2 E). In
this way, assuming elliptical wavefront propagation with homogeneous
CV, conduction anisotropy was estimated from a single activation map
by fitting to activation times measured at a set of recording locations.

2.4. Ellipse fitting to CV vectors from multiple activation maps (method 2)

Cardiac tissue conducts anisotropically, with faster conduction
along the longitudinal fibre direction, and slower conduction transverse
to the fibres. As such, CV depends on direction of propagation, with the
set of possible wavefront propagation CV vectors approximately
forming an ellipse [13]. We assume here that atrial tissue propagation
can be approximated by a monodomain surface model, and that clinical
and simulated wavefronts can be modelled with an elliptical wavefront
equation. In the instance that multiple activation maps constructed
from different pacing sites were available, conduction anisotropy was
instead estimated by fitting an ellipse to the observed set of wavefront
propagation velocity vectors (assuming planar propagation), with one
vector from each activation map. In this case, we assume that wavefront
curvature is sufficiently small that the speed is independent of curva-
ture and a planar wavefront fit is appropriate.

The equation of an ellipse is given parametrically for t [0, 2 ) as:

= +x
y

x
y

a t
b t

cos sin
sin cos

cos
sin ,0

0 (10)

where x y( , )0 0 is the known centre location corresponding to the ele-
ment mid-point, θ is the unknown long axis orientation and a and b are
the unknown long and short axis magnitudes corresponding to the
longitudinal and transverse CVs respectively, giving a total of three
unknowns.

We followed the method of Ray and Srivastava [18] for fitting to an
ellipse. Specifically, to find the best fit ellipse to the CV vector end-
points, we minimised the residuals measured along radii of the ellipse.

We first considered the case of two activation maps, in which we

either fixed the ellipse orientation or anisotropy ratio, and then the case
of three activation maps for which it was possible to estimate all three
unknowns. In each case, the CV vectors were projected to 2D to esti-
mate the ellipse fit, and then the calculated long axis vector direction
was expressed back on the 3D geometry using a barycentric coordinate
mapping.

For the case of fixed ellipse orientation (i.e. θ known in Equation
(10)), we used an atlas of endocardial atrial fibres from a previously
published bilayer model [19] mapped to our target geometry using our
universal atrial coordinate system [20]. We assumed that endocardial
activation patterns were predominantly determined by endocardial fi-
bres. Ellipse orientation for each element was then aligned such that the
long axis of the ellipse was in the longitudinal fibre direction, see Fig. 3.
In this way, longitudinal CV (a) and transverse CV (b) could be esti-
mated locally using just two CV vectors. Alternatively, we fixed the
anisotropy ratio (a

b
) and fitted both the ellipse orientation (θ) and

longitudinal CV (a).

2.5. Clinical electroanatomic and imaging data

The patient studied was a 78 year old male undergoing a first
clinically indicated left atrial ablation procedure for the treatment of
paroxysmal AF who provided written informed consent for inclusion in
the study. The study protocol was approved by a Research Ethics
Committee (reference 15/LO/1803, http://www.isrctn.com/
ISRCTN10910054). Cardiac magnetic resonance (CMR) imaging was
acquired prior to the procedure including atrial 3D contrast enhanced
gated magnetic resonance angiogram (GMRA) and 3D late gadolinium
enhanced (LGE) imaging. The high contrast GMRA was segmented ac-
cording to an in-house segmentation pipeline to generate a left atrial
endocardial geometry [21].

Paced maps were acquired while pacing at two different locations
along a decapolar catheter that was positioned in the coronary sinus
(CS) throughout the procedure. Left atrial geometry was created within
the Carto electro-anatomic mapping system (EAMS) (Biosense Webster,
Irvine, CA) using Fast Anatomical Mapping (FAM) following respiratory
training. Mapping points were acquired using a Lasso catheter (1 mm
electrodes, 4 mm electrode spacing) and activation times annotated on
the bipolar electrograms using the automated Carto ConfiDense module
with the following settings: LAT stability - 4 ms; Catheter stability -

Fig. 3. Technique for estimating longitudinal
and transverse CV from two activation maps
(method 2). Wavefront propagation velocity
maps constructed from two activation maps
with different pacing locations (Bachmann's
bundle and the coronary sinus) are combined
with a fibre atlas to estimate longitudinal and
transverse CV. Planar CV is estimated for each of
the activation maps; the colour indicates the CV
magnitude, and the lines indicate the CV vector
directions. The ellipse orientation is fixed such
that the longitudinal CV runs along the fibre
direction (indicated by the lines on the fibre
atlas panel) and the transverse CV runs perpen-
dicular to the fibres. The ellipse that best fits the
two planar CV vectors is calculated.
Longitudinal and transverse CV are then given
by the magnitude of the major and minor radii
respectively. The two heterogeneous wavefront
propagation CV maps, calculated using the
planar CV algorithm, are converted to a higher
homogeneous longitudinal CV and lower trans-
verse CV map.
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4 mm; point density - 1 mm. Ellipse fitting to CV vectors from two ac-
tivation maps (method 2) was used to predict the longitudinal and
transverse CV, assuming an atlas distribution of fibres (i.e. θ known in
Equation (10)).

2.6. Simulations

To test the robustness of the algorithms in a controlled environment,
we ran simulations using the monodomain tissue model and
Courtemanche et al. human atrial cell model [22] on a left atrial (LA)
geometry, using the CARP simulator [23]. A finite element mesh was
constructed from the segmented MRI geometry by remeshing to create a
more homogeneous element size of 300 μm using mmgtools software
(http://www.mmgtools.org/), and then fiber directions were assigned
to the element mid-points of the mesh by mapping the endocardial LA
fibre direction field of an atrial bilayer model [19], which we treat here
as an atlas distribution. AF electrical remodelling and repolarisation
heterogeneity were included in the model by modifying the cell model
ionic conductances of the LA body, left atrial appendage (LAA) and
pulmonary veins (PVs) as in our previous studies [24,25].

To simulate atrial pacing in the catheter laboratory, activation maps
were constructed by stimulating the model in the following locations:
the left superior PV (LSPV), the right superior PV (RSPV), the LAA, the
proximal coronary sinus (CS), the distal CS and where Bachmann's
bundle (BB) meets the LA wall. These data were used as inputs for the
CV estimation algorithms (methods 1 and 2). The resulting estimates of
longitudinal and transverse CV and longitudinal fibre direction were
compared to the gold standard simulation values. The gold standard
simulation values for the longitudinal and transverse CV were each
calculated as the planar CV estimated by fitting to 100 points for a
homogeneous isotropic 2D sheet simulation with either the longitudinal
or transverse conductivity value. Results are expressed as the median
and interquartile range (iqr) of the absolute error in CV measurements,
or the error in fibre angle expressed as a value in the range [0,90).
Regions of the spatial map were defined as accurate when the angle
error was less than 20 . The accuracy of the ellipse fitting algorithms
using CV vectors from two or more activation maps (method 2) depends
on accuracy of the planar wavefront propagation CV estimates, which
are then used to estimate the anisotropy. Areas of wavefront collision
result in inaccurate planar CV estimates (with high fit residuals) be-
cause the assumption of a single wavefront breaks down. For these
locations, fibre directions and CV magnitudes were interpolated from
neighbouring values using Shepard interpolation.

2.7. Incorporating clinically measured conduction anisotropy in simulation
studies

To investigate the effects of atrial conduction properties on ar-
rhythmia dynamics, models were constructed with different con-
ductivity properties. The first model was tuned isotropically to match
the spatial distribution of longitudinal CVs, such that the effects of fibre
direction and conduction anisotropy were ignored. The second model
was tuned anisotropically to match local longitudinal and transverse CV
estimates from the clinical data.

Similar to our previous study [26], sinus rhythm pacing was applied
at the earliest activation site of the LA as reported by Lemery et al. [27]
at a cycle length of 700 ms. Reentry was initiated in the model by ra-
pidly pacing the RSPV at a cycle length of 160 ms for five beats, to
model spontaneous initiation by ectopic PV triggers [28], at a coupling
interval following sinus rhythm chosen depending on inducibility. To
indicate the distribution of rotational activity and wavefront breakup
locations in the simulation output, phase singularity (PS) density maps
were calculated as in our previous publications [24–26]. These maps
were then partitioned into low and high PS regions, which were taken
to be >1 standard deviation from the mean PS value [26].

3. Results

3.1. Validation of elliptical wavefront fitting (method 1) in 2D simulations

The single activation map elliptical wavefront fitting algorithm
(method 1, Section 2.2, Equation (8)) was first applied to data from a
two-dimensional sheet simulation, with homogeneous CV and fixed
anisotropy, with longitudinal fibres aligned with the x-axis. This is
shown in Fig. 4. Wavefront propagation CV magnitude is higher when
the activation is aligned with the fibre direction (see Fig. 4 (A)). Using
the activation time map shown in Fig. 4 (B) to estimate the atrial fibre
direction shows that the algorithm more accurately predicts the fibre
direction close to the source location, indicated by the closer alignment
of the estimated fibres with the x-axis in the centre of the domain (see
Fig. 4 (E)). Longitudinal fibre estimation was accurate; median error
0.6° (iqr: 0.2–1.1°). Longitudinal CV magnitude estimation is accurate
close to the pacing location (green region in Fig. 4 (C)), but over-
estimated further from the pacing location (red region in Fig. 4 (C));
median absolute error: 0.03 m/s (iqr: 0.01–0.06 m/s) (simulation value
1.10 m/s). The algorithm accurately estimates the transverse CV mag-
nitude (shown by the homogeneous distribution in Fig. 4 (D)); median
absolute error 0.03 m/s (iqr: 0.02–0.04 m/s) (simulation value 0.55 m/
s).

3.2. Application of the ellipse wavefront fitting algorithm (method 1) to
atrial geometry simulations

The single activation map elliptical wavefront fitting algorithm
(method 1, Section 2.2, Equation (8)) was next tested on realistic atrial
geometry simulations. The ability of the algorithm to accurately esti-
mate longitudinal and transverse CV and fibre direction is quantified in
Table 1 for six pacing locations. The median estimated longitudinal and
transverse CV magnitudes were close to the actual values for all pacing
locations (range of median values for longitudinal CV: 1.09 1.15 m/s,
actual 1.10 m/s; range of median values for transverse CV: 0.54 0.60
m/s, actual 0.55 m/s). Longitudinal and transverse CV error and fibre
direction angle error are relatively similar across the pacing locations.
The percentage of the atrial surface area for which atrial fibres are
accurately estimated is also similar (39.43 47.07%).

The spatial distributions of angle error and longitudinal and trans-
verse CV estimates indicate that these values are generally more ac-
curate close to the pacing location, and less accurate further away.
Changes in fibre direction between the pacing location and recording
location mean that the assumption of fixed CV along a fixed long-
itudinal and transverse fibre axis no longer holds and estimates are less
accurate. An example is shown in Fig. 5 with pacing from the LSPV
(Fig. 5 A). The LSPV map is more accurate on the posterior wall and
roof (B, C and H) since the pacing location is closer to these regions, and
less accurate on the anterior wall (I). The longitudinal and transverse
CV maps are more homogeneous than the corresponding planar wa-
vefront propagation velocity map; however, there are regions in which
the longitudinal CV is overestimated (red and white regions in B, re-
sulting in larger errors in D). Fibre directions in the atrial body are well
estimated by the algorithm (compare the atlas fibres shown in F and G
and the predicted fibres in H and I); however, there are inaccuracies
where there are abrupt changes in fibre direction in the input map (for
example on the posterior wall below the left inferior PV, Fig. 5 G and
H). As such, fibre direction and longitudinal and transverse CV cannot
be accurately estimated for the entire atrial surface from a single acti-
vation map.

3.3. Validation of anisotropy and fibre direction estimation from multiple
simulated activation maps (method 2)

The methodology developed for estimating fibre direction and ani-
sotropy by ellipse fitting to wavefront propagation velocity vectors
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from multiple activation maps (method 2, Section 2.4, Equation (10))
was tested on atrial geometry simulations. The dependence of the el-
lipse fitting methodology on the choice of underlying activation maps
was investigated by varying the activation pacing directions used for
the estimation.

Table 2 shows results using two activation maps, assuming an atlas
distribution of fibre directions (i.e. assuming θ is known in Equation
(10)). Longitudinal CV magnitude estimates show a similar degree of
error to the single activation map ellipse fitting method 1, whereas
transverse CVs are estimated more accurately (range of median abso-
lute errors in transverse CV for method 1: 0.10 0.17 m/s and for
method 2: 0.06 0.09 m/s).

For the case of assumed anisotropy ratio (i.e. assuming a b/ is known
in Equation 10), the longitudinal CV is estimated more accurately than
using method 1 or method 2 for the case of assumed fibre direction
(range of median absolute errors in longitudinal CV for method 1:
0.26 0.34 m/s and for method 2 with assumed anisotropy ratio:
0.17 0.20 m/s). However, fibre direction estimation is less accurate
(method 2 with assumed anisotropy ratio: median angle error
26.9–35.0°, accurate region 30.0–39.7 %).

The algorithm was next applied to simulations with three activation
maps from different pacing directions (method 2, Section 2.4, Equation

(10)). Fig. 6 shows an example set-up in which the fibre direction es-
timation and longitudinal and transverse CV estimation are visually
better than the results of applying the ellipse fit to a single activation
map (method 1). For all three combinations of pacing directions tested,
there are areas of the map in which angle estimation is inaccurate;
however, these regions are much smaller than the cases using one or
two pacing directions. These areas are typically in the vicinity of wa-
vefront collision in one of the underlying activation maps (for example
the collision region ranging from the RSPV to the MV in Fig. 6 B is seen
as an area of high angle errors in Fig. 6 F), or are regions where the
three activation maps display similar CV vector directions. Regions
corresponding to wavefront collision in one of the planar maps are
excluded from the ellipse fitting algorithm by employing a threshold on
the planar fit residual, since the planar CV vectors are inaccurate in this
case (the assumption of a single wavefront breaks down, see yellow
regions in Fig. 6J–L), and replaced by interpolated vectors, which in-
troduces error (compare Fig. 6(F) with J-L).

The accuracy of the three activation map method is quantified in
Table 3. Transverse CV is estimated with increased accuracy compared
to the previous methodologies, and approximately 70% of fibre direc-
tions are estimated accurately for this method, compared to 30 50%
for the cases with one or two pacing directions (compare Tables 1, 2
and 3). To test the effects of the planar wavefront approximation on the
estimated CV values used as the input to method 2, we compared planar
and circular CV estimates. CVs for the planar and circular fits were
similar: mean absolute difference in planar and circular CVs: ±0.03 0.07
m/s; 5.9% of points with CV difference > 0.1 m/s.

3.4. Effects of errors in assumed fibre field on longitudinal and transverse
CV estimation

Ellipse fitting to wavefront propagation velocity vectors using two
activation maps (method 2, Section 2.4, Equation (10)) requires an
additional assumption to fit the three unknown parameters; for ex-
ample, θ may be assumed from an atlas. Since patient-specific atrial
fibres are not known, and an individual patient may show large de-
viations from any given fibre atlas, we investigated the effects of de-
viations in the assumed fibre atlas from the actual fibre directions on

Fig. 4. Validation of elliptical wavefront fit-
ting (method 1) in 2D simulations for a
homogeneous anisotropic sheet. (A) Planar
CV magnitude and direction vectors (displayed
as black arrows). (B) Activation time map with
predicted fibre direction overlaid (displayed as
black lines). (C) Estimated longitudinal CV (gold
standard longitudinal CV is 1.10 m/s). (D)
Estimated transverse CV (gold standard trans-
verse CV is 0.55 m/s). (E) Box plots at 1 mm
intervals showing the distribution of angle er-
rors as a function of position along the y-axis.

Table 1
Single activation map ellipse wavefront fitting algorithm (method 1) re-
sults. Simulation longitudinal CV is 1.10 m/s, transverse CV is 0.55 m/s.
Accurate (%) is the percentage of the atrial area for which the angle estimation
is within 20° of the input fibre direction. Errors are quoted as the median of the
absolute errors and the iqr.

Pacing Error CVL (m/s) Error CVT Error θ (°) Accurate %

BB 0.26 (0.08 0.76) 0.16 (0.06 0.29) 25.6(9.8 54.2) 42.82
CS1 0.27 (0.09 0.73) 0.15 (0.06 0.27) 24.8(9.2 54.2) 44.02
CS2 0.26 (0.08 0.79) 0.17 (0.08 0.31) 28.8 (10.7 59.9) 39.43
LAA 0.34 (0.13 0.87) 0.12 (0.04 0.24) 22.2 (8.9 47.2) 46.75
LSPV 0.33 (0.15 0.68) 0.10 (0.04 0.21) 21.7 (9.6 44.9) 47.07
RSPV 0.28 (0.11 0.69) 0.15 (0.06 0.27) 25.6 (10.4 52.6) 42.35
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estimated longitudinal and transverse CV using simulation. The results
of adding Gaussian error terms to fibre direction are shown in Table 4.
The error terms are independent identically distributed normal error
terms of a given standard deviation, and the resulting median absolute
error in both longitudinal and transverse CV increases with increased
perturbation in fibre direction.

3.5. Clinical example using method 2 with an assumed fibre atlas

Fig. 7 shows the results of estimating anisotropy by applying the
ellipse fitting algorithm to wavefront propagation velocity vectors from
two clinically recorded activation maps, assuming an atlas distribution
of fibre directions (method 2, Section 2.4, Equation (10), with θ from an
atlas). CV is seen to exhibit anisotropy since the estimated longitudinal
CV values are higher than the transverse values. The distribution of
longitudinal and transverse CV are spatially heterogeneous, and the
ratio between them is also heterogeneous (for example both are high on
the LA roof, whereas there are larger differences between them on the
posterior wall). This is quantified as a histogram of anisotropy values in
Fig. 7(C), in which a large range of values is observed, with a mean of

±1.49 0.24.

3.6. Simulating heterogeneous CV and heterogeneous anisotropy

The effects of calibrating CV and its anisotropy by matching local
longitudinal and transverse CV measurements (a heterogeneous CV

Fig. 5. Ellipse wavefront fitting algorithm for
a single activation map (method 1) applied
to atrial geometry simulations. An example is
shown here with pacing from the LSPV. (A)
Activation map. (B) Longitudinal CV. (C)
Transverse CV. (D) Absolute error in long-
itudinal CV. (E) Absolute error in transverse CV.
(F) Atlas fibre map used for simulation (shown
as black lines) in anteroposterior view. (G) Atlas
fibre map in posteroanterior view. (H) Estimated
fibre direction map coloured by angle error,
with correctly estimated areas shown in blue,
and incorrectly estimated areas in red for the
posteroanterior view. Estimated fibre directions
are displayed as black lines. (I) Equivalent map
to (H) for the anteroposterior view.

Table 2
Two activation map ellipse fitting results, using an atlas of fibre directions
(method 2). Simulation longitudinal CV is 1.10 m/s, transverse CV is 0.55 m/s.
Errors are quoted as the median of the absolute errors and the iqr.

Pacing Error CVL (m/s) Error CVT (m/s)

BB-LSPV 0.22 (0.06 0.88) 0.07 (0.03 0.15)
CS1-LSPV 0.31 (0.08 0.90) 0.06 (0.03 0.12)
CS2-BB 0.11 (0.04 0.42) 0.09 (0.04 0.18)
RSPV-LAA 0.34 (0.09 0.90) 0.06 (0.03 0.13)
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Fig. 6. Estimating anisotropy and fibre di-
rection by ellipse fitting to planar wavefront
propagation CV estimates from three simu-
lated activation maps. Activation maps with
planar wavefront propagation CV vectors over-
laid (black arrows) from pacing at (A) BB, (B)
proximal CS, (C) LSPV. Anteroposterior views
for (D) longitudinal CV map, (E) transverse CV
map, (F) estimated fibre direction map coloured
by fibre angle error (estimated fibre directions
are displayed as black lines). Posteroanterior
views for (G) longitudinal CV map, (H) trans-
verse CV map, (I) estimated fibre direction map
coloured by fibre angle error. Average residuals
for pacing at (J) BB, (K) proximal CS, (L) LSPV.

Table 3
Three activation map ellipse fitting algorithm (method 2) results from testing on simulated data. Simulation longitudinal CV is 1.10 m/s, transverse CV is
0.55 m/s. Accurate (%) is the percentage of the atrial area for which the angle estimation is within 20° of the input fibre direction. Errors are quoted as the median of
the absolute errors and the iqr.

Pacing Error CVL (m/s) Error CVT Error θ (°) Accurate %

CS1-LSPV-BB 0.17
(0.06 0.76)

0.06
(0.03 0.11)

11.8
(5.26 24.9)

67.74

RSPV-CS2-LAA 0.17
(0.06 0.86)

0.06
(0.03 0.11)

10.7
(4.92 21.5)

72.33

BB-LAA-LSPV 0.19
(0.06 0.88)

0.06
(0.02 0.11)

12.1
(5.40 24.8)

68.09
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field with heterogeneous anisotropy) was compared to tuning to long-
itudinal CV alone (an isotropic heterogeneous CV field). These models
differ in their reentry dynamics and rotor locations, as shown in Fig. 8.
This is quantified in the box and whisker plots in Fig. 8, in which PSs
anchor to regions of low longitudinal CV for the isotropic case; that is,

median longitudinal CV in high phase singularity (PS) regions is sig-
nificantly lower than in low PS regions (1.25 m/s in high PS regions vs
1.46 m/s in low PS regions, p < 0.001 by two-sided Wilcoxon rank sum
test). However, for the anisotropic case, this association is lost and the
longitudinal and transverse CV do not change between low and high PS
regions (see Fig. 8 F). As such, anisotropy plays a significant role and
removes any direct effect of CV on PS location.

4. Discussion

4.1. Main findings

We have developed and tested automated algorithms for estimating
cardiac conduction anisotropy, including longitudinal and transverse
CV and fibre direction, from distributions of recording locations. The
algorithms work for any arrangement of points on the atrial surface and

Fig. 7. The left atrium clinically exhibits
heterogeneous anisotropy in CV. (A)
Calculation of longitudinal and transverse CV
maps. Two CV maps were constructed by as-
suming planar wavefront propagation for acti-
vation maps paced from the proximal and distal
CS. Ellipse orientation was fixed using an atrial
fibre atlas, and then the long and short axis
magnitudes were estimated by fitting to the two
local CV vectors to estimate longitudinal and
transverse CV (method 2 with θ fixed). Black
arrows for the CV maps indicate planar CV di-
rection, and black lines for the fibre atlas in-
dicate the fibre direction. Black regions of the
mesh are not included in the calculations. (B)
Activation time maps corresponding to the CV
maps given in A. Orange regions of the mesh
indicate excluded areas. (C) Spatial anisotropy
map and histogram of anisotropy ratios, with
mean ±1.49 0.24.

Table 4
The effects of random errors in the assumed fibre atlas on longitudinal and
transverse CV estimation.

Angle perturbation sd (deg) Error CVL (m/s) Error CVT (m/s)

0 0.11 (0.04 0.42) 0.09 (0.04 0.19)
14.3 0.17 (0.05 0.44) 0.11 (0.05 0.24)
28.6 0.22 (0.08 0.43) 0.16 (0.07 0.29)
43.0 0.24 (0.10 0.41) 0.20 (0.08 0.32)
57.3 0.25 (0.12 0.40) 0.22 (0.10 0.33)

C.H. Roney et al. Computers in Biology and Medicine 104 (2019) 278–290

286



for any pacing location. The first algorithm is applied to a single acti-
vation map by fitting to elliptical wavefront propagation (method 1),
which works well close to the pacing location; however, it decreases in
accuracy further from the pacing location where the assumption of
homogeneous conduction anisotropy breaks down. As such, we devel-
oped a methodology for measuring local conduction anisotropy – to
capture heterogeneities in fibre direction – and longitudinal and
transverse CV using data from two or three activation maps (method 2).
The use of two activation maps requires an additional assumption: ei-
ther that the atrial fibres follow an atlas distribution of fibres, or that
the anisotropy ratio is known. Ellipse fitting to CV vectors from two
activation maps leads to an improved estimation of longitudinal and
transverse CV compared to the single activation map elliptical wave-
front technique (method 1), but fibre direction estimation is still rela-
tively poor. Using three activation maps (method 2) to estimate the
longitudinal and transverse CV and atrial fibre direction provides a
more accurate estimation, with approximately 70% of atrial fibres es-
timated within 20°. We applied the technique to clinical activation
maps to demonstrate the presence of heterogeneous conduction aniso-
tropy, and then tested the effects of this conduction anisotropy on
predicted arrhythmia dynamics using computational simulation. These
techniques may be applied to measure the direction dependency of
atrial activation, without the need for specialised pacing protocols, in
order to relate conduction anisotropy to other clinical variables.

4.2. Algorithm validation

The single activation map elliptical wavefront fitting algorithm
(method 1) extends our previous planar and circular fitting algorithms
[15] by assuming an elliptical propagation wavefront to provide an
estimate of both longitudinal and transverse CV and fibre direction. The
elliptical wavefront fit is derived from our circular wavefront fit by
applying a linear transformation to convert elliptical wavefronts to
circular wavefronts (see Fig. 1). The technique requires a minimum of
five recording points per fit, compared to the requirement of three for
the planar wavefront and four for the circular wavefront, which in-
creases resolution requirements, or equivalently decreases measure-
ment locality. This technique assumes homogeneous propagation of the
elliptical wavefront between the source location and recording points,
which requires a homogeneous fibre field with homogeneous long-
itudinal and transverse CV. As such, the technique decreases in accu-
racy with increased distance from the source location, since underlying

fibre fields are typically heterogeneous (see Fig. 5). To measure het-
erogeneities in the fibre field, a second methodology was developed
that estimates local conduction anisotropy by ellipse fitting to local CV
vectors measured from multiple activation maps (method 2). As such,
method 2 has greater data requirements since multiple activation maps
are required, but it likely has the advantage that it provides a more
local measure.

For two activation maps (method 2), a further assumption is re-
quired to fit the three unknowns (Equation (10)), and the choice of
whether to assume an atlas distribution of fibres (θ) or a known ani-
sotropy ratio (a/b) depends on a balance between which is known with
more certainty and which is the more desirable measurable. Our sen-
sitivity testing showed that estimation is sensitive to the assumed ani-
sotropy ratio, the atlas distribution of fibres and the measurement area
used for the CV estimation. The optimal region size will depend on the
wavelength of the underlying propagation [29], the tissue depth, the
point density, and the recording device.

The single activation map technique (method 1) showed similar
overall accuracy across pacing locations, but each estimation was more
accurate in the locality of the pacing location, which should be con-
sidered when selecting pacing locations. The multiple activation map
technique (method 2) was sensitive to both areas of wavefront collision
in the activation maps and may also decrease in accuracy in areas
where CV vectors across each map are close to collinear; as such, pacing
locations should be chosen as sites that are as close to orthogonal as
possible. The combinations tested in this study show similar overall
accuracy, and importantly three maps characterise a large proportion of
the atrial surface, without the need for special pacing protocols for each
atrial region. Method 2 with three activation maps was far superior to
both method 1 and method 2 with two activation maps, suggesting
these additional data requirements may be justified in studies in-
vestigating anisotropy. However, method 2 with three activation maps
is more computationally intensive; run times are as follows for Matlab
running on a MacBook Pro: method 1 with 500 points: 3 min; method 1
with 5000 points: 28 min; method 2 (2 maps), 500 points: 7 min;
method 2 (2 maps), 5000 points: 66 min; method 2 (3 maps), 500
points: 10 min; method 2 (3 maps), 5000 points: 94 min.

4.3. Comparison to other methodologies

Our methodology for calculating CV assuming either planar, cir-
cular or elliptical wavefront propagation is a cosine-fit type algorithm,

Fig. 8. Heterogeneous CV and heterogenous
anisotropy modelling removes any direct ef-
fect of CV on PS location in simulation stu-
dies. (A) Longitudinal CV (posteroanterior and
anteroposterior views). (B) Transverse CV. Black
regions of the mesh are not included in the cal-
culations. Phase singularity density maps for
isotropic conductivity in (C) and anisotropic
conductivity in (D). Mean number of PSs is 1.45
for the isotropic case and 1.28 for the aniso-
tropic case. (E) Box and whisker plots showing
the longitudinal CV values in low and high
phase singularity (PS) regions for the isotropic
conductivity simulations. (F) Box and whisker
plots showing the longitudinal CV and trans-
verse CV values in low and high phase singu-
larity (PS) regions for the anisotropic con-
ductivity simulations.

C.H. Roney et al. Computers in Biology and Medicine 104 (2019) 278–290

287



which extends the work of Weber et al. [30] and Roney et al. [15] to
work for different types of wavefronts and any arrangement of points
on a curved surface. We incorporated surface curvature into our CV
estimation in a similar way to Verma et al. [8]. The elliptical wavefront
formulation extends the circular wavefront algorithm to give an esti-
mate of conduction anisotropy, as well as source location. Mazeh et al.
[31] derived an analytic expression for CV and curvature from four
recording points on either a square or a circle. Their algorithm is similar
to our circular wave fitting algorithm (Section 2.1), which generalises
to any arrangement of measuring points [15]. Several previous studies
use triangulation methods, which have the advantage that they provide
a very local measure of CV, but are also sensitive to noise in activation
times [4,6] and assume planar propagation. Our methodology works for
any arrangement of recording points, rather than requiring a regular
grid of recordings [32], and it is fully automated. One major dis-
advantage of our method is that it assumes a single wavefront under-
lying the recording points. The fit residual indicates whether this is a
suitable assumption, and the data may be divided into separate wave-
fronts as a pre-processing step. Both polynomial surface fitting [33] and
radial basis function methodologies [34] are suitable for multiple wa-
vefronts and any arrangement of points, but have larger data require-
ments and may over interpolate data. Kay and Gray developed a
method for estimating wavefront curvature from isopotential lines,
which they demonstrate is accurate for high resolution optical mapping
data [35]. Their technique could be extended to estimate curvature
from lines of constant phase or normalised unipolar electrogram vol-
tage, but it has larger data requirements than our methodology.

Linnenbank et al. [13] also measured longitudinal and transverse
CV from a single activation map, where they investigate the effects of
grid size on their methodology. Our methodology offers an extension to
their method by automatically selecting the longitudinal direction,
which is necessary for processing large quantities of clinical data. Post-
processing of the CV vector fields to calculate the divergence and curl
operators may allow further characterisation of underlying activation
patterns, including identification of electrical sources and reentrant
activity [36]. Our techniques could be applied to activation times as-
signed using other methodologies, or from phase mapping [37]. Other
studies have investigated the relationship between voltage and CV with
fibre direction [38].

4.4. Clinical conduction exhibits heterogeneous anisotropy

We provide a proof of principle example, which shows that the
methodology may be applied to clinical data to measure heterogeneous
longitudinal and transverse CV across the LA (see Fig. 7). Hetero-
geneities in these measurements may be important in determining cri-
tical sites that sustain AF, and measuring the directional dependency of
atrial conduction may show improved correlations with measures of
structural remodelling. For example, Krul et al. measured a slowing of
transverse conduction but not longitudinal with increased fibrosis in
the left atrial appendage [12], and Angel et al. demonstrated diverse
fibrosis architecture with decreased transverse CV in goats [39]. Con-
sidering transverse CV and longitudinal CV separately may improve
correlations with atrial fibrosis [9]. The effects of the number of acti-
vation maps on the estimated atrial fibre direction from clinical data
will be investigated in future studies.

4.5. Anisotropy affects rotor location

Our simulation studies (see Fig. 8) demonstrate the importance of
conduction anisotropy in determining arrhythmia dynamics. In parti-
cular, simulated rotor location changes when both longitudinal and
transverse conductivity values are tuned, and the association between
rotor location and low CV seen in the isotropic case is no longer seen in
the anisotropic case. This is an important consideration when con-
structing patient-specific models.

4.6. Determining atrial fibre direction

It is not possible to measure atrial fibre directions globally in vivo
using current imaging technologies. Previous studies have applied dif-
fusion tensor (DT)-MRI to small sections of atrial tissue, for example the
sino-atrial node [40], to the whole atria ex-vivo [41], or have used
micro-CT [42] or contrast-enhancement MRI [43] to construct myofibre
orientation. The high resolution atrial DT-MRI study of Pashakhanloo
et al. [41] demonstrates inter-patient variability, while simulation and
experimental studies suggest that atrial fibre directions may affect ar-
rhythmia dynamics and the outcome of ablation strategies [25,44,45].
As such, inferring patient-specific atrial fibre directions is important.
Our methodology may be used to estimate a functional fibre atlas in
individual patients. The relationship between this fibre field and
structural remodelling indicated by late-gadolinium enhancement MRI
data could then be studied to investigate the interplay between fibre
disarray and changes in longitudinal and transverse CV.

4.7. Limitations

The techniques developed here are not fully three-dimensional, but
rather work on cardiac surfaces, and as such transmural propagation is
not accounted for. Typically clinical measurements are either en-
docardial or epicardial and transmural recordings are not available;
however, our algorithms could be extended to three dimensions in the
case that transmural recordings are available. A second significant
limitation of our approach is that areas of wavefront collision are ex-
cluded from the ellipse fitting algorithm and fibres are interpolated in
these regions, introducing significant error in the instance of a locally
heterogeneous fibre field. The planar wavefront fitting algorithm used
to estimate the CV vectors assumes a single wavefront of activation, but
this assumption breaks down in the case of wavefront collision.
Adapting the planar algorithm to fit to the two wavefronts separately
would overcome this limitation and allow more accurate estimation of a
greater proportion of atrial fibres for a given set of activation map in-
puts. Planar CV estimates will be inaccurate for wavefronts with high
curvature; for example in cases of focal propagation, or due to fibrosis
or discrete changes in fibre direction [2]. The planar algorithm exhibits
increased inaccuracy in CV estimation at the edges of a simulated do-
main or tissue. In addition, spatial inaccuracies due to respiratory re-
lated motion, and temporal inaccuracies in local activation time as-
signment in the case of fractionated electrograms will lead to
inaccuracy and a degree of uncertainty in the CV assignment [46]. Fibre
direction estimation was only 70 % accurate for the three activation
map case. Furthermore, we did not consider changes in curvature and
speed that may occur at the edge of a bath in the bidomain model [47].

We only considered one, two or three activation maps as it is un-
likely that more than three activation maps with different pacing di-
rections would be clinically available. The fibre atlas used in this study
for estimating longitudinal and transverse CV from two activation maps
was from a previously published rule-based approach based on histo-
logical descriptions, but other fibre fields may be more appropriate
[41,48]. We did not consider two layers with different fibre direction
and so did not investigate the combined contribution of epicardial and
endocardial fibres, but rather assumed that endocardial activation
patterns were predominantly determined by endocardial fibres.

4.8. Conclusions

Overall, we have developed a technique that may be used to esti-
mate conduction anisotropy and fibre direction from clinically available
electrical recordings. The proposed algorithm is not limited to atrial
data, but is also applicable to ventricular data in the instance that
transmural activation is not considered. Our methodology will be used
for estimating patient-specific fibre distributions and conduction ani-
sotropy, which may be used to tune computational models and to
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investigate the correlations between these features and structural re-
modelling, electrogram features and re-entry properties.
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