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Nuclear factor- (erythroid-derived 2-) like 2 (Nrf2) is a regulator of many processes of life, and it plays an important role in
antioxidant, anti-inflammatory, and antifibrotic responses and in cancer. This review is focused on the potential mechanism of
Nrf2 in the occurrence and development of ocular diseases. Also, several Nrf2 inducers, including noncoding RNAs and
exogenous compounds, which control the expression of Nrf2 through different pathways, are discussed in ocular disease models
and ocular cells, protecting them from dysfunctional changes. Therefore, Nrf2 might be a potential target of protecting ocular
cells from various stresses and preventing ocular diseases.

1. Introduction

Oxidative stress (OS) usually comes after an imbalance
between reactive oxygen species (ROS) production and elim-
ination as a result of biological system defense mechanisms.
In return, OS increases the production of ROS, which creates
a vicious cycle. Damages caused by ROS are aimed at deoxy-
ribonucleic acids (DNA), proteins, and lipids and have been
observed and studied in corneal diseases [1], cataract [2], ret-
inopathies [3], glaucoma [4], etc. One of the most inspiring
discoveries about OS in recent decades has been the elucida-
tion of nuclear factor- (erythroid-derived 2-) like 2 (Nrf2)
signaling pathways that regulate OS responses (Figure 1).

Nrf2 is a key regulator of protective antioxidant and anti-
inflammatory responses that regulates the expression of hun-
dreds of genes, including not only genes encoding antioxi-
dant enzymes but also a series of genes involved in various
processes, including inflammatory responses, cancer occur-
rence and metastasis, and tissue remodeling and fibrosis
[5]. Due to its antioxidative capacity, Nrf2 has been found
to mechanistically participate in various systemic diseases,
including respiratory diseases [6], cardiovascular and cere-

brovascular diseases [7], degenerative diseases, tumors [8],
and especially ocular diseases. The Nrf2 signaling system,
together with its regulatory molecules and interacting pro-
teins, carries out critical antioxidant and anti-inflammatory
functions in cells. Under normal conditions, Nrf2 is seques-
tered in the cytoplasm, where it mediates proteasomal
degradation by binding Kelch-like erythroid cell-derived
protein with CNC homology-associated protein 1 (Keap1)
to form a complex. Once cellular OS occurs, especially due
to exposure to electrophiles including superoxide anion
(O−

2 ), hydrogen peroxide (H2O2), hydroxyl radical (-OH),
and ROS, Keap1 undergoes conformational changes that
allow Nrf2 to be transported to the nucleus, where it binds
antioxidant response element (ARE) regions. Afterwards,
Keap1 initiates transcription of antioxidant and phase II
detoxification enzymes, such as NAD(P)H : quinone oxido-
reductase 1 (NQO1), heme oxygenase-1 (HO-1), γ-gluta-
myl cysteine ligase catalytic subunit (GCLC), glutathione-
S-transferase (GST), glutathione peroxidase (GPX), cata-
lase (CAT), superoxide dismutase (SOD), and thioredoxin
UDP-glucuronosyltransferase [9–12]. Alternatively, Nrf2
may be dissociated from the cytoplasmic Nrf2-Keap1-
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Cul3 complex by p62 (a marker associated with cell
autophagy) [13]. Another mechanism is mediated by glycogen
synthase kinase 3 (GSK-3) and the E3 ligase adaptor β-TrCP
[14]. Under normal conditions, GSK-3α and β remain inac-
tive. However, without receptor signaling, active GSK-3 phos-
phorylates Nrf2 in its Neh6 domain [15].

Some compounds, especially exogenous compounds
including polyphenols, flavonoids, terpenoids, and noncod-
ing ribonucleic acids (RNAs), were reported to be Nrf2 acti-
vators or inducers. These compounds may play critical roles
in protecting ocular cells against oxidative damage, inflam-
mation, and fibrosis.

2. Oxidative Stress and Nrf2 in Ocular Diseases

The eye is an organ subject to constant physical and chemical
oxidation. Visible light, ultraviolet (UV) light, ionizing
radiation, smog, fine particles in the atmosphere, and other
types of pollutants can affect the cornea, lens, and the retina
in particular. Correspondingly, OS is associated with many
eye diseases [16].

2.1. Ocular Surface and Corneal Diseases. Due to its structure
and function, the ocular surface and especially the cornea are
constantly exposed to high oxygen tension, chemical burns,
UV radiation (especially UVB), pathogenic microorganisms,
or even urban air pollution [17, 18], which are the source of
ROS and OS. The cornea is particularly susceptible to OS
due to an imbalance between ROS and cellular antioxidant
capacity. Increasing evidence shows that oxidative balance
and mitochondrial function are abnormally altered under
disease conditions. In addition, oxidative markers such as
malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), and
nitrotyrosine showed significant changes [19–21]. Nrf2-

mediated defense systems are aimed at upregulating the
expression of antioxidant proteins and play a key role in pro-
tecting cells. Hayashi et al. found that the corneal epithelial
wound healing time was much longer in Nrf2 knockout
(KO) mice than in the wild-type (WT) mice and that Nrf2
contributed to the healing by accelerating cell migration
[22]. Li et al. found that edaravone protected corneal epithe-
lial cells against OS and apoptosis by activating Nrf2 [23].
Mutations in SLC4A11 can cause an increase in the genera-
tion of ROS and mitochondrial dysfunction due to oxidative
stress [24]. Further study showed that the participation of
antioxidative stress in corneal cells and SLC4A11 is necessary
for Nrf2-mediated antioxidant gene expression [25].

2.1.1. Keratoconus (KC). KC is a common degenerative dis-
ease of corneal dilatation that usually occurs in adolescence
or early adulthood, and it is characterized by a progressive
thinning and dilatation of the cornea on both sides, which
can appear as a conical protrusion, accompanied by thinning
of the central corneal stroma and changes in structural integ-
rity, leading to irregular astigmatism, myopia, and, in severe
cases, progressive blurred vision [26, 27]. Visual impairment
in some patients with KC can be alleviated with spectacles,
specialized contact lenses, or riboflavin-UVA-induced colla-
gen crosslinking therapy; however, 10-20% of these patients
need corneal transplantation [28, 29]. KC is a sporadic dis-
ease, but genetic factors were still found [30]. Genetic varia-
tions in antioxidant defense genes such as CAT and GPX
can reduce antioxidant capacity or increase OS, altering the
risk of KC [31]. In addition, KC has been reported to be the
result of genetic and environmental factors in which OS is
involved. In KC patients, CAT RNA and activity and the
ratio of lactic acid to pyruvate [32] in the cornea were
increased, while arginine and the glutathione/oxidized
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Figure 1: The effects of oxidative stress and the potential protective role of Nrf2 activation.
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glutathione ratio were reduced [33]. An increase in oxidant
status was also reported in the sera of KC patients [34].
Meanwhile, the accumulation of MDA, peroxide, and
hydroxyl free radicals and a reduction in antioxidant defense
levels also suggest that patients with KC are exposed to strong
OS, shifting the redox balance toward oxidation [35, 36]. A
study found that HO-2 enzyme levels were lower in KC cor-
neal epithelial cells. Liu and Yan found that KC increased
ROS and increased keratometry and decreased the central
cornea thickness. These changes were neutralized or reversed
by sulforaphane (SFN) treatment through the Nrf2/HO-1
pathway [37].

2.1.2. Fuchs’ Endothelial Corneal Dystrophy (FECD). FCED,
an age-related cause of blindness with symptoms including
poor vision, blurry cornea, poor night vision, and painful
blinking, can eventually lead to full-layer corneal edema
[38]. Corneal transplantation is the only way to restore vision
loss in FECD patients. The main risk factors of FECD are
family history, age (over 40), female sex, and smoking
[39, 40]. FECD is a complex multifactorial inheritance dis-
ease with a variable expression rate and incomplete pene-
trance [41]. FECD-related genes include TCF4, COL8A2,
ZEB1, AGBL1, SLC4A11, DMPK, LOXHD1, LAMC1,
ATP1B1, and KANK4 [42–44], and environmental factors
(especially UVA) also play an important role [45]. Due to
its function and anatomical location, the corneal endothelial
layer suffers from UVA exposure every day. The results of OS
induced by UV usually include gene mutations, channelopa-
thy, endoplasmic reticulum stress (ERS), and mitochondrial
dysfunction [46]. The main characteristic changes due to
FECD are collagen deposition in the Descemet membrane
[47], cell morphological changes, apoptosis, and endothelial
cell loss. Decreased antioxidant levels [48], deoxyribonucleic
acid (DNA) damage, and apoptosis [49]; increased lipid per-
oxidation; excessive expression of cell senescence markers;
and abnormal mitochondrial dynamics changes (decreasing
mitochondrial DNA copy number, fragmented mitochon-
dria, and increasing mitochondrial DNA damage) have been
found in FECD [50]. Researchers found that Nrf2-mediated
antioxidant defense and P53 play a key role in regulating
FECD OS-induced apoptosis [49]. Cytoplasmic stability
and the final translocation of Nrf2 are controlled by one of
its stabilizers, DJ-1, which is decreased dramatically in FECD
corneal endothelial cells (CECs) [51], accompanied by a
decrease in Nrf2 and HO-1 [49] and impaired Nrf2 nuclear
translocation [51]. These changes were attenuated to some
extent by SFN, a Nrf2 activator. In both FECD CECs and
an in vitro CEC OS model, SFN enhanced the nuclear trans-
migration of Nrf2, followed by the increasing expression of
HO-1 and NQO1, decreasing expression of P53, and cell apo-
ptosis reduction [52].

2.1.3. Pterygium. Pterygium is a kind of vascularized connec-
tive tissue from the conjunctiva that invades the cornea from
the side of the nose, presenting an inflammatory, prolifera-
tive, and invasive growth. Excessive exposure to UVB (espe-
cially by way of OS) is one of the most important causes of
pterygium [35]. UVB radiation may cause toxic light damage

to DNA directly or by increasing ROS, which causes DNA
damage [53]. In patients with pterygium, the serum total
oxidant status (TOS), total antioxidant status (TAS), and
nitric oxide (NO) and MDA content were significantly
increased, and the antioxidant enzyme (SOD, CAT, and
GPX) content was decreased [54, 55], indicating an
increase in nonenzyme antioxidant activity. Meanwhile,
the DNA damage parameters tail length (TL), tail intensity
(TI), and tail moment were significantly increased [56].
Immunohistochemical staining for 8-OHDG in the
nucleus showed more extensive and deeper staining than
that observed in the normal conjunctiva. In ELISA, the
average amount of 8-OHDG in the pterygium tissue was
4.7 times greater than that in the normal conjunctival tis-
sue [57], while the p53 protein level changed and inflam-
matory mediators were increased [58]. Proteasome beta 5
(PSMB5), which can degrade many aberrant and dena-
tured intracellular proteins as well as functional proteins,
is mediated by the Nrf2-ARE pathway in many cell types.
Recent research has found that in conjunctival fibroblasts,
Nrf2/ARE mediated the downregulation of PSMB5 and
that these changes could be reversed by the Nrf2 activator
oltipraz [59].

2.1.4. Dry Eye. Dry eye, a multifactorial disease characterized
by a loss of homeostasis of the tear film, appears together
with ocular symptoms, ocular surface inflammation, and
damage, and neurosensory abnormalities play etiological
roles [60]. In recent years, air pollution has become increas-
ingly serious (especially with the increase in fine particulate
matter (PM2.5) and smoke) and has begun to be a factor that
affects many diseases, including respiratory diseases [61] and
hematological diseases [62]. Elementary carbon in PM2.5
produces a high concentration of ROS through the phagocy-
tosis of macrophages, while organic carbon also produces
ROS during its metabolism [63]. PM2.5 can inhibit SOD1
by promoting the expression of miRNA-206, leading to an
increase in ROS and aggravating the pneumonia response
and asthma symptoms [64]. Climate has also been shown
to be associated with ocular surface integrity and tear film
stability [65–67]. The tear film protects the ocular surface
from many physical factors. Many antioxidants in the tear
film, such as ascorbic acid, tyrosine, reduced glutathione, cys-
teine, and uric acid [68], serve as regulators in wound heal-
ing, corneal inflammatory response [69], and improving
tear film stability. A study showed that the prevalence of
dry eye is highest in the northern region of China, and it is
lowest in the central region, suggesting that air pollution is
associated with the onset of dry eye in which air pollutants
including O3, PM2.5, and SO2 are potential risk factors
[70]. The antioxidant enzymes SOD, CAT, and GPX were
significantly less expressed in dry eye patients than in con-
trols [71]. Furthermore, the expression of the lipid peroxida-
tion markers 4-HNE and MDA was increased in dry eye
patients with Sjøgren’s syndrome and was closely related to
tear film break-up time (BUT), Schirmer’s tear value, tear
clearance rate, keratoparaneliopathy score, conjunctival gob-
let cell density, and symptom score [72]. Some literature sug-
gests that intervention with dietary supplements, vitamins, or
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omega-3 fatty acids can reduce OS [73]. Kojima et al. pro-
posed that after exposure to sidestream cigarette smoke,
Nrf2 KO mice had a significantly shortened BUT, signifi-
cantly increased vital staining score, and reduced mucin 1
andMuc5ac staining compared to wild-type mice, suggesting
that Nrf2 plays an important role in protecting eye surfaces
from smoke exposure [74].

2.2. Cataract. Cataract is one of the most important causes of
blindness worldwide, and age-related cataract is the most
common type. Aging and OS are the main risk factors.
Despite long-term exposure to UV, the lens has a well-
established antioxidant system to combat OS and is rich in
glutathione (GSH) [75]. Researchers used Lens Glutathione
Synthesis KnockOut (LEGSKO) mice to develop a GSH
defect model and confirmed that Nrf2 was the main
upstream regulator of proteomic responses in LEGSKO lens
fibroblasts [76]. However, with increasing age, GSH levels
gradually decrease, and lens protein aggregation, DNA dam-
age, lipid peroxidation, calcium homeostasis imbalance, and
hydration occur, thus increasing lens turbidity [2, 77, 78].
In diabetic patients, the level of superoxide in the mitochon-
dria is increased [79], and increased glucose utilization, insu-
lin resistance, and OS lead to an increase in advanced
glycation end products (AGEs) [80], which accelerates the
formation of diabetic cataract.

As Nrf2 is a major antioxidant component, Nrf2 path-
ways regulate the expression of over 600 downstream antiox-
idant genes; imbalances in Nrf2 pathways have long been
reported to be involved in the generation and development
of cataract. With increasing age, the expression of Keap1
increases and that of Nrf2 decreases. Additionally, an
increase in ROS also inhibits the antioxidant protective func-
tion of Nrf2 [81], which limits the transcription of down-
stream antioxidant enzymes, leading to a failure of the
antioxidant system and accelerating the formation of cataract
[82]. The protective mechanism of the ERS/unfolded protein
response (UPR) is activated during the formation of most
cataracts. Nrf2 pathways are activated under ERS to enhance
the expression of multiple cellular protective enzymes that
restore redox homeostasis [83]. The lens epithelial cells
(LECs) of Nrf2 KO mice showed a higher cell death rate than
those of wild-type mice treated with methylglyoxal at differ-
ent concentrations. The above results indicated that normal
Nrf2 levels are critical for lens survival under stress condi-
tions [84].

Therefore, we have summarized some studies on the
protection of LECs under stress through Nrf2 pathways.
The use of Nrf2 activators (such as SFN pretreatment
[85]) or the overexpression of Nrf2 [86] can reduce
DNA fracture; upregulate Nrf2, NQO1, HO-1, etc. [87];
and protect LECs from OS damage. Puerarin [88], Rosa
laevigata Michx. extract [89], hyperoside [90], acetyl-L-
carnitine [91], morin [92], trimetazidine [93], rosmarinic
acid [94], and DL-3-n-butylphthalide [95] have been
shown to protect LECs from OS by activating the Nrf2
pathways. Besides, the inhibition of miRNA-4532 pro-
tected human LECs from UV-induced oxidative injury
via activating SIRT6-Nrf2 signaling [96].

2.3. Glaucoma. Glaucoma is the second leading cause of irre-
versible human blindness worldwide, especially in elderly
individuals, closely related to OS. Primary open-angle
glaucoma (POAG) patients are susceptible to oxidative
damage because their total reactive antioxidant capacity
is reduced by 60%-70% [97]. Increasing evidence through
clinical and experimental studies over the past decade
has revealed that OS-induced dysfunction of trabecular
meshwork cells (TMCs) can obstruct the outflow of the
aqueous humor (AH), causing pathologically high intraoc-
ular pressure (IOP), which is consistent with the mechan-
ical theory of glaucoma [98]. Pathologically high IOP can
then cause retinal ganglion cell (RGC) mitochondrial dys-
function and apoptosis, therefore contributing to glaucoma
vision loss [99].

The trabecular meshwork (TM) sustains OS due to the
effects of the UV-ray-based oxidative byproducts of aqueous
epithelial cells and CECs [100] and an imbalance between
oxidants and antioxidants or excessive ROS accumulation
[101]. TMCs under OS present typical changes observed in
POAG, including extracellular matrix (ECM) accumulation,
cell apoptosis, cell death, changes in the structure and
function of the cytoplasm as well as lysosomes [102], and
cytoskeletal disruption [103]. Cheng et al. found that Nrf2
expression was downregulated in glaucomatous TMCs
compared to human TMCs and that in both cell types,
the overexpression of Nrf2 could promote viability and
reduce apoptosis [104].

Chronic hypertensive glaucoma and retinal ischemia
caused by a sharp increase in IOP stimulate the production
of ROS and dysregulate basic autophagy. The longer the
injury lasts or the more dramatically increased the IOP is,
the greater the extent of the immediate increase in autophagy
is, inducing RGC death in a relatively short period of time
[105]. Additionally, various proteins involved in cellular
redox homeostasis and the OS response were upregulated
in the retinas of ocular hypertensive humans [106]. In a ret-
inal ischemia-reperfusion (I/R) model, the loss of neurons
in the RGC layer was more severe in Nrf2 KO mice than in
wild-type mice, and the RGC activity of Nrf2 KO mice was
reduced, indicating that Nrf2 had an inherent protective
effect in RGCs [107]. Repeated mild reperfusion led to
chronic OS, especially in the mitochondria [108]. Virus-
mediated delivery of Nrf2 effectively protected RGCs from
oxidative damage after acute nerve damage [109].

Trabeculectomy, a classic glaucoma filtration surgery,
destroys the structure of the conjunctiva and subconjunctival
tissue and activates the immune system and the release of
inflammatory cytokines. The activation of the vascular endo-
thelial growth factor (VEGF-α) and the transforming growth
factor (TGF-β) [110] leads to cell proliferation, migration,
extracellular ECM formation, and collagen contraction,
which promotes scar formation and is the key factor for sur-
gical failure [111]. TGF-β1 causes cell apoptosis [112],
fibrotic gene expression, and myofibroblast differentiation
[113] due to ROS production and also inhibits the glutathi-
one antioxidant system [114]. The miRNA-29 family is
closely associated with TGF-β-mediated fibrosis [115, 116].
In patients with glaucoma, TGF-β2 was found to stimulate
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Tenon’s capsule fibroblast proliferation via suppression of
miR-29b expression regulated by Nrf2 [117], which indicates
that Nrf2 may protect cells against TGF-β and even fibrosis
by upregulating miR-29b.

2.4. Uveitis. Uveitis is a group of blindness-inducing autoim-
mune diseases. The mechanism of uveitis is not fully under-
stood, but the imbalance between CD4+ CD25+ forkhead
box protein+ T regulatory (Treg) cells and T helper 17
(Th17) cells is thought to be involved in the pathogenesis of
autoimmune uveitis. The Nrf2 regulatory enzyme has been
extensively studied in experimental autoimmune models
because it plays an essential role in chemical reactions and
provides a protective mechanism against autoimmune vene-
real diseases. In an encephalomyelitis mouse model, the
absence of Nrf2 aggravated disease severity, which was
reduced by treatment with SFN [118] or downregulation of
the negative Nrf2 regulator Keap1 [119]. Nrf2 inhibited sup-
pressive helper 1 (Th1) and Th17 cell responses and activated
immunosuppressive Treg and Th2 cells [120], thus exerting
protective effects.

In 2009, Nagai et al. confirmed the hypothesis that the
Nrf2 pathway protects against injury in experimental uveitis
by attenuating OS and modulating the innate immune
response [121]. Chen et al. that found sodium butyrate
(NaB) had great potential for inducing Treg cells in an exper-
imental uveitis model. In vivo, NaB treatment reduced the
number of Th17 cells in the spleens of mice with autoim-
mune uveitis and increased the number of Treg cells. In vitro,
NaB treatment transformed original T cells from Th17 cells
to Treg cells, and the inhibition of Th17 differentiation and
the protective effect of NaB on uveitis may have been
achieved by the Nrf2/HO-1 pathway [122].

2.5. Retinopathies. The anterior segment of the eye absorbs
more than 99% of UV radiation, but the other 1%, especially
UVA radiation, reaches the retina [123], leaving the retina
continuously exposed to ROS and causing OS. OS is the main
factor of retinal degeneration related to aging, such as age-
related macular degeneration (AMD), and has also been
linked to retinal inflammation and neuron degeneration.
Furthermore, retinal I/R injury has been associated with the
mechanisms of retinal vascular occlusion (RVO) and diabetic
retinopathy.

2.5.1. Diabetic Retinopathy (DR). DR is a common and
progressive diabetic complication and the leading cause of
blindness in the diabetic population. Historically, DR was
described as an ocular microvascular disease caused by
metabolic disorders (especially elevated glucose levels,
oxidative phosphorylation, increased AGEs, and aldose
reductase activity), increased ROS, and mitochondrial dys-
function, causing OS in only retinal cells and capillaries
[124]. New evidence suggests that diabetes causes consider-
able damage to retinal neurons in the early stage of the dis-
ease [125, 126]. In the diabetic retina, neuronal apoptosis
and the activation of neurogliocytes may also cause OS,
thus creating a vicious cycle.

Nrf2 significantly contributes to protecting diabetic reti-
nal cells from OS damage and inhibiting vascular inflamma-
tion. In animal experiments, Nrf2 KO mice showed
significantly increased superoxide levels, glutathione was
reduced, and early blood-retinal barrier dysfunction and
the onset of neuron dysfunction were observed [127]. As
for the anti-inflammatory protective effect of Nrf2, Nrf2
KO mice showed increased inflammation factors [128]. In
endothelial cells exposed to high glucose or in the DR retinas,
damage was observed which was prevented by the Nrf2
inducer t-BHQ and small interfering RNA (siRNA) against
Keap1 [129]. C1q/TNF-related protein 3 (CTRP3) plays a
role in the progression of diabetes and its complications,
whose overexpression improved cell viability of high-glu-
cose- (HG-) induced retinal pigment epithelium (RPE) cells
by the activation of the Nrf2/HO-1 pathway [130]. In
another study, the upregulation of casein kinase 2 interacting
protein-1 (CKIP-1) inhibited HG-induced inflammation and
OS in human retinal endothelial cells (RECs) and attenuated
DR by modulating the Nrf2/ARE signaling pathway [131].
Forkhead box class O6 (FOXO6) is a member of the FOXO
family that can regulate diabetes-induced OS, and the sup-
pression of FOXO6 protects ARPE-19 cells from HG-
induced OS and apoptosis, which is in part mediated by
the activation of the Akt/Nrf2 pathway [132]. Activin
receptor-like kinase 7 (ALK7), one of type I transforming
growth factor β receptors, is involved in metabolic regula-
tion, whose knockdown results in an increase in the expres-
sions of Nrf2 and HO-1 in ARPE-19 cells in response to
HG induction [132].

Recently, an increasing number of researchers have used
Nrf2 inducers or activating agents, such as RS9 [133],
CDDO-Im [126], dh404 [134], CKIP-1 [131], CTRP3
[130], curcumin [135], and SFN [136], to study the protective
effect of Nrf2 against DR injury and made significant prog-
ress (see Table 1).

2.5.2. Age-Related Macular Degeneration. Age-related macu-
lar degeneration (AMD), a kind of eye disease, mainly affects
elderly people for which aging is the most severe risk factor.
Complement factor H (CFH) mutation is a visible part of
the genetic changes in AMD patients [137]. In addition to
OS, there are environmental/lifestyle factors, including
smoking, obesity, and a high-fat or low-antioxidant diet,
and environmental factors such as exposure to UV radiation
and blue light [138]. OS occurs in the above conditions and
plays a vital role in the pathogenesis of AMD. AMD is asso-
ciated with the progressive degeneration and death of RPEs,
followed by adverse effects on rods and cones [139]. The
ROS level was shown to be significantly higher in the
RPEs of AMD patients than in those of a control group
[140, 141]. RPEs are chronically affected by OS due to
their exposure to the outer layer of photoreceptors, leading
to a decrease in antioxidant enzyme levels [142] and an
increase in the OS products MDA and 4-HNE, AGEs,
and oxidation-specific epitopes in the macular area [143].
OS also accounts for the reduced number of mitochondria,
lower mitochondrial matrix density, and mitochondrial
DNA (mtDNA) mutation [144]. For the above reasons,
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researchers have performed much research on the antiox-
idant process in AMD, the most gratifying of which is that
on the participation of Nrf2.

Aging can reduce Nrf2 mRNA or protein levels, thus
weakening Nrf2 signal transduction. The retinas of Nrf2
KO mice [145] and si-Nrf2-transfected RPEs [146] were
more susceptible to OS, which accelerated photoreceptor cell
death; this damage could be alleviated by amplifying the
endogenous Nrf2 pathway with electrophilic drugs or locally
targeted antioxidant drugs [145, 147].

2.5.3. Retinitis Pigmentosa. Retinitis pigmentosa (RP) is a
group of inherited retinal diseases characterized by rod and
cone photoreceptor degeneration [148, 149]. As the rod cell
pole accounts for approximately 95% of the total number of
photoreceptors, it consumes most of the oxygen delivered
to the retina; when a variety of genetic mutations cause rod
cell death, the cone oxygen load increases and cone cells then
die gradually [150, 151], eventually leading to tubular vision
and blindness. A reduced GSH/GSSG ratio is a marker of
OS in tissues. In patients with RP, the ratio of GSH/GSSG
in the aqueous humor was significantly reduced, and the total
antioxidant capacity and SOD3 activity and protein concen-
tration were decreased [152], while the water-based protein
carbonyl content was significantly increased. Also, the
decreased activity of SOD3 in the peripheral blood, the
increased formation of thiobarbituric acid-reactive sub-
stances, and the upregulated nitric oxide/ring GMP pathway
were observed. These findings support the hypothesis that
the antioxidant capacity of the eye is reduced in patients with
RP [153].

Since Nrf2 is important for OS regulation, is Nrf2
involved in RP? The answer is yes. In 2009, Usui et al. pro-
posed that increased expression of catalase and SOD 2 could
reduce cone cell death in RP [154]. Xiong et al. delivered
SOD2, CAT, and Nrf2 to the cones of an RP mouse model
using adenoassociated virus carriers and found that the over-
expression of Nrf2 was the most effective in saving cells, pre-
serving the survival of RGCs after nerve compression and
improving retinal morphology [109]. Wang et al. proposed
that the absence of the Sigma 1 receptor (Sig1R) accelerated
the death of photoreceptor cells in RP mice [155], and in
their subsequent experiments, they concluded the protection
of cones mediated by Sig1R required Nrf2 [156]. In a mouse
model of retinal degeneration treated with SFN, significantly
higher electroretinographic (ERG) a- and b-wave amplitudes
and decreased photoreceptor cell death were observed [157].
These studies all provide a theoretical basis for the therapeu-
tic potential of Nrf2 in RP.

2.6. Optic Neuritis. Optic neuritis, a disease defined by auto-
immune demyelination of the optic nerve and the death of
RGCs, is associated with visual impairment and multiple
sclerosis (MS). In laboratory studies of optic neuritis, an
experimental autoimmune encephalomyelitis (EAE) model
of recurrent sclerosis is often used as a model of optic neuritis
[158]. In 1998, Guy et al. tested the inhibition of oxidative
damage in the optic nerves of EAE animals through virus-
mediated CAT gene transfer and found that H2O2-related

enzyme gene expression could decrease demyelination by
38%, swelling of the optic nerve head by 29%, and lympho-
cytes by 34% compared with the control [159]. Qi et al. also
concluded in 2007 that with the inhibiting SOD2 expression,
myelin fiber injury was increased by 27%. With the overex-
pression of the SOD2 level, myelin fiber damage was reduced
by 51% and the RGC loss was saved by a factor of four [160].
When the role of Nrf2 was examined, Nrf2 KO EAE mice
showed more severe visual impairment, optic nerve inflam-
mation, and RGC degeneration, indicating that Nrf2 had a
neuroprotective effect in EAE-related optic neuritis. The
overexpression of Nrf2 increased RGC survival in an EAE
model of optic neuritis [161]. Dimethyl fumarate (DMF)
has been used in the treatment of MS [162], experimental
Parkinson’s diseases [163], long-term memory deficits
[164], and other diseases of the nervous system. Recently,
DMF was confirmed to reduce the severity of optic neuritis
and retain vision and RGCs by the Nrf2 pathways. We
believe these findings provide a useful perspective for the
treatment of optic neuritis [165].

3. Novel Strategies for Activating Nrf2

3.1. Noncoding RNAs. MicroRNAs are a class of small non-
coding RNAs (19–25 nucleotides) that regulate a wide range
of cellular processes by repressing the transcription or trans-
lation of their target genes. lncRNAs are >200-nucleotide-
long RNA molecules that lack or have limited protein-
coding potential but can regulate transcription in cis or trans,
the organization of nuclear domains, and RNA or protein
formation through several different mechanisms [166, 167].
Recently, noncoding RNAs became a hot topic in scientific
research, even in ocular research, as shown in Table 2. Non-
coding RNAs provide an attractive opportunity to defend
against OS for the diagnosis and prognosis of ocular diseases.

3.2. Exogenous Compounds. Many types of compounds have
anti-inflammatory, antioxidant, and antifibrotic properties
by directly targeting Nrf2 and Nrf2 repressors (Keap1, Bach1,
and c-Myc) [168–170] and have potential preventative func-
tions in eye diseases. Interest in investigating exogenous
compounds has revealed new treatment options against OS.
Curcuminoids, cinnamic acid derivatives, coumarins, chal-
cones, flavonoids, and terpenoids are typical Nrf2 inducers.
In addition, phenols and quinones (e.g., t-BHQ) [171], poly-
phenolic flavonoids (e.g., quercetin) [172], stilbenoid and
nonflavonoid polyphenolic compounds (e.g., resveratrol)
[173], and other compounds including SFN, sphaeropsidin
A (SA), CDDO-Im, long-acting (1R)-isopropyloxygenipin
(IPRG001), omaveloxolone, astaxanthin [174], and lycopene
[175] activate Nrf2 and upregulate some downstream Nrf2
genes. Table 1 lists studies on Nrf2 activators connected to
ocular diseases.

4. Nrf2: Negative Side

Although Nrf2 has many antistress functions, scientists have
also revealed the dark side of Nrf2, which might be a driver
role of cancer progression [176]. There are cancer-
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associated mutations that activate Nrf2 [177, 178]. Also,
when ROS exceeds the critical threshold, Nrf2 binds to the
ARE gene of Klf9 and upregulates Klf9 expression. Klf9, in
turn, inhibits Trx reductase two expression, amplifying the
ROS cascade and ultimately leading to cell death [179].
PI3K/AKT signaling and Nrf2 signaling are increased in cells
with mutant PTEN, resulting in higher proliferation rates
and increased tumorigenicity [180]. Therefore, it is essential
to determine the boundary between the beneficial and poten-
tially harmful effects of Nrf2 activation. Ongoing clinical tri-
als will undoubtedly provide important progress in
answering these questions in the coming years.

5. Conclusion and Prospect

More and more evidence show that Nrf2 plays a certain role
in the occurrence and development of ocular diseases. There-
fore, Nrf2 might be a potential target of protecting ocular
cells from various stresses and preventing ocular diseases.
We are looking forward to come across more clinical studies.
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