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Monitoring early changes in cognitive performance is useful for studying

cognitive aging as well as for detecting early markers of neurodegenerative

diseases. Repeated evaluation of cognition via a measurement burst design

can accomplish this goal. In such design participants complete brief

evaluations of cognition, multiple times per day for several days, and ideally,

repeat the process once or twice a year. However, long-term cognitive

change in such repeated assessments can be masked by short-term within-

person variability and retest learning (practice) effects. In this paper, we show

how a Bayesian double exponential model can account for retest gains

across measurement bursts, as well as warm-up effects within a burst, while

quantifying change across bursts in peak performance. We also highlight how

this approach allows for the inclusion of person-level predictors and draw

intuitive inferences on cognitive change with Bayesian posterior probabilities.

We use older adults’ performance on cognitive tasks of processing speed

and spatial working memory to demonstrate how individual differences in

peak performance and change can be related to predictors of aging such as

biological age and mild cognitive impairment status.
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Introduction

Accurate and sensitive measurement of cognitive change
is required to advance the understanding of normative
cognitive aging and improve the detection of the subtle
cognitive changes that are associated with the preclinical stages
of neurodegenerative diseases, such as Alzheimer’s disease.
Although cumulative cognitive change over the course of
decades is quite robust, the amount of change expected over
a year or two is quite subtle, even in the case of prodromal
disease (Baker et al., 2016). Traditional methods relying on
infrequent lab-based assessment of cognitive performance make
it difficult to differentiate changes due to cognitive aging,
progression of neurodegenerative disease, and the possible
effects of interventions designed to improve or slow decline
in cognitive function. A major challenge to detecting subtle
cognitive change is the presence of retest, or practice effects,
which refer to the ubiquitous finding that performance on
cognitive tests improves with repeated testing.

Although widely recognized as biasing longitudinal
estimates and intervention effects, there is no consensus
on best methods to address retest effects (Jones, 2015).
Indeed, it is extremely difficult to disentangle retest related
effects from other sources of change (e.g., aging, disease
progression, and interventions) using data from conventional
longitudinal designs that consist of repeated single-shot
assessments, usually spaced over long time intervals. Figure 1
illustrates this point by depicting hypothetical longitudinal
data in which observed performance (black line) reflects
a mixture of two latent processes, retest related gains
(red line) and aging-related declines (blue line). Panel A
shows a case in which change in performance is flat, where
the stability is a product of retest related gains offsetting
aging-related decline. Comparing manifest performance
(black lines) in Figure 1, panels B and C suggests that
the former exhibited more cognitive decline and that
neither exhibited evidence of improvement in cognitive
performance that could be due to retest effects. However, the
underlying latent aging effects show equivalent longitudinal
decrements in Panels B and C, but differential latent retest
effects.

This example illustrates two important points. First,
processes that drive retest effects may be operating even if
manifest performance shows no improvement or even a decline.
That is, one cannot take the absence of overt performance gains
as evidence that retest effects are absent. Moreover, even in the
presence of manifest decline in cognitive performance, retest
effects may be a significant confound that obscures important
individual differences. Second, failure to accurately characterize
and account for retest gains could add considerable noise and
bias when testing for the effects of interventions, biological
markers of aging or disease progression, or other exposures (e.g.,
stress, environmental toxicants) on cognitive trajectories.

Conventional longitudinal designs place significant
constraints on approaches for disentangling retest effects from
other types of change. The use of a control group which receives
their first exposure to a cognitive test at follow-up may be useful
for estimating bias in the group averages but cannot assist in
correcting for retest effects at the individual level. Statistical
control procedures that involve covarying for the number of
retest assessments are susceptible to bias and are especially
sensitive to assumptions regarding the presence of age-cohort
effects (Hoffman et al., 2011). To overcome these limitations,
our approach utilizes a measurement burst design (Sliwinski,
2008) which consists of closely spaced “bursts” of repeated
measurements which are repeated over longer intervals.
This type of intensive longitudinal design (ILD) permits
modeling of retest effects using repeated administrations over
a short interval within bursts (e.g., daily) to render long-term
retest effects negligible and to model long-term trends using
measurements bursts repeated over longer intervals (e.g.,
annually) across bursts (Sliwinski et al., 2010; Rast et al., 2012).
In a proof of concept, Munoz et al. (2015) fit a non-linear
multilevel model to measurement burst data to disentangle
short-term retest effects from long-term declines in asymptotic
performance.

We propose a psychometric cognitive process model, the
Bayesian double exponential model (BDEM) to disentangle
retest learning effects from longitudinal changes in asymptotic
performance. The BDEM allows parameterizing performance
in terms of distinct retest features including learning rate (how
quickly someone reaches peak performance), retest gains (how
much overall improvement is observed), peak (asymptotic)
performance, and warm-up effects that occur at the beginning
of follow-up bursts. Once practice effects are accounted for, we
can link individual differences in peak performance and changes
in peak performance to person-level indicators such as age and
mild cognitive impairment (MCI) status.

While the primary aim of BDEM is to disentangle
learning features from peak performance (with the goal of
modeling asymptotic change over time), each model parameter
may also be of interest for understanding the dynamics of
cognitive change. For this reason, we also quantify individual
differences, in a multilevel framework, not only in terms of peak
performance and changes therein, but also for example in terms
of learning rate, and intra-individual variability in performance,
and test whether these are linked to cognitive aging (Lövdén
et al., 2007) or MCI status (Cerino et al., 2021).

Compared to earlier work with the double negative
exponential model, such as in Sliwinski et al. (2010), Broitman
et al. (2020), our approach casts the double negative exponential
model in a multilevel Bayesian statistical framework, which has
two main advantages. First, it allows for all double exponential
parameters to be person-specific and be regressed on person-
level predictors in a single step analysis, this way improving
estimation accuracy. Second, it allows for a more nuanced
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FIGURE 1

(A–C) Illustration of retest effects confounding measurement of cognitive decline.

inference in terms of person-specific characteristics, for example
the risk of cognitive decline can be articulated in terms of
individual specific probabilities, as illustrated later in the paper.

In the current study we analyzed data from the Einstein
Aging Study (EAS; Zhaoyang et al., 2021; Katz et al.,
2021), a longitudinal study that included annual conventional
assessments and ambulatory assessment bursts in a racially
diverse, systematically recruited community dwelling cohort of
older adults (age 70+). We evaluated the descriptive adequacy
of the BDEM to EAS data obtained from high frequency
cognitive assessments completed by participants using mobile
devices in naturalistic settings. We also examined whether
BDEM parameters, such as asymptotic performance, change
in asymptotic performance, learning rate, and intra-individual
variability, differentiated among individuals across different
ages and MCI status.

Materials and methods

Study design and procedure

Data were drawn from the ongoing EAS, a prospective,
longitudinal study of risk factors for MCI and dementia.
Systematic random sampling from New York City Registered
Voter Lists for Bronx County was used to recruit participants.
Further screening of participants was conducted via telephone
to ensure that participants met the study inclusion criteria:
English-speaking, community-residing, ambulatory, and aged
over 70 years. Exclusion criteria were: significant hearing
or vision loss, current substance abuse, severe psychiatric
symptoms, chronic medicinal use of opioids or glucocorticoids,
treatment for cancer within the past 12 months, and diagnosis of
dementia. All participants provided written informed consent

and the study was approved by the Albert Einstein College of
Medicine Institutional Review Board.

Figure 2 shows an illustration of the overall measurement
burst design deployed in the EAS project. Each year participants
completed a combination of clinic-based assessments and
ambulatory ecological momentary assessments (EMA). After
telephone screening, eligible participants were invited to
attend two in-person clinic-based assessments. The first
assessment day included completing self-report questionnaires
and neuropsychological assessment. The second assessment day
included a 1.5-h training session on how to use the study-
provided smartphone and complete the EMA portion of the
study. Participants who were assessed between March and
June 2020 completed modified versions of these assessments
and training remotely via telephone and received the study
smartphone via a package delivery service.

The ambulatory burst component of the study took place
in participants’ natural environments. While participants went
about their daily activities, they completed six brief assessments
(up to 5 mins each) during their typical waking hours, over
a period of 16th days−these assessments together formed a
“burst.” The assessments included brief self-report questions
as well as the cognitive assessments. The protocol included
a self-initiated wake-up assessment, a self-initiated end-of-day
assessment, and four quasi-random “beeped” assessments that
participants received a notification from the study phone to
complete. The beeped assessments were schedule approximately
3.5 h apart, and times varied across the days of the week.
After the ambulatory burst period, participants returned the
study smartphone at a third clinic visit and the data were
downloaded from the phone.

In the present study we analyzed baseline demographic and
MCI status data, as well as cognitive performance data from
Burst 1 and Burst 2, that were collected between May 2017
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FIGURE 2

Illustration of a measurement burst design with two bursts.

and June 2020. The sample consisted of 318 adults, of which
53.8% (n = 171) completed both bursts, while the remaining
participants had only baseline (Burst 1) data. Of the 147
participants who did not have follow up (Burst 2) data, 31.3%
(n = 46) had not yet been contacted for follow up, 24.0% (n = 35)
had chosen to not complete the EMA component of the study,
4.0% (n = 6) had missing or unusable data on the smartphone,
8.2% (n = 12) were unable to participate due to illness or death,
and 36.7% (n = 54) were withdrawn. Characteristics of the
sample are provided in the “Results” section.

Measures

Demographics
Participants self-reported demographic details via

questionnaire, including age in years, sex (male/female),
race and ethnicity (White/Black/Hispanic White/Hispanic
Black/Asian/more than one race), and education
(years in school).

Mild cognitive impairment status
As part of their participation all participants underwent

neuropsychological assessment to determine their cognitive
status. The neuropsychological assessment included measures
of memory, executive function, attention, language, and
visuospatial ability. Free recall from the Free and Cued Selective
Reminding Test (Buschke, 1984) and delayed recall of the
Benson Complex Figure (Possin et al., 2011) assessed memory
function; Trail Making Test – Part B (Reitan, 1958) and
Phonemic Verbal Fluency (Tombaugh et al., 1999) assessed
executive function; Trail Making Test – Part A (Reitan, 1958)
and WAIS-III Digit Span (Wechsler, 1987) assessed attention;
Multilingual Naming Test (Ivanova et al., 2013) and Category
Fluency (Monsch et al., 1992) assessed language; and immediate
recall of Benson Complex Figure (Possin et al., 2011) and
WAIT-III Block Design (Wechsler, 1987) assessed visuospatial

function. MCI status was classified algorithmically using criteria
from described in Jak et al. (2009) and described in detail in
Katz et al. (2021). Briefly, criteria included: (a) impaired scores
on two measures of the same cognitive domain; or (b) one
impaired score in three out of five cognitive domains; or (c)
having functional decline assessed by the Instrumental Activities
of Daily Living Scale (Lawton and Brody, 1969). Impairment
was defined as scores >1 SD below age-, sex-, and education-
adjusted normative mean.

Symbol search task
The symbol search task, shown on the left side of Figure 3,

measures processing speed. In the current study, on each trial
of the task, participants saw three symbol pairs at the top of the
screen and two symbol pairs at the bottom of the screen. They
were instructed to match as quickly and accurately as they could
one of the two pairs presented at the bottom to one of the three
pairs at the top. Participants completed 11 trials per session. We
analyzed daily aggregates of response times on correct trials with
the BDEM.

Grid memory task
Grid Memory is a free recall paradigm that assesses spatial

working memory, shown on the right side of Figure 3. This
task in the current study involved a brief study phase, during
which 3 dots are presented at random locations on a 5 × 5
grid for 3 s, an 8-s letter-cancelation distractor phase, followed
by free recall of locations occupied by dots during the study
phase. The free recall phase required participants to touch the
locations in an empty 5× 5 grid where the 3 dots were presented
initially. Participants completed two trials that incorporated all
three phases per session. The outcome of interest for this task
was the Euclidean distance between the location of the incorrect
dot to the correct grid (0 if correct). This gave partial credit
based on the deviation of the recalled compared to the correct
dot locations. We refer to this error distance as “units of error”
from here on.
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FIGURE 3

An example trial from the symbol search task (top) and the grid memory task (bottom).

Data analysis with the double
exponential model

First, we start by specifying a negative exponential model
for repeatedly administered cognitive performance data close
in time. This model can characterize change in performance
in terms of four parameters: learning rate, retest gain, peak
performance and intra-individual variability. By disentangling
the latent processes in observed performance, the negative
exponential model separates how much learning occurs (retest
gain) from how fast the learning occurs (learning rate). The
learning curve is characterized by an exponential shape, which
is supported by studies on learning (see, e.g., Heathcote et al.,
2000), as well as studies on aging (see, e.g., Sliwinski et al.,
2010). These curves will be derived for every person to
accurately dissociate learning from the person-level overall peak
performance.

Consider a study that only has one burst of measurements.
The top row of Figure 4 shows a graphical representation of
the negative exponential model (solid line) fit to a sequence
of a simulated cognitive performance measure (indicated by
dots), which in our case was either error distance or reaction
time. We will refer to this participant as the “baseline” for
later comparisons. At the start of the burst, their errors are
distinctly higher than near the end; that is, the participant shows
evidence of learning across sessions in a measurement burst.
This improvement is modeled through a negative exponential
function, which is parametrized as follows:

Yti = ai + gi × exp [−ri × Mti]+ eti (1)

The cognitive performance data over sessions t from an
individual i is denoted as Yti. Parameter ai stands for the
person’s asymptotic or peak performance (best performance
given unlimited practice), which was set to 2.00 in the current
example shown in the top row of Figure 4. The gain in
performance across measurements is quantified by gi, which
roughly corresponds to the height of the exponential (set to 0.50
in this example). The learning rate is captured by ri (set to 0.30),
the steepness of the exponential curve across measurements
(with measurement occasions denoted as Mti) in the study.
Finally, eti is a time-and-person-specific error term, with mean
zero and standard deviation σe,i (set to 0.05), where σe,i captures
the within-person variations (i.e., intraindividual variability)
across trials.

The bottom two rows of Figure 4 shows four additional
synthetic persons’ data and model fit, each with one parameter
different from the “baseline” in the top row. The participant in
the left panel of the second row has better peak performance
(less error): their asymptote settles at 1.75 instead of 2.00. The
right panel of the second row shows a participant with a higher
gain parameter across trials compared to the baseline person
in the top row (gi is 1.00 instead of 0.50); the exponential
starts out higher compared to baseline. The bottom left panel
depicts a faster learning rate (steeper exponential slope; ri is set
to 0.60 instead of 0.30) than the baseline; and it reaches peak
performance faster (given the same amount of gain). Finally,
the bottom right panel shows a participant with greater intra-
individual variation (σe,i), as indicated by the more scattered
dots around the fitted model (set to 0.10 instead of 0.05).
Simulation analyses showed good recovery of these parameters
with 10 data points per person, in terms of at least 95% of the
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FIGURE 4

Five synthetic participant’s data (gray dots) and model fit (solid line).

simulated values falling in the estimated 95% credible interval of
their corresponding parameter estimates.

The double negative exponential model extends the
previously introduced negative exponential model by
considering retest gains across bursts as well. It is specified as:

Yti = gi × exp[−ri × Mti] +

I(Bti > 1) × g∗i × exp [−ri × Tti]+ eti +

ai +4i × (Bti − 1) (2)

Parameters gi and ri again represent gain and learning rate,
as in Eq. (1), but now we have two sets of them: one (gi, ri)
set to capture continuous learning throughout the study [much
like in Eq. (1) when we only had one burst], shown in the first
line of the Eq. (2), and a second (g∗i , r∗i ) set that represents
warm-up processes after the first burst [i.e., I(Bti > 1)] – with
gain and learning rate parameters denoted by an asterisk (∗),
as shown in the second line of Eq. (2). This warm-up effect
also has an exponential functional form, and it operates on
the measurements nested within a burst (denoted with Tti).
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FIGURE 5

Illustration of the double negative exponential model.

Similarly to Eq. (1), eti again represents a time and person-
specific error term, with its standard deviation σe,i quantifying
the intraindividual variability in performance across all trials.

Most importantly, as shown in4i × (Bti − 1) of Eq. (2), we
are now modeling the change in asymptotic (peak) performance
between bursts. This is accomplished by parameter 4i, which
adjusts the asymptotic performance (ai), by some magnitude
of change in every burst following the first one. We then
investigate individual differences in these key parameters by
adding covariates such as age, sex, and MCI status to the model.

Figure 5 shows a graphical representation of the double
negative exponential model fit to cognitive performance
measures (error distances in this example, displayed as dots)
over trials t from a synthetic individual i, over three bursts (note
that in the dataset analyzed later there are only two bursts, but
we display three here for illustration purposes of the general
approach). We can see that in the beginning of the study, there
are more errors than at the end of the study, while also within
each burst the first error rates are higher than the rest. We also
observe retest gain across assessments: a learning process across
the whole study period (here parameter gi quantifies person i’s
gain across all measurements in the study, and ri represents their
corresponding learning rate). Also, in each burst after the first,
there is a warm-up gain, a within-burst learning process with
gain g∗i and learning rate r∗i parameters. In the first burst of data
(over measurement occasions 1−20), the asymptote represents
the person-specific initial peak performance, which becomes
worse with every burst in this example (higher asymptotes
correspond to more error). The amount of change in peak
performance is quantified by4i. As can also be seen in Figure 5,
due to the retest gain across assessments and within burst, there
seems to be an improvement in performance (decrease in error
distances overall across the study). However, if we look at the

long-term change in terms of the peak performance parameter
of the proposed model (i.e., change in asymptote), there is in
fact an incremental decline in performance, manifested through
an increase in errors (i.e., worsening peak performance across
bursts).

The warm-up effect represents an expected decrease in
performance from the peak performance of a prior burst to the
initial performance at its follow-up burst. It is an important
process to model as this decrease may not reflect true “cognitive
decline” and could instead represent some “forgetting” of
testing procedures (see also in e.g., Dutilh et al., 2009). Our
proposed modeling approach captures participants recovering
their previous gains overlaid on their continuous improvement.

Modeling cognitive performance in terms of the person-
specific double negative exponential parameters can help us
capture retest effects and isolate them from other cognitive
performance indicators. Investigating possible sources of
individual differences (e.g., age, MCI status) in these cognitive
parameters (i.e., learning rate, change in peak performance,
etc.) can help us learn about processes related to retest effects
and cognitive decline. In summation, our proposed model
represents a cognitive psychometric approach to interpreting
cognitive performance data. This model will require a nuanced
and flexible statistical framework for inference. We chose a
multilevel Bayesian framework (Gelman and Hill, 2007) for
implementing the double negative exponential model, discussed
next.

The multilevel specifications of the double
exponential model

In our proposed modeling approach, all double negative
exponential parameters, ai, 4i, gi, ri, g∗i , r∗i , and σe,i were
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allowed to be person-specific and are pooled together via group-
level (population) distribution. This represents a standard
multilevel modeling approach (Raudenbush and Bryk, 2002)
that has been proven useful for improving estimation accuracy,
as it allows for the person- and group-level trends to
simultaneously inform each other. Moreover, we also aim at
identifying possible sources of individual differences in these
parameters. Therefore, we regress person-specific cognitive
performance characteristics (e.g., peak performance, change
in peak performance, etc.) on a set of predictors, such as
age and MCI status. Note that these cognitive performance
characteristics are themselves model parameters, therefore they
are estimated with error. We use a one-step approach to regress
them on predictors to avoid generated regressor bias (Pagan,
1984).

More specifically, in our multilevel specification of the DNE,
the peak performance, ai, changes in peak performance, 4i,

and intra-individual variation in performance, σe,i, and learning
rates (ri, r∗i ) have group-level (population) distributions, the
means of which are decomposed into products of predictors and
regression coefficients. For example, the person-specific peak
performance, ai, parameters are assumed to follow a normal
distribution, parametrized as:

ai∼N(xiβa,σa),

where xi is a vector with a set of person-specific predictors
such as sex (i.e., male or female) and MCI status, and with
1 as its first element (for the intercept). Vector βa contains
the corresponding regression coefficients. Specifically, the first
coefficient of βa, that is βa, int, takes the role of an intercept
and quantifies the group (population)-level peak performance,
while the rest of the regression coefficients correspond to
the effects of the predictors in xi. In the analyses below
we used age at baseline, MCI status, sex, and years of
education as predictors. For example, regression coefficient
βa, age quantifies the association between peak (asymptotic)
performance and age at baseline, regression coefficient βa, MCI

quantifies the association between peak performance and MCI
status, regression coefficient β4, MCI quantifies the association
between change in peak performance and MCI status, and
so on. Parameter σa quantifies residual variation in standard
deviation units– that is individual differences remaining after
the predictors are accounted for.

In the analyses below, similar specifications were made for
4i, ri, r∗i , and σe,i, as well. The gain parameters were also
made person-specific and assigned group-level distributions:
gi∼N(µg,σg), where µg is the group-level mean gain across
bursts, representing the average rate of gain in the sample
throughout the study. The warm-up gain parameter g∗i is
assigned a group-level distribution that follows the same logic.
However, these gain parameters were not regressed on person-
level predictors the same way as the other parameters, as we

did not expect them to be meaningfully related to our chosen
set of predictors.

Finally, note that we are not specifying any particular
correlation structure on the person-specific parameters (i.e.,
random effects); we are not constraining the correlation to be
0. All parameters, including regression coefficients, negative
exponential model parameters and variances are estimated in a
Bayesian framework, introduced next.

Casting the multilevel double exponential
model in a Bayesian framework

In the Bayesian framework model parameters are thought
of as random variables that have their own probability
distributions. Bayesian modeling focuses on the estimation
of posterior probability distributions (i.e., posteriors) based
on available data (interpreted through a likelihood function)
and prior probability distributions (i.e., priors) on the model
parameters. Prior probability distributions are mathematical
summaries of any already existing information on the model
parameters. All inference is conditional on the priors, and they
need to be specified before seeing the data to genuinely reflect
the already existing information available on the parameters.
The prior distributions for this study were chosen to be
minimally informative, reflecting only the plausible, theoretical
range of the parameters. This involved truncating distributions
to match the parameter’s range. For example, given that reaction
times cannot be negative, peak performance of RT also cannot be
negative, therefore its prior was truncated at 0 so that it cannot
take on negative values.

Population means were given a prior that was distributed
normally with 0 mean and standard deviation 10, truncated
at 0 for across study (i.e., across bursts) and within-burst gain
parameters, such as:

µg∼N(0, 10) and µg∗∼N (0, 10).

Regression coefficients (except for intra-individual standard
deviation) were given the same priors, for example:

βa,age∼N(0,10),

was specified for the coefficient linking asymptote (peak
performance) and age. For the intra-individual standard
deviation, we chose a somewhat tighter normal distribution with
standard deviation equal to 1 to reflect that the likely range of
this parameter was between 0 and 1, for example as:

βσe,age∼N (0,1) ,

for the association between intra-individual standard
deviation and age.

The group-level standard deviation parameters that reflect
the heterogeneity across individuals were truncated to be on the
positive real line and were specified as:

σr∼N(0, 10),
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FIGURE 6

Six Einstein Aging Study (EAS) participants’ symbol search data and predicted BDEM trajectories.

where σr could be substituted with σr∗, σg, σg∗, σa, and σδ. The
standard deviation of the intra-individual standard deviation
was specified as:

σσe∼N(0, 1),

with range again truncated to the positive real line.

Implementation of double exponential
model

The Bayesian double negative exponential model was
implemented in Stan (Stan Development Team, 2022) called
from R via rstan (Stan Development Team, 2020) – the Rscript
for the estimation is available via OSF1.

The results below were based on 60,000 samples from the
posterior probability distributions of each model parameter.
Specifically, we ran 6 parallel chains drawing 12,000 samples
each, from which 2,000 per chain were discarded as warm-
up iterations, resulting in 60,000 total iterations for each
parameter. Sampling was performed via Markov chain Monte
Carlo (MCMC) algorithms implemented in Stan. We checked
MCMC sampling quality by calculating effective sample size

1 https://osf.io/h9yqk/?view_only=9e311fca177e462bbdb347c50736a
e21

(ESS) and R̂ statistics. ESS quantifies the number of independent
pieces of information in the posterior distribution and should
be at least 100, but preferably around 1,000 to get reliable
interval estimates. The R̂ statistic is indicative of convergence
of the sampled values, and values above 1.1 signal issues with
convergence (Gelman et al., 2013). In our analyses, the ESSs for
all parameters were above 100, and 98% of ESSs were also above
1,000 and all R̂s were below 1.1.

Model fit
Symbol search task

We calculated the R2 statistic to quantify the proportion
of the variance in reaction times explained by the BDEM. For
the current dataset the R2 was 0.89, which supports a good fit
of the model for the data. We also explored model fit visually
by plotting model predicted trajectories over the data points,
for every person, and concluded that the model followed the
characteristics of the data satisfactorily. Specifically, we looked
at whether the model predicted trajectory mimics the most
important characteristics of the person-level data, which were
whether (1) the height of the exponential curve overlaps with
the first couple of observed data points, (2) the asymptote of
the exponential curve overlaps with the best performances, and
(3) the change in performance across the observations has an
exponential shape. As an example, Figure 6 shows 6 persons’ raw
data (dots) and model predicted trajectories, these were chosen
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FIGURE 7

Six EAS participants’ grid memory data and predicted Bayesian double exponential model (BDEM) trajectories.

to give representative illustration of the overall trends of the
data.

Dot memory task

The BDEM showed sufficient fit to the grid memory data,
with R2 = 0.76, and predicted trajectories showing acceptable
patterns; see Figure 7 for examples. However, we note that the
fit of the BDEM was not as ideal for this data as for the symbol
search data2.

Results

We analyzed data for 318 participants, from which 171
completed both bursts, while the remaining participants had
only Burst 1 data. The mean age of the sample at baseline was
77.45 (4.83) years and 67% were female (n = 104 male, and
n = 214 female). The sample was racially and ethnically diverse
with 45.9% (n = 146) identified as non-Hispanic Whites, 39.9%
(n = 127) as non-Hispanic Blacks, 9.7% (n = 31) as Hispanic

2 Additionally, plots showing the raw data averaged across persons and
the corresponding model fits for both the symbol search task and dot
memory task can be found on the above referenced OSF site. These plots
showed satisfactory fit of the BDEM on the group level.

Whites, 2.8% (n = 9) as Hispanic Blacks, 1.3% (n = 4) as Asian,
and 0.3% (n = 1) as more than one race/ethnicity. The mean
education of the sample was 14.98 (3.55) years. On that basis of
the neuropsychological assessment and criteria described above,
31.8% (n = 101) participants were classified as having MCI at
baseline. There was no significant difference between those who
completed both bursts and those with only Burst 1 in terms of
age, years of education, race/ethnicity, or sex. But the group with
only Burst 1 data was significantly more likely to be classified as
MCI at Burst 1 (40.41% v. 24.42%, p = 0.003; please see table with
all comparisons on the paper’s OSF site). However, the BDEM
mixed effects models we used can handle the missing data under
the assumption that the data are missing at random (MAR).
That is, the missing data process may depend on the predictors
such as MCI status, covariates and the observed EMA cognitive
outcomes at Burst 1. The only requirement for the missing data
process is that conditional on MCI, covariates and Burst 1 EMA
cognitive data, the missing data at Burst 2 must be independent
of the unobserved Burst 2 cognitive performance.

The symbol search task

We note that we decided to scale the response times
in seconds to keep the above specified prior settings in the
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FIGURE 8

Histograms of person-specific estimates for key BDEM parameters based on data from the symbol search task. The horizontal axis shows the
(binned) parameter values while the vertical axis displays the frequency of occurrence of that value among participants.

estimation algorithm the same for the symbol search and for the
grid memory task data.

We did an initial data exploration by comparing the
differences in Burst 1 and Burst 2 manifest performances (i.e.,
no BDEM). For every person, we calculated their average
Burst 1 and Burst 2 reaction times, and created a difference
score based on these (Burst 2 – Burst 1) to see how their
performance changed across time. On average we found a 0.16s
improvement in reaction times (M = −0.16, 95% CI: [−0.20,
−0.12]), which was significantly different from 0 (t = −7.46,
df = 170, p = 4.28e−12). This would suggest that on average
participants got substantially faster in their reaction times in
a year’s time (between the two bursts) on this task. However,
analysis based on these simple aggregates is confounded by
practice effects. Next, we discuss how fitting the BDEM to this
data showed different results.

Group-level (population) estimates and
individual differences in the asymptote, change
of asymptote, learning rates and
intra-individual variability parameters based on
the Bayesian double exponential model

We found a considerable amount of individual variation
in asymptote, change of asymptote, learning rates and
intra-individual variability parameters. Figure 8 shows the
distributions of the person-specific point estimates of these
parameters. Correspondingly, Table 1 shows their group-level
averages (population mean estimates, e.g., βa,int for asymptote)
and the amount of individual differences in them (heterogeneity

TABLE 1 Group-level (population) estimates of Bayesian double
exponential model (BDEM) parameters based on data from the
symbol search task.

Process parameter Mean PSD

Asymptote averaged across individuals 2.83 0.06

Heterogeneity in asymptote (SD) 0.75 0.04

Change in asymptote averaged across individuals −0.07 0.03

Heterogeneity in change in asymptote (SD) 0.19 0.02

Intra-individual variability averaged across individuals 0.56 0.02

Heterogeneity in intra-individual variability (SD) 0.18 0.01

Learning rate across study, averaged across individuals 0.49 0.04

Heterogeneity in learning rate across study (SD) 0.27 0.02

Warm-up learning rate averaged across individuals 0.39 0.05

Heterogeneity in warm-up learning rate (SD) 0.14 0.03

PSD indicates posterior standard deviation of the estimates, which
quantifies standard error.

in terms of population standard deviation estimates, e.g.,
σa, for asymptote). The column labeled “Mean” displays a point
estimate for these parameters based on their posteriors, while
the column labeled “PSD” shows the corresponding standard
deviation around this point estimate, quantifying standard
error.

We can see that on average, the asymptote (i.e., peak
performance, βa, int) was 2.83 s (M = 2.83, PSD = 0.06) on this
task. This intercept value (and the ones below) is the across
person average corresponding to a participant who does not
have the MCI status, who is male, and whose age and years of
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education are at the sample mean level. There was considerable
between-person variability in the asymptote, as shown by the
standard deviation estimate (M = 0.75, PSD = 0.04) and the
histogram of the person-specific asymptote estimates (first plot
of Figure 8).

The (across-person) average difference in peak performance
(asymptotes) between the first and the second bursts (β4, int)
was −0.07 s (again, this corresponds to a participant who
does not have the MCI status, who is male, and whose age
and years of education are at the sample mean level), and it
was credibly negative (M = −0.07, PSD = 0.03). This suggests
that even when the retest effects were accounted for, there
was an improvement in reaction time performance across
bursts. However, the individual differences were considerable,
as shown in the second plot of Figure 8: for example,
for some participants, there was actually a slowing in
reaction times, as shown by their positive change in peak
performance estimate. In Section “Person-specific inference
on the change in asymptotic performance via Bayesian
probability distributions.,” we will show how we can further
scrutinize these individual-level estimates to get a probability
estimate on whether the detected change represents credible
decline in cognitive performance. Finally, we also note
that 171 participants did not have second burst data yet,
therefore their change estimates were informed by the
population mean so they were all concentrated around
−0.07.

The average intra-individual variation in RT (βσe, int) was
0.56 s (M = 0.56, PSD = 0.02), with a large amount of variation
across participants, quantified by the group-level standard
deviation of the intra-individual variation parameter (M = 0.18,
PSD = 0.01) and illustrated in the third plot of Figure 8. This
suggests that individuals differ from each other considerably
in terms of how much their cognitive performance fluctuates
across the days.

Finally, with respect to the learning rate, a quick visual
assessment of the plots in the second row of Figure 8 reveals
that person-specific learning rates across study (between bursts)
tend to be somewhat higher than the within-burst (warm-
up) learning rates (see also corresponding entries in Table 1:
M = 0.49 vs. M = 0.39); however, we can again see considerable
amount of individual differences. Next, we look at the results of
regressing these parameters on predictors to identify the sources
of the individual differences.

Explaining sources of individual differences in
the asymptote, change of asymptote, and
intra-individual variability parameters with the
Bayesian double exponential model

The person-specific asymptote, change in asymptote, intra-
individual variability, learning rate across study and warm-
up learning rate parameters were regressed on predictors
quantifying age at baseline (standardized to mean of 0 and

standard deviation 1), MCI status (coded as 0 and 1), sex
(with 0 for female and 1 for male) and years of education
(standardized similarly). Reported effects of age and education
were all corresponding to 1 SD unit increase (4.83 years for
baseline age, 3.55 years for years of education). Results on
the regression coefficients quantifying their associations are
summarized in Table 2. Just like in Table 1, the column labeled
“Mean” displays a point estimate for these parameters, while
the column labeled “PSD” shows the corresponding standard
error. The last two columns show the probability that the
regression coefficient is below and above 0, respectively, based
on the posterior probability mass. For a credible effect we want
to see at least 95% (0.95) probability of being either entirely
below 0 or entirely above 0. However, we will also discuss if
there was moderate evidence for effects, defined as at least 90%
(0.9) probability of being either entirely below 0 or entirely
above 0 (but not reaching the threshold of 0.95 for credible
effect).

The first part of Table 2 shows that individual differences in
asymptote (peak performance) were credibly linked to age, MCI
status and years of education. With older age at baseline, peak
performance reaction times showed credible slowing (0.11 s
for each standard deviation of age). With positive MCI status
there is also on average a 0.73 s slower peak performance
reaction time. In contrast, with more years of education, peak
performance reaction times tended to be faster [0.12 s faster
per 1 SD (3.5) increase in years of education]. We did not find
evidence for differences based on sex.

The second section of Table 2 summarizes the results
with respect to changes in peak performance over time – that
is between the two bursts in the study that were separated
on average by a year. We only found trending support for
association between age and change in peak performance: for
each additional year older at baseline, participants tended to
show a 0.03 s slowing of peak reaction times across the two
bursts. For this effect to be credibly different from 0 there was
0.94 probability, which is slightly below our 0.95 threshold for
credible effect. None of the other predictors showed credible
links with this parameter.

The third section of Table 2 shows that differences in
intra-individual variability in performance across time were
credibly linked to MCI status and years of education. With
positive MCI status there was a 0.15 s increase in the variability
(in standard deviation units), while participants with 1 SD
increases in years of education tended to show 0.04 s less
variation.

The last two sections of Table 2 summarize the links
between the learning rate parameters (across study and warm-
up) and the selected predictors. We found only one credible
link: participants with older age at baseline tended to show
faster warm-up rate, meaning that they reached their peak
performance faster in the second burst (0.05 s faster per one
standard deviation on change in age).
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TABLE 2 Summary of links between cognitive performance characteristics of the symbol search task and selected explanatory variables.

Process parameter Predictor Mean PSD <0 >0

Asymptote Age 0.11* 0.05 0.01 0.99

MCI status 0.73* 0.10 0.00 1.00

Sex 0.03 0.10 0.39 0.61

Years of education −0.12* 0.05 1.00 0.00

Change in asymptote Age 0.03ˆ 0.02 0.06 0.94

MCI status −0.03 0.05 0.74 0.26

Sex 0.01 0.04 0.37 0.62

Years of education −0.02 0.02 0.77 0.23

Intra-individual variability Age 0.01 0.01 0.25 0.75

MCI status 0.15* 0.03 0.00 1.00

Sex 0.01 0.02 0.34 0.66

Years of education −0.04* 0.01 1.00 0.00

Learning rate across study Age 0.01 0.02 0.38 0.62

MCI status −0.06 0.05 0.88 0.12

Sex −0.04 0.05 0.82 0.18

Years of education −0.01 0.02 0.68 0.32

Warm-up learning rate Age 0.05* 0.03 0.03 0.97

MCI status −0.06 0.05 0.88 0.12

Sex 0.01 0.05 0.41 0.59

Years of education −0.03 0.03 0.89 0.11

Estimates with an * are meaningfully different from zero (at least 95% probability of being either entirely above or below 0). Estimates with a ˆ denote moderate evidence for an effect (at
least 90% probability of being either entirely above or below 0). SD indicates posterior standard deviation of the estimates. Column “<0”/“>0” displays the probability of the parameter
being smaller/larger than 0.

The grid memory task

We did an initial data exploration for the grid memory
task−much like we did for the symbol search task−by
comparing differences in manifest performance between Burst
1 and Burst 2. We created person-specific difference scores
between Burst 1 and Burst 2 averages based on the error distance
measure. Across participants we found an improvement across
bursts, specifically 0.21 units less error (M = −0.21, 95%
CI: [−0.26, −0.15]), which was significantly different from 0
(t = −7.72, df = 170, p = 9.404e−13). This would suggest that
participants’ memory performance improved in a year’s time
(between the two bursts) on this task. However, as before, these
simple aggregates are confounded by practice effects. We discuss
results from the BDEM next.

Group-level estimates (population) estimates
and individual differences in the asymptote,
change of asymptote, learning rates, and
intra-individual variability parameters based on
the Bayesian double exponential model

Similar to the symbol search task, we found considerable
amount of individual variation in asymptote, change of
asymptote, learning rates and intra-individual variability
parameters. Figure 9 shows the distributions of the person-
specific point estimates of these parameters. Correspondingly,
Table 3 shows their group-level averages and the amount of

individual differences in them (following the same logic as in
Table 1).

We can see that on average, the asymptotic, peak
performance (βa, int) was 1.85 units of error (M = 1.85,
PSD = 0.09) on this task and that there was considerable
between-person variance in peak performance, as shown by the
standard deviation estimate (M = 0.69, PSD = 0.03) and the
histogram of the person-specific asymptote estimates (first plot
of Figure 9).

The (across-person) average difference in asymptotes (peak
performance) between the first and the second bursts (β4, int)
was 0.06 units of error (M = 0.06, PSD = 0.04). As opposed
to credible improvement in peak reaction times on the
symbol search task, this represents trending evidence for
decline in performance over time. The individual differences
in this peak performance change were also considerable,
as shown in the second plot of Figure 9: while for most
participants there was some level of decline in performance,
there were also some whose performance improved across
bursts.

The average intra-individual variation (βσe, int) was around
1 grid unit (M = 1.06, PSD = 0.02), with a large amount
of variation across individuals, quantified by the group-level
standard deviation of the intra-individual variation parameter
(M = 0.16, SD = 0.01) and illustrated in the third plot of Figure 9.
This provided further evidence that participants differ from
each other considerably in terms of how much their cognitive
performance fluctuates across the days.
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FIGURE 9

Histograms of person-specific estimates for key BDEM parameters based on data from the grid memory task. The horizontal axis shows the
(binned) parameter values while the vertical axis displays the frequency of occurrence of that value among participants.

Finally, with respect to the learning rate, we found a different
pattern than in the symbol search task: in this task the person-
specific learning rates across study (between bursts) tended to be
much lower than the within-burst (warm-up) learning rates, as
illustrated in the second row of Figure 9 (see also corresponding
entries in Table 3: M = 0.09 vs. M = 2.67); however, we can again
see large individual differences. We again look at the results of
regressing these parameters on predictors to identify the sources
of the individual differences next.

Explaining sources of individual differences in
the asymptote, change of asymptote, and
intra-individual variability parameters with the
Bayesian double exponential model

The first part of Table 4 shows that individual differences
in asymptote (peak performance) were credibly linked to
MCI status, sex and years of education. With positive MCI
status the peak performance error rates were higher (on
average by 0.44 units of error). In contrast, with being male
and with more years of education, peak performance error
rates tended to be lower (0.44 and 0.26 units of error,
respectively). We did not find evidence for differences based on
age.

The second section of Table 4 summarizes the results with
respect to changes in peak performance over time – that is
between the two bursts in the study that were separated on
average by a year. We found credible support for association
between age and change in peak performance: participants who
were older at baseline tended to show worsening error rates (by
0.05 units of error) across the two bursts. In contrast, with more

TABLE 3 Group-level (population) estimates of BDEM parameters
based on data from the grid memory task.

Process parameter Mean PSD

Asymptote averaged across individuals 1.85 0.09

Heterogeneity in asymptote (SD) 0.69 0.03

Change in asymptote averaged across individuals 0.06 0.04

Heterogeneity in change in asymptote (SD) 0.25 0.03

Intra-individual variability averaged across individuals 1.06 0.02

Heterogeneity in intra-individual variability (SD) 0.16 0.01

Learning rate across study, averaged across individuals 0.09 0.03

Heterogeneity in learning rate across study (SD) 0.04 0.01

Warm-up learning rate averaged across individuals 2.67 0.69

Heterogeneity in warm-up learning rate (SD) 0.99 0.23

PSD indicates posterior standard deviation of the estimates, which
quantifies standard error.

years of education participants tended to show improvement
in error rate over time (0.04 units less). None of the other
predictors showed credible links with this parameter.

The third section of Table 4 shows that differences in intra-
individual variability in performance across time were credibly
linked to age, sex, and education level: with older age, being
male, and with more years of education, there was less variability
(0.03, 0.08, and 0.02 in standard deviation units, respectively).

The last two sections ofTable 4 summarize the links between
the learning rate parameters (across study and warm-up) and
the selected predictors. We found credible links only with across
study learning rates, but the effect sizes were low. Older age at
baseline, males, and participants with more years of education
tended to be faster across study learning rates.
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TABLE 4 Summary of links between cognitive performance characteristics of grid memory task and selected explanatory variables.

Process parameter Predictor Mean PSD <0 >0

Asymptote Age 0.01 0.05 0.39 0.61

MCI status 0.44* 0.10 0.00 1.00

Sex −0.44* 0.10 1.00 0.00

Years of education −0.26* 0.05 1.00 0.00

Change in asymptote Age 0.05* 0.03 0.03 0.97

MCI status 0.05 0.06 0.22 0.78

Sex −0.05 0.05 0.84 0.16

Years of education −0.04* 0.03 0.95 0.05

Intra-individual variability Age −0.03* 0.01 0.99 0.01

MCI status 0.01 0.03 0.35 0.65

Sex −0.08* 0.03 1.00 0.00

Years of education −0.02* 0.01 0.96 0.04

Learning rate across study Age 0.01* 0.10 0.03 0.97

MCI status −0.01 0.03 0.82 0.18

Sex 0.03* 0.02 0.03 0.97

Years of education 0.02* 0.01 0.01 0.99

Warm-up learning rate Age −0.08 0.14 0.73 0.27

MCI status 0.03 0.86 0.56 0.44

Sex −0.01 0.33 0.52 0.48

Years of education −0.13 0.17 0.78 0.22

Estimates with an * are meaningfully different from zero (at least 95% probability of being either entirely above or below 0). Estimates with a ˆ denote moderate evidence for an effect (at
least 90% probability of being either entirely above or below 0). SD indicates posterior standard deviation of the estimates. Column “<0”/“>0” displays the probability of the parameter
being smaller/larger than 0.

Person-specific inference on the
change in asymptotic performance via
Bayesian probability distributions

As stated before, the result of the Bayesian inference is a
posterior probability distribution for every model parameter.
Based on these distributions, probabilities on different ranges
of the parameters can be calculated. This means, for example,
decisions on the “significance” of regression effects do not need
to be binary with an implausible null hypothesis of absolutely
no difference. Instead, we can just make an informed decision
by looking at the posterior probability distribution of the
regression coefficient.

Inference can be done similarly for the person-specific
parameters which are likely indicators of dementia risk, as on
the change in peak performance across bursts. An example is
shown in Figure 10 for symbol search and Figure 11 for grid
memory data featuring the same six example participants as in
Figures 6, 7. We can decide based on theoretical arguments
whether a less than 0.01 s difference in peak performance (or
0.01 unit of error) represents a practically relevant effect. Using
Monte Carlo integration, we can then calculate how much of
the posterior mass falls above 0.01 (indicated with a vertical
line in Figures 10, 11) – resulting in the probability of a
practically relevant decline based on the participant’s change in
performance on a particular task between two bursts.

In Figure 10, we can see that for the participants in the
first row and the first one in the second row, the posterior
probabilities do not provide much evidence for practically
relevant change – it is approximately the same amount of

probability mass on both sides of 0. However, for the participant
in the second plot of the second row of Figure 10, there is a 96%
chance of such decline in symbol search performance, and the
magnitude of decline is around 0.25 s, based on the peak of the
posterior distribution (a more accurate point estimate can also
be calculated). If we check the same participant’s change in peak
performance estimate from the grid memory task in Figure 11,
there is a 94% probability of decline there, with the magnitude of
decline being a bit less than 0.25 units of error, based on the peak
of the posterior distribution. Inferences like this could be drawn
for every person to evaluate their individual dementia risk.

As can be seen in Figure 11, the participants in the last row
show high probabilities of cognitive decline based on their grid
memory performance across the two bursts. For the participant
in the third plot of the second row, there was already some
support for decline on the symbol search task (70% chance,
see Figure 10). Numerical probability estimates could also be
combined together in a predictive modeling framework for
efficient inference.

Discussion

Peak performance and changes in peak
performance across bursts

In our analyses above, we aimed to isolate peak performance
from retest effects in repeated measures of cognitive
performance. We found that individual differences in the
peak performance estimates were meaningfully related to the
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FIGURE 10

Posterior probabilities of change in the symbol search task performance for 6 EAS participants.

FIGURE 11

Posterior probabilities of change in the grid memory task performance for 6 EAS participants.

selected predictors. For example, MCI status was linked to
decreased peak performance in both tasks.

When we explored the grid memory data by comparing
burst averages, we found significant improvement across
bursts. In contrast, the BDEM showed moderate evidence
for decline in cognitive performance across bursts on this

task. This suggests that disentangling learning processes from
other latent cognitive changes is critical for this type of data.
Individual differences in the change in peak performance
across bursts were plausibly related to age (more error)
and education (less error), further supporting the usefulness
of our approach.
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In contrast, on the symbol search task there was a 70-ms
improvement across bursts in peak performance RT, even when
retest learning effects were taken into account with the BDEM.
However, this improvement is still smaller than the difference
in burst averages (160 ms improvement), indicating that some
retest learning was indeed accounted for by the BDEM. There
are several possible reasons why we found improvement in peak
RT on this task. It could be partly because we only have two
bursts to examine change in peak performances across the years,
so that we might not have had enough information to accurately
capture the change process. Another reason for improvement in
RTs on the symbol search task could be related to the fact that
we were only modeling RTs from correct trials. Modeling all RTs
in combination with accuracies for example in a drift diffusion
model framework (see, e.g., Wagenmakers, 2009) could provide
more insight.

Within-person variability in
performance across days

While variability in performance is generally acknowledged
in repeated assessments of cognitive performance, it is treated
most often as a nuance. In the current study, we found that in the
symbol search data, participants with MCI status showed more
variability across days in their reaction times. Also, consistently
across the two tasks, individuals with more years of education
exhibited less variability. Paired with our previous findings that
intra-individual variation in performance predicts MCI status,
this may suggest that day-to-day variation reflects individual
differences in cognitive reserve (Cerino et al., 2021).

Learning rates across study and within
a burst

Learning effects confound the detection of cognitive change
by biasing estimates of the underlying performance on a
given assessment. In our study, we distilled these from
peak performance estimated, but also considered them as
potential indicators of cognitive change/decline given age- and
disease-related impacts on brain subsystems that support
learning. We extracted features of short- and long-timescale
learning/retention in terms of within-burst or warm-up learning
rate and across the study learning rate. On the symbol search
task, we only found limited evidence (88% probability) of
individuals with MCI status exhibiting slower learning; however,
this effect was consistent for across study and warm-up learning
rates (see Table 2). Surprisingly, on this task the only credible
link was between learning and age, where participants who were
older at baseline tended to show faster warm-up learning rate.
Similar credible age effect was found in the grid memory data
as well, although the effect was small and these participants

also tended to have worse peak performance, therefore the
steep learning might not indicate better brain health in this
context.

Limitations and future directions

The double negative exponential model applied to measured
burst data has the potential to provide a significant contribution
toward accurately detecting and quantifying cognitive decline
by disentangling practice effects from latent indicators
of cognitive performance (i.e., asymptotic performance).
It also provides clinically useful information in terms of
personalized probabilities of impairment and decline for
every individual, which can be useful to a clinician. We see
several extensions of the BDEM approach for future projects.
First, the BDEM parameter estimates on different tasks
could be compared in terms of their predictive performance
of neurodegenerative diseases. The goal is to optimize a
model that has several of the key BDEM parameters as
indicators, potentially from various cognitive domains (i.e.,
using more than one type of cognitive task). Second, while
the current analysis did not yield promising results on
linking learning process parameters with MCI status, it is
possible that further exploration with indicators that are
more specific to ADRD (such as blood biomarkers) could
provide more insight. This is particularly relevant given
that classification of MCI is a heterogenous classification,
which as we highlighted in the introduction can have limited
reliability. Finally, the BDEM could be combined with cognitive
process models, such as the drift diffusion model that breaks
down performances to meaningful cognitive characteristics.
Combining such a drift diffusion modeling approach with
the BDEM would allow us to simultaneously model and
map learning features (e.g., learning rate) and changes
in peak performance (and all associated random effects)
onto cognitive (drift rate), and meta-cognitive (boundary
separation) parameters.
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