ORIGINAL ARTICLE

Open Access

Molecular identification, antibiotic susceptibility, and biofilm formation of airborne bacteria

Malik Asif Hussain¹, Mubashir Zafar², Yusuf Saleem Khan³, Kamaleldin B. Said¹, Sadaf Anwar⁴, Mohd Saeed⁵, Mohammad A. Abdulhakeem⁵, Mejdi Snoussi^{5,6,7} and Mohd Adnan Kausar^{4*}

Abstract

Pathogenic bacterial communities present in urban green spaces significantly affect human health, particularly for immunocompromised populations. The diverse range of pathogenic bacteria found in these areas poses substantial management challenges because of their high prevalence of antibiotic resistance, which can be life-threatening, particularly for immunocompromised individuals, including older adults and children. This study identified airborne bacterial species from 14 natural parks in the Hail region of the Kingdom of Saudi Arabia. Bacterial colonies isolated on blood agar plates were purified and characterised based on their morphological traits and their ability to secrete various virulence factors. A total of 28 distinct airborne bacterial species were isolated and purified. Antibiotic susceptibility tests revealed high resistance to fosfomycin (41.17%), ampicillin (17.64%), tetracycline (17.64%), and gentamicin (11.76%). Biofilm formation was evaluated qualitatively by slime production and quantitatively by crystal violet technique. The results revealed that 41.17% of the tested strains were non biofilm producers on polystyrene surfaces, 17.64% were weak biofilm formers, and 23.52% exhibited moderate biofilm formation. Notably, six strains exhibited strong biofilm-forming capabilities. Additionally, two bacteria from the *Arthrobacter* genus (*A. crystallopoietes* and *A. saudimassiliensis*) were identified. These findings provide valuable insights into the microbial composition of natural parks in the Hail region and highlight effective management strategies to mitigate health risks.

Keywords Molecular identification, Antibiotic susceptibility, Biofilm formation, Airborne bacteria

© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

^{*}Correspondence: Mohd Adnan Kausar ma.kausar@uoh.edu.sa

¹Department of Pathology, College of Medicine, University of Ha'il, 55476 Hail, Saudi Arabia

²Department of Family and Community Medicine, College of Medicine, University of Ha'il, 55476 Ha'il, Saudi Arabia

³Department of Anatomy, College of Medicine, University of Ha'il, 55476 Hail, Saudi Arabia

⁴Department of Biochemistry, College of Medicine, University of Ha'il, 55476 Hail, Saudi Arabia

⁵Department of Biology, College of Science, University of Hail, 55476 Hail, Saudi Arabia

⁶Laboratory of Genetics, Bioaffiliationersity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, 5000 Monastir, Tunisia ⁷Medical and Diagnostic Research Center, University of Haʿil, 55476 Hail, Saudi Arabia

Hussain et al. AMB Express (2025) 15:74 Page 2 of 12

Introduction

Exposure to biological agents, including microbes, is associated with numerous substantial public health problems, such as infectious diseases, allergies, and acute toxic effects (Kumar et al. 2021). Air, being an essential component for the survival of living organisms on Earth, serves as a critical medium for the transmission of microorganisms and their components. Diseases can spread through both direct and indirect contact between individuals, with air acting as a common indirect medium for cross-infection. Skin flakes, aerosols, and spores can remain suspended in the air for extended periods and travel over long distances passively (Schmidt 2019; Chen et al. 2020). In both rural and urban settings, bacteria constitute a major component of the microbial diversity and abundance in outdoor as bioaerosols. Human-associated airborne bacteria and diseases caused by such bacteria have been the subject of extensive research, with their infection and transmission processes comprehensively reviewed in recent studies (Ruiz-Gil et al. 2020).

The growing prevalence of antibiotic resistance poses a serious public health challenge. Research on global urban microbiomes across 33 countries have discovered antimicrobial resistance genes, emphasizing the need for public health strategies and as well as urban planning (Zhai et al. 2022; Chen et al. 2023). Numerous studies have established a significant link between respiratory infections and microorganisms originating from outdoor environments. To effectively address the rising threat of antibiotic resistance, it is crucial to deepen our understanding of antibiotic-resistant bacteria in urban settings. Among the diverse airborne bacterial populations reported in outdoor environments, the most prevalent phyla include Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes (Mhuireach et al. 2016; Parajuli et al. 2018). Rangaswamy et al. (2013) identified diverse bacterial species present in garden air that could contribute to respiratory conditions. These species primarily included Escherichia coli, Klebsiella spp., Pseudomonas spp., Salmonella spp., Staphylococcus spp., Proteus spp., and Enterococcus spp. Seasonal variations were also found to affect bacterial concentrations in urban parks, with higher levels observed during summer and autumn (Rangaswamy et al. 2013). In addition, Mhuireach and co-worker. compared bacterial species in parks as well as parking lots and identified distinct bacterial signatures in parks, with Acidobacteriaceae being particularly abundant (Mhuireach et al. 2016). Studies have reported the prevalence of antibiotic-resistant airborne bacteria in diverse environments, including urban parks and healthcare settings (Robinson et al. 2021; Sajjad et al. 2024). These findings emphasize the need for continued monitoring and assessment of airborne microbial communities.

The formation of biofilms by outdoor bacterial pathogens and the emergence of antibiotic resistance represents significant public health challenge. Biofilms contribute to antibiotic resistance by enhancing the production of efflux pumps and increasing mutation rates (Hall-Stoodley et al. 2005; Jamal et al. 2018). Emerging evidence suggests that extracellular DNA and quorum sensing also play critical roles in biofilm-mediated antibiotic tolerance, as demonstrated in urban environmental isolates (Chen et al. 2024). The close cell-to-cell contact within biofilms facilitates horizontal gene transfer, further accelerating the dissemination of antibiotic resistance genes. Biofilm-embedded bacteria exhibit high tolerance and resilience, making biofilm-associated infections particularly difficult to treat. This is evident in chronic infections caused by bacteria that form biofilms resistant to conventional antibiotic therapies, such as Pseudomonas aeruginosa and Staphylococcus aureus (do Nascimento et al. 2021; Lin et al. 2021; Li and Zhang 2022).

The identification and treatment of outdoor pathogenic bacteria are hindered by various factors, including environmental conditions, technological limitations, and antibiotic resistance development (Cox and Wright 2013). The present study investigated the antibiotic susceptibility and biofilm formation capabilities of culturable bacteria present in the air of 14 natural parks located in the Hail region of the Kingdom of Saudi Arabia.

Material and methods

Sampling sites and bacterial isolation and characterization Bacterial growth was studied in 14 parks in the Hail region of Saudi Arabia (Table 1). Airborne microorganisms were allowed to grow on blood agar Petri dishes exposed to air at the selected sites. Blood agar plates were exposed to air for 30 min at each sampling site to allow for the settling of airborne microorganisms. This duration was chosen based on preliminary studies indicating optimal colony formation without overgrowth (Redhwan et al. 2021). After exposure, the settling plates were carefully sealed without contaminating the media surface. The isolated bacteria were purified on plate count agar medium following overnight incubation at 37 °C. Pure single colonies were then characterised based on morphological and microbiological tests, following previously described protocols (Snoussi et al. 2006). After incubation, the mean number of colonies at each site was determined and expressed as colony-forming units (Redhwan et al. 2021).

All purified isolates were assessed for their ability to produce various exoenzymes, including DNAase, lipase, amylase, caseinase, and lecithinase. For these experiments, PBS agar medium was supplemented with specific substrates: Tween-80 for lipase activity, starch for

Hussain et al. AMB Express (2025) 15:74 Page 3 of 12

Table 1 Morphological characteristics of 34 bacterial isolates obtained on blood agar plates isolated from 14 natural parks in Hail region

naii region				
Site of	Code	Color	Size	Shape
isolation	171	0	. 7	Cina la Canana antina
Al Muntazah Al Gharbi	17.1	Orange	6–7	Circular, Convex, entire
	17.2	Black	2–3	Circular, Convex, entire
Al Muntazah Al	10.3	Brown	4–5	Circular, flat, entire
Shargi	10.4	Brown	2	Circular, Convex, entire
Al-Wadi	15.1	Colorless	10	Irregular, flat, undulate
	15.4	Pink	6–7	Circular, convex, entire
Sharaf	26.2	Pink	2-3	Circular, raised, entire
	26.3	Pinkish	3-4	Circular, raised, entire
	26.4	Black-gray	7	Circular, flat, entire
Al Shefa	13.1	Brown	3-4	Circular, flat, entire
	13.3	White	5-6	Circular, flat, entire
Al-Masif	6.1	Yellow	2-3	Circular, convex, entire
	6.2	Pink	1-2	Circular, convex, entire
	6.4	Brown	3-4	Circular, flat, entire
Al-Fajr	3.2	Pink	2-3	Circular, convex, entire
	3.3	Creamy	5	Circular, flat, entire
	3.4	White	5	Circular, convex, entire
	3.5	Black	10	Circular, flat, undulate
Al-Nysia	4.1	Yellow	2-3	Circular, convex, entire
	4.2	Gray	1	Circular, convex, entire
Al-Mahatta	14.1	Pink	6-7	Circular, convex, entire
Al-Nugra	25.4	Brown	6-7	Circular, flat, entire
	25.5	Pink	6-7	Circular, convex, entire
Shark	24.2	Creamy	3-4	Irregular, flat, entire
Al-Mujamaa	24.3	Yellow	2-3	Circular, flat, entire
	24.5	Red	3-4	Circular, convex, entire
Al-Khuraymi	28.1	Creamy	5-6	Circular, flat, entire
	28.4	Red	1-2	Circular, convex, entire
Al-Jamiyin	16.2	Orange	5-6	Circular, convex, entire
	16.5	Brown	6-7	Circular, convex, entire
	16.6	Red	2-3	Circular, convex, entire
	16.11	Dark creamy	5	Circular, convex, entire
Al-Rasf	12.2	Brown	4-6	Circular, flat, entire
	12.4	Yellowish brown	2–3	Circular, low convex, entire

amylase activity, skim milk powder for caseinase activity, and egg yolk for lecithinase production. A positive result was indicated by the formation of a clear zone around the inoculation spots on Petri dishes after 72 h of incubation at 37 °C. In addition, haemolysin production was evaluated on blood agar supplemented with 5% human blood (Abdulhakeem et al. 2023).

Molecular identification of selected isolates

DNA extraction was performed using the Wizard Genomic DNA Purification Kit (Promega, Madison, WI, USA). The PCR protocol consisted of the following steps: (1) an initial denaturation at 95 °C for 5 minutes, (2) 35 cycles of denaturation at 95 °C for 30 seconds,

annealing at 53 °C for 30 seconds, and extension at 72 °C for 30 seconds, and (3) a final extension at 72 °C for 2 min. The reaction mixture had a total volume of 25 μl , containing 12.5 μl of 2× SuPCR Master Mix (Sugenomics, Cat No: PCR01B0451), 1 μL of each primer targeting the V3 and V4 regions of the 16S rRNA gene (341F: 5′-CCTACGGGNGGCWGCAG-3′ and 805R: 5′-GACTACHVGGGTATCTAATCC-3′), and 8.5 μL of ddH2O. The amplified DNA products were visualised on a 1% agarose gel and subsequently purified using the HighPrep PCR Cleanup Kit (Magbio, Cat No: AC-60050). The purified products were sequenced using the BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific). Sequence analysis was conducted using the ABI 3730XL Genetic Analyzer.

Antibiotic susceptibility test

The susceptibility of identified bacteria to various antimicrobial agents was evaluated using the disc diffusion assay on Mueller-Hinton agar. The tested antibiotics (Oxoid, UK) included amikacin (AK, 30 µg), ampicillin (AMP, 10 μg), gentamicin (GEN, 10 μg), tetracycline (TET, 10 μg), kanamycin (KMN, 10 μg), fosfomycin (FOS, 50 μg), norfloxacin (NX, 10 μg), and doxycycline (DOX, 30 µg). The diameter of the inhibition zone surrounding each disk was measured using a 1-mm flat ruler after 24 h of incubation at 37 °C. Antibiotic susceptibility profiles were classified as sensitive, intermediate, or resistant based on the guidelines provided by the Clinical and Laboratory Standards Institute M45 and M100. The data were further analysed using two indices: (i) the multiple antibiotic resistance (MAR) index of the isolates and (ii) the antibiotic resistance index (ARI) of each bacterial population (Abdulhakeem et al. 2023).

Biofilm formation test

The ability of the isolated microorganisms to form biofilms was assessed both qualitatively (slime production) and quantitatively (crystal violet technique). For the qualitative slime assay, the capacity of isolated bacteria to produce an exopolysaccharide layer (slime production) was evaluated on Congo red agar. Pigmented colonies were classified as slime producers, whereas unpigmented colonies were considered nonproducers.

For quantitative estimation, biofilm formation was evaluated using 96-well polystyrene microtiter plates, following the protocol described by Toledo-Arana et al. (2001). All bacterial strains were pre-enriched in brain infusion broth supplemented with 0.25% (w/v) glucose. The bacteria were cultured in the microtiter plates overnight at 37 °C, after which adhering bacteria were stained with 1% crystal violet for 15 min. The dye was then solubilised using an ethanol–acetone solution (80:20 v/v), and optical density (OD) was measured spectrophotometrically

Hussain et al. AMB Express (2025) 15:74 Page 4 of 12

at 595 nm (OD595). Based on these readings, bacteria were classified as nonbiofilm forming (–), weak biofilm forming (+), medium biofilm forming (++), or strong biofilm forming (+++). All experiments were performed in triplicate (Toledo-Arana et al. 2001).

Results

Bacterial isolation and characterization

The purification and characterisation of 34 bacterial isolates in this study focused on their physical traits and ability to secrete various virulence factors (Table 1). The number of colonies on blood agar ranged from 18 to more than 50 colonies per sample, with diverse morphotypes observed in nearly all samples. Representative growth plates from three parks are displayed in Fig. 1.

Table 1 below presents the data related to the sites of placing culture plates and characteristics of bacterial colonies grown.

All tested microorganisms demonstrated the ability to produce various exoenzymes but at different frequencies (Table 2). All isolates were capable of producing caseinase, lipase, and gelatinase. Eleven strains could hydrolyse DNA on DNA agar medium, whereas one strain isolated from Al Muntazah Al Gharbi (Strain 17.2) was unable to utilise starch as its sole carbon source (Table 2). Furthermore, 27 of the tested strains could not degrade human red blood cells on blood agar. However, five strains isolated from four natural parks of Hail region of Saudi Arabia (Al-Wadi, Al Shefa, Al Jamiyin, and Al-Rasf) exhibited complete haemolytic activity. A detailed enzyme profiling of the isolates are provides in Table 2.

Bacterial identification

Our analysis identified 34 bacterial isolates based on 16S rRNA sequence results. These strains were classified into 14 genera: *Kocuria* (n = 9), *Bacillus* (n = 5), *Pseudomonas* (n = 2), *Planococcus* (n = 4), *Exiguobacterium*

(n=3), Arthrobacter (n=3), Mesobacillus (n=2), Planomicrobium (n=1), Sporosarcina (n=1), Metaplanococcus (n=1), Agrococcus (n=1), Staphylococcus (n=1), Peribacillus (n=1), and Brachybacterium (n=1). Details of the isolated bacteria and their accession numbers across the various sites are provided in Table 3.

Antibiotic susceptibility testing

The results of antibiotic susceptibility testing revealed that all tested bacteria exhibited high resistance to fosfomycin (41.17%), ampicillin (17.64%), tetracycline (17.64%), and gentamicin (11.76%). By contrast, all isolates were sensitive to doxycycline and kanamycin. The multiple ARI (MARI) ranged from 0 to 0.411, whereas the ARI ranged from 0 to 0.625. Antibiotic sensitivity data are summarised in Table 4.

Biofilm formation

Figure 2 and Table 5 summarise the morphotypes observed on Congo red agar and the biofilm-forming capabilities of the tested strains, as assessed using the crystal violet staining technique in 96-well polystyrene plates. Six morphotypes were identified on Congo red agar, including black and nearly black colonies, which were interpreted as slime-producing strains, and red, pink with a red centre, and orange colonies, which were considered non-slime producers. Slime-producing strains accounted for 38.23% of the total tested strains, whereas non-slime producers represented 61.76%. In addition, biofilm formation analysis revealed that 41.17% of the tested strains were non-biofilm producers on polystyrene surfaces, 17.64% were weak biofilm formers, and 23.52% were moderate biofilm formers. Notably, six strains demonstrated strong biofilm-forming capabilities. The findings of this analysis are detailed in Table 5.

Figure 2 below depicts the growth of bacteria on congo red agar.

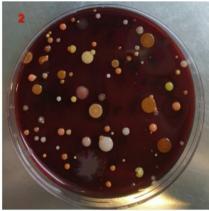


Fig. 1 Morphological characteristics of bacterial colonies isolated on blood agar from (1) Al-Masif, (2) Al-Fajr, and (3) Al-Mahatta natural parks from Hail region

Hussain et al. AMB Express (2025) 15:74 Page 5 of 12

Table 2 Exoenzyme profiling of 34 bacterial isolates from 14 natural parks in Hail region

Site of isolation	Code	Amylase	DNase	Lipase	Caseinase	Gelatinase	Haemolysis
Al Muntazah Al Gharbi	17.1	+	+	+	+	+	α-Haemolysis
	17.2	-	-	+	+	+	α-Haemolysis
Al Muntazah Al Shargi	10.3	+	+	+	+	+	α-Haemolysis
	10.4	+	=	+	+	+	α-Haemolysis
Al-Wadi	15.1	+	+	+	+	+	γ-Haemolysis
	15.4	+	-	+	+	+	β-Haemolysis
Sharaf	26.2	+	_	+	+	+	α-Haemolysis
	26.3	+	_	+	+	+	α-Haemolysis
	26.4	+	+	+	+	+	α-Haemolysis
Al Shefa	13.1	+	_	+	+	+	β-Haemolysis
	13.3	+	+	+	+	+	β-Haemolysis
Al-Masif	6.1	+	_	+	+	+	γ-Haemolysis
	6.2	+	_	+	+	+	α-Haemolysis
	6.4	+	+	+	+	+	α-Haemolysis
Al-Fajr	3.2	+	+	+	+	+	α-Haemolysis
	3.3	+	_	+	+	+	α-Haemolysis
	3.4	+	_	+	+	+	α-Haemolysis
	3.5	+	+	+	+	+	α-Haemolysis
Al-Nysia	4.1	+	_	+	+	+	α-Haemolysis
	4.2	+	_	+	+	+	α-Haemolysis
Al-Mahatta	14.1	+	_	+	+	+	α-Haemolysis
Al-Nugra	25.4	+	+	+	+	+	α-Haemolysis
	25.5	+	_	+	+	+	α-Haemolysis
Shark Al-Mujamaa	24.2	+	_	+	+	+	α-Haemolysis
	24.3	+	_	+	+	+	α-Haemolysis
	24.5	+	_	+	+	+	α-Haemolysis
Al-Khuraymi	28.1	+	_	+	+	+	α-Haemolysis
	28.4	+	_	+	+	+	α-Haemolysis
Al-jamiyin	16.2	+	_	+	+	+	β-Haemolysis
•	16.5	+	+	+	+	+	α-Haemolysis
	16.6	+	_	+	+	+	α-Haemolysis
	16.11	+	_	+	+	+	α-Haemolysis
Al-Rasf	12.2	+	_	+	+	+	β-Haemolysis
	12.4	+	+	+	+	+	α-Haemolysis

Figure 3 shows the 96-well polystyrene plate analysis for biofilm estimation.

Discussion

Air is a vital medium for the transfer of pathogenic bacteria, which can have significant detrimental effects on public health. Considering the profound effect of pathogenic microorganisms in outdoor environments, numerous studies have employed metagenomic, proteomic, and metabolomic techniques to identify and quantify microbial constituents in the environment (Dybwad et al. 2012; Singh et al. 2020). However, data accurately describing the concentration of microbiological material in the environment remain limited. In Saudi Arabia, the microbial composition of air exhibits seasonal variations influenced by factors such as wind speed, humidity, and temperature (Al Salameen et al. 2020; Sajjad et al. 2024). This study identified culturable bacteria in the air of 14 natural parks

in the Hail region of the Kingdom of Saudi Arabia and assessed their antibiotic susceptibility and biofilm formation capabilities. Twenty-eight different airborne bacterial species were isolated, predominantly belonging to the genera *Kocuria*, *Bacillus*, and *Exiguobacterium*. The complete list of identified bacterial species is provided in Table 3.

Previous studies have explored the isolation and microbial diversity of airborne pathogens across various locations, including shopping malls, urban and nonurban sites, underground subway stations, hospitals, and office buildings (Kim et al. 2011; Dybwad et al. 2014; Zhai et al. 2018; Ziaee et al. 2018; Gohli et al. 2019). In urban areas of Hangzhou (southeastern China), the dominant bacterial genera identified were *Micrococcus*, *Staphylococcus*, *Kocuria*, and *Pseudomonas* (Fang et al. 2016). Similarly, Goudarzi et al. reported *Streptomyces*, *Bacillus*, *Kocuria*, *Corynebacterium*, and *Paenibacillus* as the dominant

Hussain et al. AMB Express (2025) 15:74 Page 6 of 12

Table 3 16SrRNA identification and accession number of the tested isolates

Site of	Code	Bacteria name	Accession
isolation			number
Al Muntazah Al	17.1	Pseudomonas stutzeri	OR121006
Gharbi	17.2	Pseudomonas songnenensis	OR398896
Al Muntazah Al	10.3	Planococcus ruber	OR121007
Shargi	10.4	Bacillus firmus	OR398897
Al-Wadi	15.1	Bacillus cereus	OR176533
	15.4	Kocuria polaris	OR398898
Sharaf	26.2	Mesobacillus jeotgali	OR398899
	26.3	Exiguobacterium aestuarii	OR121008
	26.4	Planococcus massiliensis	OR121009
Al Shefa	13.1	Exiguobacterium aurantiacum	OR398900
	13.3	Arthrobacter saudimassiliensis	OR121010
Al-Masif	6.1	Bacillus licheniformis	OR121011
	6.2	Kocuria rosea	OR176534
	6.4	Bacillus cereus	OR121013
Al-Fajr	3.2	Sporosarcina aquimarina	OR121012
	3.3	Planomicrobium okeanokoites	OR121014
	3.4	Arthrobacter crystallopoietes	OR121015
	3.5	Bacillus gottheilii	OR121016
Al-Nysia	4.1	Kocuria carniphila	OR121017
	4.2	Arthrobacter crystallopoietes	OR398901
Al-Mahatta	14.1	Kocuria himachalensis	OR121018
Al-Nugra	25.4	Metaplanococcus flavidus	OR121019
	25.5	Kocuria rosea	OR121020
Shark	24.2	Kocuria carniphila	OR121021
Al-Mujamaa	24.3	Agrococcus lahaulensis	OR121022
	24.5	Kocuria flava	OR176532
Al-Khuraymi	28.1	Staphylococcus equorum	OR121023
	28.4	Kocuria turfanensis	OR121024
Al-Jamiyin	16.2	Exiguobacterium mexicanum	OR121025
	16.5	Planococcus koreensis	OR121026
	16.6	Kocuria flava	OR121027
	16.11	Peribacillus simplex	OR121028
Al-Rasf	12.2	Exiguobacterium aurantiacum	OR121029
	12.4	Brachybacterium	OR121030
		paraconglomeratum	

genera isolated using culture-based techniques from Ahvaz (Iran). In the United States, *Streptophyta, Bacillus, Corynebacterium, Pseudomonas*, and *Acinetobacter* were identified as the main genera in retail stores using pyrosequencing techniques (Hoisington et al. 2016). In addition, *Bacillus, Micrococcus*, and *Staphylococcus* were reported as dominant genera in underground subway stations through culture-based methods and partial 16S sequencing (Hoisington et al. 2016). The composition of airborne microorganisms depends on factors such as vertical stratification and vegetation complexity in the studied environment (Mhuireach et al. 2016; Robinson et al. 2021; Lu et al. 2024). For example, bacterial composition and diversity in the air are strongly correlated with those found in the soil and phyllosphere (Lu et al. 2024).

Furthermore, the same authors observed higher bacterial diversity in the phyllosphere of trees compared to grasses, broadleaf plants, and conifers (Lu et al. 2024).

We identified six species of *Kocuria: Kocuria carniphila, Kocuria flava, Kocuria himachalensis, Kocuria polaris, Kocuria rosea,* and *Kocuria turfanensis.* Madsen et al. (2023) identified *Kocuria carniphila, K. palustris,* and *K. rhizophila* in indoor air samples from homes (Madsen et al. 2023). These Gram-positive, nonencapsulated, non-spore-forming, and catalase-positive bacteria are classified as risk class 2 pathogens and have been implicated in various human complications, including bacteraemia, infective endocarditis, endophthalmitis, peritonitis, skin and soft tissue infections (Ziogou et al. 2024). Notably, *K. marina* and *K. rosea* have been specifically linked to cases of peritonitis (Dotis et al. 2015; Ziogou et al. 2024).

Three species of Exiguobacterium were identified: Exiguobacterium aestuarii, Exiguobacterium aurantiacum, and Exiguobacterium mexicanum. Members of the Exiguobacterium genus are predominantly isolated from diverse cold and hot biotopes (Vishnivetskaya et al. 2009) and are associated with poorly understood human infections, including skin infections, wounds, and cerebrospinal fluid infections (Tena et al. 2014). We also identified four Bacillus strains: Bacillus cereus, Bacillus firmus, Bacillus gottheilii, and Bacillus licheniformis. Among these, B. cereus is well-documented as an environmental organism that causes various gastric ailments. Moreover, three Planococcus species were identified: Planococcus koreensis, Planococcus massiliensis, and Planococcus ruber. The Planococcus genus, part of the Planococcaceae family, comprises 14 genera, namely Planococcus, Bhargavaea, Chryseomicrobium, Filibacter, Indiicoccus, Jeotgalibacillus, Kurthi, Marinibacillus, Paenisporosarcina, Planomicrobium, Psychrobacillus, Savagea, Sporosarcina, and Ureibacillus (Adeolu et al. 2016). Members of the *Planococcus* genus are valued for their production of biosurfactants and carotenoids (Waghmode et al. 2020; Moyo et al. 2022). Furthermore, we identified additional microorganisms from the Planococcaceae family, including Mesobacillus jeotgali, Peribacillus simplex, Planomicrobium okeanokoites, and Sporosarcina aquimarina (Gupta and Patel 2019).

In this study, *Brachybacterium paraconglomeratum*, a member of the *Brachybacterium* genus, was isolated from Al-Rasf natural park. This bacterium, which belongs to the phylum Actinobacteria, was first described by Takeuchi and co workers in 1995 (Takeuchi et al. 1995). The colonies exhibited circular, entire, low convex, smooth, opaque, and yellowish-brown pigmentation (Mandragutti and Sudhakar 2023). In addition, we identified two bacteria belonging to the *Arthrobacter genus*: *Arthrobacter crystallopoietes* and *Arthrobacter saudimassiliensis*.

Hussain et al. AMB Express (2025) 15:74 Page 7 of 12

Table 4 Antibiotic susceptibility patterns, MARI, and ARI calculation for all identified microorganisms

Site of isolation	Code	AK	GEN	AMP	TET	DOX	KMN	NX	FOS	(ARI)
Al Muntazah Al Gharbi	17.1	S	S	R	S	S	S	S	I	1/8=0.125
	17.2	S	S	S	S	S	S	S	S	0/8 = 0
Al Muntazah Al Shargi	10.3	S	S	S	1	S	S	S	R	1/8 = 0.125
	10.4	S	S	S	1	S	S	1	S	0/8 = 0
Al-Wadi	15.1	S	S	R	R	S	S	S		1/8 = 0.125
	15.4	S	R	S		S	S	S		1/8 = 0.125
Sharaf	26.2	S	S	S	1	S	S	1	R	1/8 = 0.125
	26.3	S	S	S	1	S	S	S	R	1/8 = 0.125
	26.4	S	S	S	I	S	S	S	S	0/8 = 0
Al Shefa	13.1	S	S	S	1	S	S	S	S	0/8 = 0
	13.3	S	S	S	S	S	S	S	R	1/8 = 0.125
Al-Masif	6.1	S	S	R	1	S	S	S		1/8 = 0.125
	6.2	1	1	S	1	S	S	1	R	1/8 = 0.125
	6.4	S	S	S	R	S	S	S		1/8 = 0.125
Al-Fajr	3.2	S	R	S	S	S	S	S	S	1/8 = 0.125
	3.3	S	S	S	S	S	S	S	R	1/8 = 0.125
	3.4	S	S	S	1	S	S	S	S	0/8 = 0
	3.5	S	S	S	S	S	S	S	R	1/8 = 0.125
Al-Nysia	4.1	S	S	S	S	S	S	S	S	0/8 = 0
	4.2	S	1	S	S	S	S	S	R	1/8 = 0.125
Al-Mahatta	14.1	R	R	S	R	S	S	R	R	5/8=0.625
Al-Nugra	25.4	S	S	S	S	S	S	S	S	0/8 = 0
	25.5	S	S	R	S	S	S	S	S	1/8 = 0.125
Shark Al-Mujamaa	24.2	S	S	S	1	S	S	1	R	1/8 = 0.125
	24.3	S	S	S	1	S	S	S	S	0/8 = 0
	24.5	S	1	S	S	S	S	S		0/8 = 0
Al-Khuraymi	28.1	S	S	S	S	S	S	S	S	0/8 = 0
	28.4	S	R	S	R	S	S	R	R	4/8 = 0.5
Al-jamiyin	16.2	S	S	S	S	S	S	S		0/8 = 0
	16.5	S	S	S	S	S	S	S	S	0/8 = 0
	16.6	S	S	S	S	S	S	1	R	1/8 = 0.125
	16.11	S	S	R	S	S	S	S	S	1/8 = 0.125
Al-Rasf	12.2	S	S	R	R	S	S	S	R	3/8 = 0.375
	12.4	S	S	R	R	S	S	S	R	3/8 = 0.375
MARI		0.029	0.1176	0.176	0.176	0	0	0.058	0.411	

Notably, the *A. saudimassiliensis* strain was initially identified in air samples from the Makkah region (Saudi Arabia) during the Hajj season of 2012 (Papadioti et al. 2017). Furthermore, the strains *Bacillus licheniformis*, *Bacillus cereus*, *Staphylococcus equorum*, *Exiguobacterium aurantiacum*, and *Pseudomonas stutzeri* identified in this study were also previously reported as airborne microorganisms in the Makkah region (Angelakis et al. 2014). The same authors emphasised that *Bacillus* (94 strains, 45%) and *Staphylococcus* (55 strains, 26%) were the predominant genera identified from the Makkah region using the MALDI-TOF technique.

Our results demonstrated that nearly all tested bacteria exhibited high resistance to the antibiotics evaluated, particularly fosfomycin, ampicillin, tetracycline, and gentamicin. The rapid emergence of antibiotic-resistant pathogenic microbes is a significant global public health

concern. One critical survival strategy for bacteria, both in the environment and within hosts, is biofilm formation, which is implicated in numerous health conditions. The potential of airborne bacteria, particularly antibioticresistant bacteria, to produce biofilms is a serious risk to human health. Biofilms enable bacteria to survive under unfavourable conditions and exchange resistance genes, and thus it is more probable that immunocompromised patients will be infected (Dufour et al. 2012; Jamal et al. 2018). Strong biofilm formation and multi-drug resistance have also been observed in the study conducted by Ababneh et al. (2022). The presence of strong biofilm formers, such as Kocuria carniphila and Planococcus massiliensis, in urban green spaces suggests that these environments may serve as reservoirs for persistent pathogens. Public health strategies should consider these findings to mitigate exposure risks, particularly in densely

Hussain et al. AMB Express (2025) 15:74 Page 8 of 12

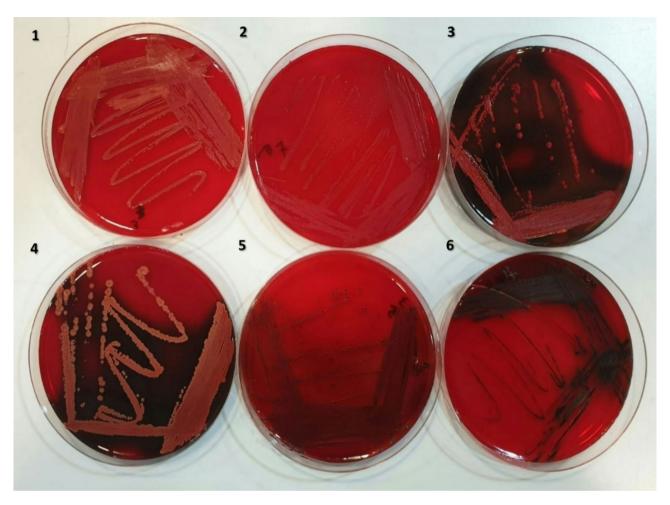


Fig. 2 Morphotypes obtained on Congo red agar plates based on the color of the growing colonies. Legend: 1: Pink colony; 2: Pink-red colony; 3: Red colony; 4: Orange colony; 5: Almost-black colony; and 6: Black colony

populated areas. The biofilm lifestyle enhances bacterial survival and persistence in nearly all cases (Dufour et al. 2012; Peterson and Kaur 2018). In this study, the ARI reached 0.625, whereas the multiple MARI ranged from 0 to 0.411. Slime production analysis identified six morphotypes based on colony colour observed on Congo red agar, with 38.23% of the tested strains classified as slime producers. Furthermore, biofilm formation assays on polystyrene surfaces revealed that 41.17% of the tested strains were non-biofilm formers.

This study identified diverse bacterial species, including *Brachybacterium paraconglomeratum*, *Arthrobacter crystallopoietes*, and *Arthrobacter saudimassiliensis*, isolated from natural parks in the Hail region. These isolates displayed varied morphological characteristics and exoenzyme production, highlighting their potential pathogenicity and implications for human health. The findings revealed high levels of antibiotic resistance among the tested bacteria, particularly to fosfomycin, ampicillin, tetracycline, and gentamicin. The determination of the ARI and MARI provided further insights into the resistance

profiles of these isolates. In addition, biofilm formation assays indicated that the bacteria exhibited varying capacities to form biofilms on polystyrene surfaces. This study offers valuable insights into the microbial composition of natural parks in the region, contributing to a better understanding of the potential health risks posed by these microorganisms. These findings are especially crucial for improving the diagnosis and management of diseases caused by these bacteria, particularly in the context of infectious disease. Such data and knowledge about environmental bacteria in a specific region could help to develop health policies to prevent population from health risks posed by such microbes. To advance these efforts, future studies should involve whole-genome sequencing of the key isolates, e.g., Arthrobacter crystallopoietes and Pseudomonas stutzeri, to determine their resistance mechanisms and ecological functions. A. crystallopoietes was selected for its exclusive dominance of local airborne microbiota, while P. stutzeri is of interest as a multidrugresistant opportunistic pathogen of clinical interest. Similarly, studies on robust biofilm producer species such

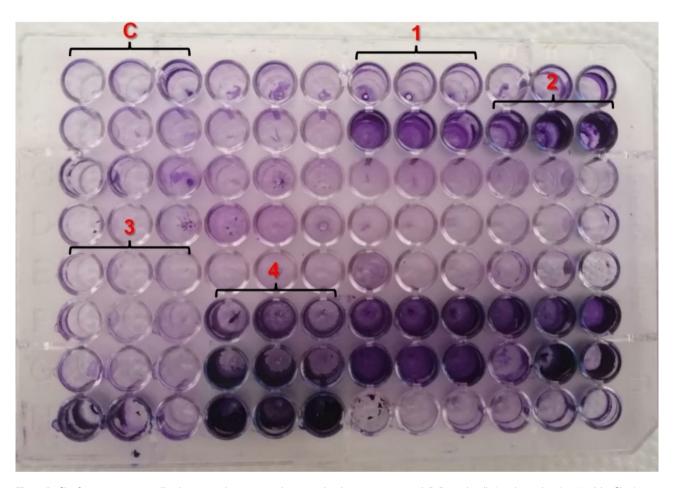

Hussain et al. AMB Express (2025) 15:74 Page 9 of 12

Table 5 Biofilm profiling of isolated strains from different sites

Site of isolation	Code	Slime production	Biofilm on polystyrene			
		Color on CRA	Interpretation	Interpretation		
Al Muntazah Al Gharbi	17.1	Pink	Slime negative	(–); Non biofilm forming		
	17.2	Red	Slime negative	(–); Non biofilm forming		
Al Muntazah Al Shargi	10.3	Orange	Slime negative	(++); Medium biofilm forming		
	10.4	Black	Slime positive	(+++); Strong biofilm forming		
Al-Wadi	15.1	Orange	Slime negative	(+); Weak biofilm forming		
	15.4	Black	Slime positive	(+++); Strong biofilm forming		
Sharaf	26.2	Red	Slime negative	(–); Non biofilm forming		
	26.3	Black	Slime positive	(–); Non biofilm forming		
	26.4	Almost black	Slime positive	(+); Weak biofilm forming		
Al Shefa	13.1	Black	Slime positive	(++); Medium biofilm forming		
	13.3	Red	Slime negative	(+); Weak biofilm forming		
Al-Masif	6.1	Red	Slime negative	(++); Medium biofilm forming		
	6.2	Almost black	Slime positive	(++); Medium biofilm forming		
	6.4	Red	Slime negative	(++); Medium biofilm forming		
Al-Fajr	3.2	Pink with red center	Slime negative	(–); Non biofilm forming		
	3.3	Orange	Slime negative	(–); Non biofilm forming		
	3.4	Red	Slime negative	(–); Non biofilm forming		
	3.5	Almost black	Slime positive	(–); Non biofilm forming		
Al-Nysia	4.1	Orange	Slime negative	(+++); Strong biofilm forming		
	4.2	Red	Slime negative	(+++); Strong biofilm forming		
Al-Mahatta	14.1	Black	Slime positive	(++); Medium biofilm forming		
Al-Nugra	25.4	Red	Slime negative	(–); Non biofilm forming		
	25.5	Black	Slime positive	(–); Non biofilm forming		
Shark Al-Mujamaa	24.2	Almost black	Slime positive	(+); Weak biofilm forming		
	24.3	Orange	Slime negative	(+); Weak biofilm forming		
	24.5	Red	Slime negative	(+++); Strong biofilm forming		
Al-Khuraymi	28.1	Almost black	Slime positive	(–); Non biofilm forming		
	28.4	Red	Slime negative	(+++); Strong biofilm forming		
Al-jamiyin	16.2	Almost black	Slime positive	(++); Medium biofilm forming		
	16.5	Orange	Slime negative	(+); Weak biofilm forming		
	16.6	Red	Slime negative	(++); Medium biofilm forming		
	16.11	Orange	Slime negative	(–); Non biofilm forming		
Al-Rasf	12.2	Red	Slime negative	(–); Non biofilm forming		
	12.4	Almost black	Slime positive	(–); Non biofilm forming		

as *Kocuria carniphila* and *Planococcus massiliensis* can reveal their survival strategies in urban ecosystems, thus informing targeted interventions towards minimizing public health risk.

Hussain et al. AMB Express (2025) 15:74 Page 10 of 12

Fig. 3 Biofilm formation on 96-well polystyrene plates assessed via crystal violet staining. Legend: C: Control wells (sterile medium); 1: Weak biofilm (strain 26.4, $OD_{595} = 0.3$); 2: Strong biofilm (strain 4.1, $OD_{595} = 1.8$); 3: Non-biofilm forming (strain 17.1, $OD_{595} = 0.1$); 4: Moderate biofilm (strain 10.3, $OD_{595} = 0.7$). Arrows indicate representative wells for each category

Author contributions

Conceptualization: MAK, MS; Methodology: MAA, MS; Formal analysis and investigation: MAH, MZ, YSK, KBS, SA and MS; Writing—original draft preparation: MS; Writing—review & editing MAH, MZ, YSK, KBS, SA and MS; Funding acquisition: MAH; Resources: MAK; Supervision: MAK.

Funding

This research has been funded by Scientific Research Deanship at University of Hail, Saudi Arabia through project number << RCP-24 073>>

Data availability

All data generated or analysed during this study are included in this article.

Declarations

Competing interests

All the authors declared there is no any potential competing interests.

Ethical approval

This article complies with ethical standards and does not contain any studies with human participants or animal performed by any of the authors.

Received: 14 January 2025 / Accepted: 4 March 2025 Published online: 09 May 2025

References

Ababneh Q, Abu Laila S, Jaradat Z (2022) Prevalence, genetic diversity, antibiotic resistance and biofilm formation of *Acinetobacter baumannii* isolated from urban environments. J Appl Microbiol 133(6):3617–3633. https://doi.org/10. 1111/jam.15795

Abdulhakeem MA, Alreshidi M, Bardakci F, Hamadou WS, De Feo V, Noumi E, Snoussi M (2023) Molecular identification of bacteria isolated from marketed *Sparus aurata* and *Penaeus indicus* sea products: antibiotic resistance profiling and evaluation of biofilm formation. Life (Basel) 13(2):548. https://doi.org/10.3390/life13020548

Adeolu M, Alnajar S, Naushad S, Gupta RS (2016) Genome-based phylogeny and taxonomy of the *Enterobacteriales*': proposal for *Enterobacterales* ord. nov. divided into the families *Enterobacteriaceae*, *Erwiniaceae* fam. nov., *Pectobacteriaceae* fam. nov., *Yersiniaceae* fam. nov., *Hafniaceae* fam. nov., *Morganellaceae* fam. nov., and *Budviciaceae* fam. nov. Int J Syst Evol Microbiol 66(12):5575–5599. https://doi.org/10.1099/ijsem.0.001485

Al Salameen F, Habibi N, Uddin S, Al Mataqi K, Kumar V, Al Doaij B, Al Amad S, Al Ali E, Shirshikhar F (2020) Spatio-temporal variations in bacterial and fungal community associated with dust aerosol in Kuwait. PLoS ONE 15(11):e0241283. https://doi.org/10.1371/journal.pone.0241283

Angelakis E, Yasir M, Azhar El, Papadioti A, Bibi F, Aburizaiza AS, Metidji S, Memish ZA, Ashshi AM, Hassan AM, Harakeh S, Gautret P, Raoult D (2014) MALDI-TOF mass spectrometry and identification of new bacteria species in air samples from Makkah. Saudi Arabia BMC Res Notes 7:892. https://doi.org/10.1186/1756-0500-7-892

Chen X, Kumari D, Achal V (2020) A review on airborne microbes: the characteristics of sources, pathogenicity and geography. Atmosphere 11(9):919. https://doi.org/10.3390/atmos11090919

Hussain et al. AMB Express (2025) 15:74 Page 11 of 12

- Chen Y, Fu X, Ou Z, Li J, Lin S, Wu Y et al (2023) Environmental determinants and demographic influences on global urban microbiomes, antimicrobial resistance and pathogenicity. Npj Biofilms Microbiomes 9(1):94. https://doi.org/10.1038/s41522-023-00459-4
- Chen G, Fanouraki G, Anandhi Rangarajan A, Winkelman BT, Winkelman JT, Waters CM, Mukherjee S (2024) Combinatorial control of Pseudomonas aeruginosa biofilm development by quorum-sensing and nutrient-sensing regulators. mSystems 9(9):e00372-e424. https://doi.org/10.1128/msystems.00372-24
- Cox G, Wright GD (2013) Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol 303(6–7):287–292. https://doi.org/10.1016/j.ijmm.2013.02.009
- do Nascimento JPM, Brandão D, Ferreira FL, de Araújo MA, Anhezini L, da Silva LAF, da Silva Filho EA (2021) Antibiotic resistance and biofilm synthesis genes in airborne *Staphylococcus* in commercial aircraft cabins. Aerobiologia 37(4):733–753. https://doi.org/10.1007/s10453-021-09714-7
- Dotis J, Printza N, Stabouli S, Papachristou F (2015) *Kocuria* species peritonitis: although rare, we have to care. Perit Dial Int 35(1):26–30. https://doi.org/10.3747/pdi.2013.00138
- Dufour D, Leung V, Lévesque CM (2012) Bacterial biofilm: structure, function, and antimicrobial resistance. Endod Top 22(1):2–16. https://doi.org/10.1111/j.160 1-1546.2012.00277.x
- Dybwad M, Granum PE, Bruheim P, Blatny JM (2012) Characterization of airborne bacteria at an underground subway station. Appl Environ Microbiol 78(6):1917–1929. https://doi.org/10.1128/AEM.07212-11
- Dybwad M, Skogan G, Blatny JM (2014) Temporal variability of the bioaerosol background at a subway station: concentration level, size distribution, and diversity of airborne bacteria. Appl Environ Microbiol 80(1):257–270. https://doi.org/10.1128/AEM.02849-13
- Fang Z, Yao W, Lou X, Hao C, Gong C, Ouyang Z (2016) Profile and characteristics of culturable airborne bacteria in Hangzhou, Southeast of China. Aerosol Air Qual Res 16(7):1690–1700. https://doi.org/10.4209/aagr.2014.11.0274
- Gohli J, Boifot KO, Moen LV, Pastuszek P, Skogan G, Udekwu KI, Dybwad M (2019)
 The subway microbiome: seasonal dynamics and direct comparison of air
 and surface bacterial communities. Microbiome 7(1):160. https://doi.org/10.1
 186/s40168-019-0772-9
- Gupta RS, Patel S (2019) Robust demarcation of the family caryophanaceae (*Planococcaceae*) and its different genera including three novel genera based on phylogenomics and highly specific molecular signatures. Front Microbiol 10:2821. https://doi.org/10.3389/fmicb.2019.02821
- Hall-Stoodley L, Stoodley P (2005) Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol 13(1):7–10. https://doi.org/10.1016/j.tim.2004.11.004
- Hoisington A, Maestre JP, Kinney KA, Siegel JA (2016) Characterizing the bacterial communities in retail stores in the United States. Indoor Air 26(6):857–868. ht tps://doi.org/10.1111/ina.12273
- Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA (2018) Bacterial biofilm and associated infections. J Chin Med Assoc 81(1):7–11. https://doi.org/10.1016/j.jcma.2017.07.012
- Kim YS, Yoon KY, Park JH, Hwang J (2011) Application of air ions for bacterial de-colonization in air filters contaminated by aerosolized bacteria. Sci Total Environ 409(4):748–755. https://doi.org/10.1016/j.scitotenv.2010.11.012
- Kumar P, Kausar MA, Singh AB, Singh R (2021) Biological contaminants in the indoor air environment and their impacts on human health. Air Qual Atmos Health 14(11):1723–1736. https://doi.org/10.1007/s11869-021-00978-z
- Li W, Zhang G (2022) Detection and various environmental factors of antibiotic resistance gene horizontal transfer. Environ Res 212(Pt B):113267. https://doi.org/10.1016/j.envres.2022.113267
- Lin Z, Yuan T, Zhou L, Cheng S, Qu X, Lu P, Feng Q (2021) Impact factors of the accumulation, migration and spread of antibiotic resistance in the environment. Environ Geochem Health 43(5):1741–1758. https://doi.org/10.1007/s1 0653-020-00759-0
- Lu C, Xiao Z, Li H, Han R, Sun A, Xiang Q, Zhu Z, Li G, Yang X, Zhu Y-G, Chen Q-L (2024) Aboveground plants determine the exchange of pathogens within air-phyllosphere-soil continuum in urban greenspaces. J Hazard Mater 465:133149. https://doi.org/10.1016/j.jhazmat.2023.133149
- Madsen AM, Moslehi-Jenabian S, Frankel M, White JK, Frederiksen MW (2023)
 Airborne bacterial species in indoor air and association with physical factors.
 UCL Open Environ 5:e056. https://doi.org/10.14324/111.444/ucloe.000056
- Mandragutti T, Sudhakar G (2023) Selective isolation and genomic characterization of biopolymer producer—a novel feature of halophile *Brachybacterium paraconglomeratum* MTCC 13074. J Genet Eng Biotechnol. https://doi.org/10.1186/s43141-023-00484-y

- Mhuireach G, Johnson BR, Altrichter AE, Ladau J, Meadow JF, Pollard KS, Green JL (2016) Urban greenness influences airborne bacterial community composition. Sci Total Environ 571:680–687. https://doi.org/10.1016/j.scitotenv.2016 .07.037
- Moyo AC, Dufosse L, Giuffrida D, van Zyl LJ, Trindade M (2022) Structure and biosynthesis of carotenoids produced by a novel *Planococcus* sp. isolated from South Africa. Microb Cell Fact 21(1):43. https://doi.org/10.1186/s1293 4-022-01752-1
- Papadioti A, Azhar El, Bibi F, Jiman-Fatani A, Aboushoushah SM, Yasir M, Raoult D, Angelakis E (2017) 'Arthrobacter saudimassiliensis' sp. nov. a new bacterial species isolated from air samples in the urban environment of Makkah, Saudi Arabia. New Microbes New Infect 16:41–42. https://doi.org/10.1016/j.nmni. 2016.12.019
- Parajuli A, Gronroos M, Siter N, Puhakka R, Vari HK, Roslund MI, Jumpponen A, Nurminen N, Laitinen OH, Hyoty H, Rajaniemi J, Sinkkonen A (2018) Urbanization reduces transfer of diverse environmental microbiota indoors. Front Microbiol 9:84. https://doi.org/10.3389/fmicb.2018.00084
- Peterson E, Kaur P (2018) Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front Microbiol 9:2928. https://doi.org/10 .3389/fmicb.2018.02928
- Rangaswamy B, Francis F, Prakash K, Manjunath N (2013) Variability in airborne bacterial and fungal population in the tertiary health care centre. Aerobiologia 29:473–479. https://doi.org/10.1007/s10453-013-9297-z
- Redhwan A, Sonbol H, Al Tami M, Alotaibi S, Alzahrani S, ALanazi M, Alwakeel S, Ameen F (2021) Molecular identification of airborne bacteria from metro stations in Riyadh. Fresenius Environ Bull 30(1):431–440
- Robinson JM, Cando-Dumancela C, Antwis RE, Cameron R, Liddicoat C, Poudel R, Weinstein P, Breed MF (2021) Exposure to airborne bacteria depends upon vertical stratification and vegetation complexity. Sci Rep 11(1):9516. https://doi.org/10.1038/s41598-021-89065-y
- Ruiz-Gil T, Acuna JJ, Fujiyoshi S, Tanaka D, Noda J, Maruyama F, Jorquera MA (2020) Airborne bacterial communities of outdoor environments and their associated influencing factors. Environ Int 145:106156. https://doi.org/10.1016/j.envint.2020.106156
- Sajjad B, Siddique A, Rasool K, Jabbar KA, El-Malah SS, Almomani F, Alfarra MR (2024) Seasonal and spatial variations in concentration, diversity, and antibiotic resistance of ambient bioaerosols in an arid region. Environ Res 262(Pt 2):119879. https://doi.org/10.1016/j.envres.2024.119879
- Schmidt TM (ed) (2019) Encyclopedia of microbiology. Academic Press, Cambridge Singh D, Geat N, Mehriya M, Rajawat MVS, Prasanna R, Kumar A, Kumari G, Jha MN (2020) Omics (Genomics, Proteomics, Metabolomics, Etc.) tools to study the environmental microbiome and bioremediation. In: Waste to energy: prospects and applications, pp 235–260. https://doi.org/10.1007/978-981-3 3-4347-4_10
- Snoussi M, Chaieb K, Mahmoud R, Bakhrouf A (2006) Quantitative study, identification and antibiotics sensitivity of some Vibrionaceae associated to a marine fish hatchery. Ann Microbiol 56(4):289–293. https://doi.org/10.1007/bf0317 5020
- Takeuchi M, Fang CX, Yokota A (1995) Taxonomic Study of the genus *Brachybacterium*: proposal of *Brachybacterium conglomeratum* sp. Nov., nom rev, *Brachybacterium paraconglomeratum* sp. Nov., and *Brachybacterium rhamnosum* sp. nov. Int J Syst Bacteriol 45(1):160–168. https://doi.org/10.1099/00207713-45-1-160
- Tena D, Martinez NM, Losa C, Solis S (2014) Skin and soft tissue infection caused by *Achromobacter xylosoxidans*: report of 14 cases. Scand J Infect Dis 46(2):130–135. https://doi.org/10.3109/00365548.2013.857043
- Toledo-Arana A, Valle J, Solano C, Arrizubieta MJ, Cucarella C, Lamata M, Amorena B, Leiva J, Penades JR, Lasa I (2001) The enterococcal surface protein, Esp, is involved in *Enterococcus faecalis* biofilm formation. Appl Environ Microbiol 67(10):4538–4545. https://doi.org/10.1128/AEM.67.10.4538-4545.2001
- Vishnivetskaya TA, Kathariou S, Tiedje JM (2009) The *Exiguobacterium* genus: biodiversity and biogeography. Extremophiles 13(3):541–555. https://doi.org/10.1007/s00792-009-0243-5
- Waghmode S, Suryavanshi M, Sharma D, Satpute SK (2020) *Planococcus* species—an imminent resource to explore biosurfactant and bioactive metabolites for industrial applications. Front Bioeng Biotechnol 8:996. https://doi.org/10.3389/fbioe.2020.00996
- Zhai Y, Li X, Wang T, Wang B, Li C, Zeng G (2018) A review on airborne microorganisms in particulate matters: composition, characteristics and influence factors. Environ Int 113:74–90. https://doi.org/10.1016/j.envint.2018.01.007

Hussain *et al. AMB Express* (2025) 15:74 Page 12 of 12

- Zhai Y, Li X, Wang T, Wang B, Li C, Zeng G (2022) Global airborne bacterial community—interactions with Earth's microbiomes and anthropogenic activities. Proc Natl Acad Sci 119(42):e2204465119. https://doi.org/10.1073/pnas.2204465119
- Ziaee A, Zia M, Goli M (2018) Identification of saprophytic and allergenic fungi in indoor and outdoor environments. Environ Monit Assess 190(10):574. https://doi.org/10.1007/s10661-018-6952-4
- Ziogou A, Giannakodimos A, Giannakodimos I, Tsantes AG, Ioannou P (2024) *Pandoraea* infections in humans-a systematic review. J Clin Med 13(22):6905. https://doi.org/10.3390/jcm13226905

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.