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Abstract

A 65-day growth trial was conducted to investigate the dietary protein requirements for Cul-

ter mongolicus fingerlings. Isolipidic and isoenergetic diets were formulated with five dietary

protein levels (32%, 37%, 42%, 47%, and 52%). Each diet was assigned to triplicate groups

of 70 C. mongolicus fingerlings (0.99±0.08 g). The results indicated that weight gain and

specific growth rate (SGR) increased with increasing dietary protein levels up to 47%. The

activities of intestinal trypsin and lipase were the lowest in the 32% protein and 52% protein

groups, while amylase activity reduced markedly in the 47% protein group. These results

suggest that different dietary protein levels may cause different transformations of nutrients.

The activities of superoxide dismutase (SOD) and lysozyme were not affected by varying

dietary protein levels, except for those in the 32% protein group. In contrast, the content of

malondialdehyde (MDA) increased with increasing dietary protein levels and reaching a

maximum in the 52% protein group, suggesting that MDA accumulation depends on the pro-

tein concentration and the potential oxidative stress. Taken together, based on the broken-

line analysis of SGR, we recommended the optimum dietary protein for C. mongolicus fin-

gerlings to be 48.97%~49.31%.

Introduction

Deficiencies or excesses of the main dietary components have profound effects on the growth

and survival of fish [1]. Protein accounts for 65%~75% of fish dry-weight, and protein deposi-

tion in fish appears to be the main determinant of weight gain [2]. It plays a key role in many

biological functions, including structural, enzymatic, transport, immune, and cell signaling

[3]. Protein is broken down into smaller molecules in the gastrointestinal tract, which secrete

fluids, electrolytes, and digestive enzymes that allow the absorption and utilization of free

amino acids [4]. Dietary protein deficiency results in retarded growth and poor health [5–8].

On the other hand, excessive dietary protein can promote ammonia excretion and increase uti-

lization of energy for amino acid catabolism, leading to water pollution and retarded growth
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[9, 10]. Therefore, the optimum dietary protein level is a key factor for fish to reach optimum

growth at a low energy cost.

The dietary protein requirements depend on fish species, and the optimum protein levels

differ at different growth stages and/or body sizes [2, 11, 12]. Many studies have focused on

the juvenile and broodstock stages, which are better adapted to pellets than that at the younger

stages [6, 13–21]. In fact, during larval rearing, a powder-formulated diet could be added as a

nutritional supplement as live prey, such as cladocera and copepods, because of the decreasing

of live prey amount in pond. As larvae grow, the ingredients and particle sizes of the formu-

lated diet can be adjusted according to the nutritional requirements and size of the fish oral

gape, which is a common way to achieve weaning on artificial diets. For most fish species, their

developments are far from perfect during the earlier period of domestication, and therefore

the protein level of the formulated diet during this period is important for fish somatic growth

and development [22, 23].

Digestive enzymes are important for nutrient digestion. Higher enzyme activity in the

digestive tract enhances the digestive capability and growth performance of the host. It is

widely accepted that the level of fish digestive enzyme activity is a useful comparative indicator

of food utilization, digestive capacity, and growth performance of the host [24, 25]. Many fac-

tors such as the stage of life, diet, feeding management, and the sampling time after feeding

affect the activity of digestive enzymes [26]. Changes in diet composition can modulate enzy-

matic activities and nutrient absorption capacity, leading to improve feed use and assure

growth performance [27].

Immunological status is an important health indicator of an organism. Lysozyme is an

important hydrolytic enzyme of the non-specific immune system, and it can disrupt b-(1, 4)

glycosidic bonds between the N-acetylmuramic acid and N-acetylglucosamine in the peptido-

glycan of bacterial cell walls [28]. As a humoral element in the innate immune system, lyso-

zyme levels can be elevated in response to the immunostimulants, vaccines, and probiotics

[29–32]. Superoxide dismutase (SOD) is an important enzyme in the cellular antioxidant enzy-

matic system, and it can remove the internal reactive oxygen species (ROS), that are generated

during the immune response and metabolic process, prevent the occurrence of fatty acid oxi-

dation, decrease the toxic effects of ROS, and consequently protect organisms from oxidative

damage [33–35]. Malondialdehyde (MDA) is an indicator of endogenous oxidative damage

and a final product of lipid peroxidation [36, 37].

Culter mongolicus is widely distributed in freshwater bodies including lakes, rivers, and res-

ervoirs of East Asia [38] and is one of important commercially carnivorous species in China

due to the increasing production [39]. However, its population has declined gradually in

recent decades, due to water pollution, habitat destruction, and overfishing [40, 41]. This spe-

cies has been stocked into natural waters such as the Yangtze River basin to conduct bio-

manipulation [42–47]. Stock enhancement programs have been launched by China’s Ministry

of Agriculture since the early 2000s to rehabilitate this valuable fishery resource [48]. Hatch-

ery-reared fingerlings were released annually to build the recruitment stock. In addition, larger

size fingerlings would improve the recapture rate [49]. Based on earlier research, artificial

propagation of C.mongolicus was successful [50]. However, the survival rate of fingerlings was

lower than 45% due to the shortage of suitable food for their small oral gape. Therefore, it is

crucial to develop diets with optimum protein levels to improve the survival rate and enhance

the health of C.mongolicus during fingerling stage.

To this end, the present study aimed to evaluate the effect of varying dietary protein levels

on the growth and the survival rate of C.mongolicus fingerlings in artificial cultivation. In

addition, we measured the activities of intestinal digestive enzymes and non-specific
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immunological indices in the plasma to evaluate the physiological effects of different dietary

protein levels.

Materials and methods

Ethic statement

C.Mongolicus is not an endangered or protected species. All experimental animal care proto-

cols were approved by the ethics committee of the Institute of Hydrobiology, Chinese Acad-

emy of Sciences. And all experimental methods were performed following the guidelines for

the care and use of experimental animals of China (GB/T35892 2018) [51].

Experimental diets

Five isolipidic (mean lipid percentage of 7.26%) and isoenergetic (mean 18.25 kJ/kg) experi-

mental diets containing 32%, 37%, 42%, 47%, and 52% crude protein levels (dry basis) were

formulated. The formulation and chemical composition of the diets are presented in Table 1.

White fishmeal was used as an animal protein source, soybean meal, rapeseed meal, and flour

were used as plant protein sources, and fish oil and soybean oil (1:1, w/w) as lipid sources.

Corn starch and cellulose were added to the diets to modulate the total energy. All ingredients

were passed through a 375μm sieve before mixture. Diets were prepared in a laboratory

extruder (SLP-45, Fishery Mechanical Facility Research Institute, Shanghai, China) to form

1.5-mm pellets. The pellets were oven-dried at 75˚C and stored at −4˚C until use.

Table 1. Formulation and chemical composition of the experimental diets (% in dry matter basis).

Ingredients Dietary protein levels (%)

32 37 42 47 52

White fishmeala 27.1 34.3 41.4 48.6 55.7

Soybean meal 13 13 13 13 13

Rapeseed meal 13 13 13 13 13

Flour 8 8 8 8 8

Fish oilb 1.98 1.62 1.27 0.94 0.6

Soybean oil 1.98 1.62 1.27 0.94 0.6

Corn starch 27.44 20.95 14 6.8 0

Cellulose 0 0.01 0.56 1.22 1.6

Vitamin premixc 0.39 0.39 0.39 0.39 0.39

Mineral premixd 5 5 5 5 5

Carboxymethyl cellulose 2 2 2 2 2

Choline chloride 0.11 0.11 0.11 0.11 0.11

Chemical composition (% in dry matter)

Crude protein 32.02 37.04 42.00 47.03 51.98

Crude lipid 7.27 7.25 7.24 7.27 7.28

Gross energy (kJ g-1)e 18.18 18.27 18.26 18.25 18.28

a Pollock fishmeal from American Seafood Company, Seattle, Washington, USA.
b Anchovy oil from Peru purchased from Coland Feed Co. Ltd., Wuhan, Hubei, China.
c Vitamin premix (mg kg−1 diet): thiamin, 20; riboflavin, 20; pyridoxine, 20; cyanocobalamine, 0.020; folic acid, 5; calcium pantothenate, 50; inositol, 100; niacin, 100;

biotin, 0.1; starch, 645.2; ascorbic acid, 100; vitamin A, 110; vitamin D, 20; vitamin E, 50; and vitamin K, 10.
d Mineral premix (mg kg−1 diet): NaCl, 500; MgSO4�7H2O, 8155.6; NaH2PO4�2H2O,12500.0; KH2PO4, 16,000.0; CaHPO4�H2O, 7650.6; FeSO4�7H2O, 2286.2;

C6H10CaO6�5H2O,1750.0; ZnSO4�7H2O, 178.0; MnSO4�H2O, 61.4; CuSO4�5H2O, 15.5; CoSO4�7H2O, 34.5; KI, 114.8; and corn starch, 753.7.
e Gross energy obtained through calorimetry.

https://doi.org/10.1371/journal.pone.0263507.t001
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Experimental fish and feeding trial

Culter mongolicus fingerlings were obtained from the Niushan Lake Fish Farm (Wuhan,

Hubei, China) and transported to the laboratory of the Institute of Hydrobiology, the Chinese

Academy of Sciences (Wuhan, Hubei, China). Prior to the experiment, all fish were acclimated

to the laboratory rearing system. Similar sized fish (mean initial total length 55.08±1.49 mm;

mean initial weight 0.99±0.08 g) were randomly distributed into 15 cylindrical tanks (diameter

60 cm, water depth 60 cm). Each diet was assigned to triplicate tanks at a density of 70 fish per

tank. Fish were hand-fed their prescribed diets to apparent satiation twice a day at 09:00 and

16:00.

At the beginning of the experiment, the granular feeds were milled and rolled into balls

with water to prevail upon fish to ingest formula feeds, and then pellets were added gradually.

All fish were fed with the pellets feeds initiatively after 15 days. The uneaten feeds and feces

were removed an hour after feeding. A third of the water was replaced at 19:00 daily. A photo-

period of 12 h light:12 h dark cycle was maintained (lighting-up time was 8:30~20:30). During

the experiment, the averaged water temperature was 25.0˚C, with a dissolved oxygen (DO)

level>5.0 mg/L, pH 7~7.5, ammonia-N < 0.5 mg/L, and residual chlorine < 0.05 mg/L. The

trial lasted for 65 days.

Sample collection

At the end of the feeding experiment, all fish were starved for 24 h before sampling. Total body

length, weight and mortality of fish in each tank were recorded to calculate the specific growth

rate of total length (SGRTL) and body weight (SGRBW), and the survival (SR). Blood samples

were collected from the caudal veins (sixty specimens per tank) using heparinized syringes.

After centrifugation (3500 rpm, 15 min, 4˚C) (centrifuge 5417R, Eppendorf, Hamburg, Ger-

many), plasma was separated and stored at −20˚C until analysis of lysozyme, superoxide dis-

mutase (SOD), and malondialdehyde (MDA) concentrations. After blood sampling, the

intestine was dissected on ice, and the intestinal samples were frozen immediately in liquid

nitrogen and stored at−80˚C until analysis of trypsin, lipase, and amylase activities.

Growth parameters

SR : Survival rate ð%Þ ¼ 100� f inal number of fish=initial number of fish ð1Þ

SGRBW : The specif ic growth rate of body weight ð% d� 1
Þ

¼ 100� Ln ðf inal body weight=initial body weightÞ=days ð2Þ

SGRTL : The specif ic growth rate of total length ð% d� 1
Þ

¼ 100 � Ln ðf inal total length = initial total lengthÞ=days ð3Þ

Chemical analysis of feeds

The chemical composition of the experimental diets was analyzed using the following standard

methods. The samples were dried to a constant weight at 105˚C for 24 h to determine the dry

matter content. Crude protein content was determined by the Kjeldahl method using a Kjeltec

system (Kjeltec-8400, FOSS). Crude lipids were measured by Soxhlet extraction using a Soxhlet

extractor (Soxtec-2055, FOSS). Crude ash content was determined by incineration in a muffle

furnace at 550˚C for 12 h. Gross energy was determined using an automatic oxygen bomb cal-

orimeter (Parr Isoperibol Calorimeter 6200, Moline, Illinois, USA).
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Analysis of immunological parameters

Plasma malondialdehyde (MDA) levels and superoxide dismutase (SOD) activities were mea-

sured according to the instructions of the commercial assay kits (Nanjing Jiancheng Bioengi-

neering Institute, Nanjing, Jiangsu, China). Lysozyme activity was measured as described by

Parry and Ellis [52, 53], based on the lysis ofMicrococcus lysodeikticus (Sigma Chemical C)

with some modifications. Twenty microliters of plasma was mixed with 250 μlM. lysodeikticus
suspension (0.3 mg/mL in 0.05 M PBS, pH 6.2). The mixture reacted at 25˚C for 0.5 min and

4.5 min, and then the optical density (O.D.) was measured at 0.5 min and 4.5 min respectively

at 490 nm (Photometer 5010, BM Co. Germany). One unit of enzyme activity was defined as

the amount of enzyme causing a decrease in absorbance of 0.001 and the activity was expressed

as U/min/mL plasma.

Quantification of digestive enzymes

Intestinal trypsin, lipase, and amylase were extracted, and their activities were measured

according to the instructions of the commercial assay kits (Nanjing Jiancheng Bioengineering

Institute, Nanjing, Jiangsu, China). According to the kits instructions, frozen intestinal sam-

ples were homogenized in a specific solvent at a propotion of 1:9, followed by centrifugation

(2500 g, 10 min, 4˚C) to obtain supernatants for testing trypsin activities; frozen intestinal

samples homogenized in ice-cold 0.68% saltwater at a proportion of 1:4, followed by centrifu-

gation (2500 g, 10 min, 4˚C) to obtain supernatants for testing lipase activities; and frozen

intestinal samples homogenized in ice-cold 0.68% saltwater at a proportion of 1:9, followed by

centrifugation (2500 g, 10 min, 4˚C) to obtain supernatants for testing amylase activities.

Statistical analysis

All data were subjected to one-way analysis of variance (ANOVA) using SPSS 22.0 (SPSS, IL,

USA), after checking for the normality and homogeneity, followed by Duncan’s multiple com-

parison analysis to conduct pairwise comparisons. The optimum dietary protein requirement

based on the total length and weight-specific growth rate was estimated using broken-line

regression analysis (y = L − U × (R − x), y means specific growth rate, x means protein content)

[17, 54] in Excel 2016. The data were expressed as mean ± SE (standard error).

Results

Growth performance

There was no mortality in C.mongolicus fingerlings during the feeding trial. The body weight

and total length increased with the increasing dietary protein and then significantly decreased

at 57% dietary protein. Similarly, SGRTL and SGRBW increased significantly (p< 0.05) when

dietary protein levels increased from 32% to 47% and then a decreasing trend was observed in

the 52% protein group. Based on broken-line regression analysis of SGRTL and SGRBW against

dietary protein levels, the optimum dietary protein levels for maximal growth of the fish were

49.31% and 48.97% (Fig 1).

Digestive enzyme activities

The intestinal digestive enzyme activities in intestine of fish are shown in Fig 2. The activities

of intestinal trypsin in fish fed on 37%, 42%, and 47% protein diets were not significantly dif-

ferent (p> 0.05), but were significantly higher than those of fish fed on 32% and 52% protein

diets (p< 0.05). The intestinal lipase activities were significantly lower in the 32% and 52%

protein groups than in the other three groups (p< 0.05), while no significant difference was
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observed among those three groups. The intestinal amylase activity in the 47% protein group

was the lowest among the test groups (p< 0.05), and no significant difference was observed

among the other four groups.

Immunological parameters

The results of immunological parameters in plasma are shown in Fig 3. The lysozyme activity

of fish that were fed the 32% protein diet was significantly higher than that in the other groups

(p< 0.05), and there was no significant difference among the other groups. MDA content

increased with the increasing dietary protein levels (p< 0.05). SOD activity did not show any

significant difference among the experimental groups (p> 0.05).

Discussion

Growth performance

The results of this study showed that the 100% survival of C.mongolicus fingerlings, indicating

an adaptation to a wide range of dietary protein levels. These findings are similar to these of

previous studies on Brazilian sardine [8], Rhamdia quelen [13], Nibea diacanthus juveniles

[17], Dabry’s sturgeon juveniles [54], bluegill sunfish juveniles [55], and juvenile marbled spi-

nefoot rabbit fish [56]. These results suggest that dietary protein levels may not be a determi-

nant factor of the mortality.

The growth of C.mongolicus was profoundly affected by the different dietary protein levels.

The values of SGRTL and SGRBW revealed high dietary protein requirements for the growth of

C.mongolicus. However, excessive protein content may have no further benefits for individual

growth and may even induce growth retardation due to the higher energy cost of extra protein

metabolism [3, 57, 58]. Similar tendencies were found in several other fish species, such as the

Brazilian sardine [8], juvenile bluegill sunfish [55], and juvenile red spotted grouper [59]. The

optimum dietary protein requirement for C.mongolicus is about 49%. This value was higher

Fig 1. Relationship between varying dietary protein levels and specific growth rate of Culter mongolicus.

https://doi.org/10.1371/journal.pone.0263507.g001
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than the values reported for the fingerlings of similar sizes, such as those of Sardinella brasi-
liensis, 36.77% [8],Horabagrus brachysoma, 39.10% [60] and Lepomis macrochirus, 41.51%

~42.37% [55]. However, it is similar to the dietary protein requirements for some commonly

cultured carnivorous species, viz., Salmo salar (48%) and Oncorhynchus mykiss (48%) [3]. The

possible reason for this is may be that most herbivorous and omnivorous fish need 250~350 g/

kg of protein in their diets, while carnivorous species require a higher dietary protein contents

ranging from 400~550 g/kg [1]. Moreover, the dietary protein requirements generally decrease

with fish growth, a phenomenon reported in many fish species at different life stages [3].

Responses of digestive enzyme activities to dietary protein levels

Several studies have shown that dietary protein levels influence protease activity directly, but

the protease activity varies among species. Protease activity in the digestive tract of Labeo
rohita fingerlings was significantly lower than the optimum level when fed with either insuffi-

cient or excessive protein diets [61]. In contrast, the protease activity in Dentex dentex [62],

Cyprinus carpio [63], and Anarhichas minor [64] was higher for diets with less protein and/or

more carbohydrates. On the other hand, the protease activity was found to be unresponsive to

Fig 2. Specific activities of three digestive enzymes in the intestine of Culter mongolicus fed with varying dietary

protein levels. Data presented are mean ± SE, different letters on the top of bars mean significantly different

(p< 0.05).

https://doi.org/10.1371/journal.pone.0263507.g002
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varying dietary protein levels in Cherax quadricarinatus [65]. Trypsin activity was not affected

by different protein levels diets in Dicentrarchus labrax larvae [66]. In the present study, tryp-

sin activity increased with an increase in dietary protein levels. However, trypsin activity began

to decrease when the dietary protein levels exceeded 47%. This can be explained by the fact

that dietary protein insufficiency results in a reduction in the number amino acids that are

responsible for the synthesis and secretion of trypsin and lipase. Carnivorous fish have higher

protein requirements than omnivorous and herbivorous fish. Abundant dietary protein stimu-

lates the synthesis and secretion of trypsin. In contrast, excessive protein cannot be fully

digested and causes the accumulation of toxic nitrogen in the body, which restrains the activity

of trypsin [67, 68]. Various studies have reported that lipase activity was the same across differ-

ent dietary protein treatments because of the constant lipid content in the diet of some species,

such as Pseudoplatystoma corruscans [69], Labeo rohita fingerlings [61], and Sardinella brasi-
liensis [8]. In the present study, we found that lipase activity showed a similar trend of variabil-

ity to that of trypsin. This is in line with the result reported in Puntius gonionotus fingerlings

[70]. Excess protein in the diet can be used for lipid deposition, but not for protein deposition

[6, 55]. Excessive dietary protein may convert into massive lipids, thereby restraining the lipase

activity. Similarly, an increase in dietary protein can induce an increase in amylase activity in

fish [8, 67, 69]. Nevertheless, this is in contrast to the results of a study on Puntius gonionotus
fingerlings [57]. Moreover, previous studies onDentex dentex [62] and Labeo rohita fingerlings

[61] indicated that dietary protein did not influence amylase activity. The present results sug-

gest that amylase activity was significantly lower in the 47% protein group, while amylase activ-

ity in other treatments did not change. Amylase activity has been reported to decrease with a

decrease in dietary carbohydrate content [4, 71]. The content of corn starch in our feed for-

mula increases with decreasing protein to prepare isoenergetic diets. This may be the reason

for the reduction in amylase activity when the protein level increased to 47%. On the other

hand, according to a study on Colossoma macropomum [67], adaptation to the use of carbohy-

drate sources was also dependent on the lipid concentrations, an increase in dietary lipids

reduced the amylase activity. Given the trends in trypsin and lipase activities, we presume that

energy is derived from both carbohydrates and lipids. When there were abundant lipids

Fig 3. The three non-specific immune parameters in plasma of Culter mongolicus fed with varying dietary protein

levels. Data presented are mean ± SE, different letters on the top of same shape bars means significantly different (p< 0.05).

https://doi.org/10.1371/journal.pone.0263507.g003
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transformed from proteins, the energy source was ample. Therefore, the demand for carbohy-

drates decreased, and the activity of amylase receded.

Immunological effects of dietary protein levels

In a recent study, Li et al. (2018) found that serum lysozyme activity in juvenile sturgeon

increased with the increasing dietary protein levels but declined when fish were fed excessive

protein [54]. In a similar study on grass carp, the optimal dietary protein levels increased the

lysozyme activity, but decreased the MDA concentration [72]. In the present study, the maxi-

mum plasma lysozyme activity of C.mongolicus appeared in the group fed with 32% protein

content, and the maximum MDA concentration observed in the group fed with 52% protein

content. Interestingly, the lysozyme activity and the MDA concentration did not vary signifi-

cantly in the other groups. Organisms have antioxidant defense mechanisms to bate oxidative

stress and defend biological systems from free radical toxicity [73, 74]. Excessive dietary pro-

tein may have promoted the accumulation of incomplete metabolites and ammonia excretion,

leading to increased stress. In addition, we found that SOD activity in this study was not signif-

icantly different among the groups with different dietary protein levels. Many factors, such as

fish species, feeding duration, age, and environmental factors, could explain the variability in

the results of similar studies [75]. Thus, further studies are necessary to clarify the effects of

dietary proteins on antioxidant enzymes.

Conclusion

In summary, this study found that C.mongolicus fingerlings reached maximum growth when

the dietary protein level was 48.97% to 49.31%. Excessive protein led to retarded growth of C.

mongolicus, reduced intestinal trypsin and lipase activity, and higher plasma MDA production.

Dietary protein levels may have complex effects on the immune system of fish, which requires

further research. The present results provide a basis for optimization of artificial culture of C.

mongolicus, and lay the foundation for further investigation of the nutritional requirements of

this species in aquaculture.
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