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Acute respiratory distress syndrome (ARDS) is a common disease entity in critical care 
medicine and is still associated with a high mortality. Because of the heterogeneous 
character of ARDS, animal models are an insturment to study pathology in relatively 
standardized conditions. Rodent models can bridge the gap from in vitro investigations 
to large animal and clinical trials by facilitating large sample sizes under physiological 
conditions at comparatively low costs. One of the most commonly used rodent models 
of acute lung inflammation and ARDS is administration of lipopolysaccharide (LPS), either 
into the airways (direct, pulmonary insult) or systemically (indirect, extra-pulmonary insult). 
This narrative review discusses the dynamics of important pathophysiological pathways 
contributing to the physiological response to LPS-induced injury. Pathophysiological 
pathways of LPS-induced lung injury are not only influenced by the type of the primary 
insult (e.g., pulmonary or extra-pulmonary) and presence of additional stimuli (e.g., 
mechanical ventilation), but also by time. As such, findings in animal models of LPS-induced 
lung injury may depend on the time point at which samples are obtained and physiological 
data are captured. This review summarizes the current evidence and highlights uncertainties 
on the molecular dynamics of LPS-induced lung injury in rodent models, encouraging 
researchers to take accurate timing of LPS-induced injury into account when designing 
experimental trials.

Keywords: acute respiratory distress syndrome, inflammation, lipopolysaccharide-induced lung injury, dynamics, 
toll-like receptor 4, time-dependent

INTRODUCTION

Acute respiratory distress syndrome (ARDS) is a common but often under-recognized and 
under-treated disease in critical care medicine and is still associated with high morbidity and 
mortality (Bellani et al., 2016). ARDS can be caused either by direct lung injury (e.g., pneumonia, 
aspiration) or extra-pulmonary diseases, affecting the lung secondarily (e.g., sepsis, pancreatitis). 
The severity of ARDS may differ among patients and may change during the course of the 
disease (Ranieri et  al., 2012). Up to every tenth patient admitted to the intensive care unit 
presents with respiratory failure consistent with ARDS (Rubenfeld et al., 2005). The heterogeneous 
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pathophysiology of ARDS makes it difficult to identify 
pathophysiological mechanisms and specific therapeutic 
interventions. By standardizing observational conditions, animal 
models facilitate mechanistic studies and provide insights into 
the pathophysiology of ARDS. The choice of animal species 
depends on the pathomechanism to be studied. Rodent models 
of LPS injury have been widely used due to easy availability, 
housing, and relatively low costs (Redl et al., 1993; Lewis et al., 
2016). In addition, the monitoring of hemodynamic and 
pulmonary mechanics parameters has become easier using 
special miniaturized equipment. Disadvantages of using small 
animals are, e.g., the small volume of blood and the reduced 
sensitivity to endotoxemia when compared to other species 
such as pig and sheep (Kohman et  al., 2010). The use of 
sheep is prominent in studies involving microvascular 
pathophysiology and pulmonary permeability due to easy access 
to the pulmonary lymphatic system and increased lymphatic 
flow in response to small doses of endotoxin (Wiener-Kronish 
et  al., 1991; Redl et  al., 1993). Despite the pigs’ similarities 
to humans in relation to the anatomy, genetics, and physiology, 
the LPS challenge is usually performed as indirect lung injury 
by intravenous, intraperitoneal, or intramuscular administration 
(Wyns et  al., 2015). Furthermore, the existence of the 
fibroproliferative phase of ALI/ARDS in pig LPS models is 
unclear (Wang et  al., 2008).

The purpose of animal models is to mimic human disease. 
An ideal animal model of ARDS should reproduce all 
pathophysiological features of human ARDS (Matute-Bello et al., 
2011). However, not all complex features of ARDS and coexisting 
diseases can be  reproduced in animal models (Matute-Bello 
et  al., 2008). Most ARDS models reproduce either the acute 
inflammatory phase or chronic fibroproliferative phase depending 
on the specific research question (Matute-Bello et  al., 2011). 
So, to be  able to draw clinically meaningful conclusions, 
individual dynamics of the model must be  taken into account. 
The similarities and differences between existing animal models 
and clinical ARDS have been reported previously (Matute-Bello 
et al., 2011). Moreover, technical issues with individual models 
were described (Matute-Bello et  al., 2011). The most practical 
and invariable small animal models of lung injury are the 
administration of bleomycin (Moore and Hogaboam, 2008), 
acid (Modelska et al., 1999), or lipopolysaccharide (LPS) (Wiener-
Kronish et  al., 1991), all with characteristic advantages and 
disadvantages. This narrative review discusses molecular 
mechanisms in the development of experimental ARDS after 
LPS administration.

LPS is a part of the outer membrane of Gram-negative 
bacteria and can be  administered into the airways (direct, 
pulmonary insult) and systemically (extra-pulmonary insult) 
(Menezes et  al., 2005). The time-window used for induction 
and assessment of lung injury varies in the currently described 
models of LPS-induced lung injury. As lung injury evolves 
over time, molecular mechanisms of pathogenesis are differentially 
activated during disease progression. Molecular mechanisms 
that are essential during the early phase of LPS-induced lung 
injury may be  less important for the late phase and vice versa. 
Translation of results from animal studies to more heterogeneous 

clinical studies failed for a lot of interventions in ARDS. This 
lack of clinical success could in part be attributed to differences 
in timing from injury to therapy onset in diverse patient 
populations. To define adequate timing of therapies in clinical 
studies, researchers must take the dynamics of respective 
successful animal model into account (Boyle et  al., 2013).

LUNG INJURY INDUCED BY 
LIPOPOLYSACCHARIDE CHALLENGE

LPS-induced lung injury is one of the most commonly used 
rodent models for ARDS (Matute-Bello et  al., 2008) and was 
described to mimic the neutrophilic inflammatory response 
observed in ARDS patients (Matute-Bello et  al., 2011).

Experimental evidence proposed that different 
pathophysiological pathways are activated during pulmonary 
and extra-pulmonary LPS challenge, especially during the early 
phase of disease progression (Menezes et  al., 2005). Direct 
lung injury can be  modeled in rodents by administration of 
LPS to the lungs through either tracheal instillation or inhalation. 
In this case, the alveolar epithelium is the primary structure 
that is damaged (Menezes et  al., 2005). Local administration 
of LPS causes an acute and vigorous migration of inflammatory 
cells into the lung tissue with resolution by 72  h after the 
exposure (Bozinovski et al., 2004) followed by secondary fibrosis 
(Bitterman, 1992). Although this mechanism is not fully 
understood, LPS also affects alveolar type II cells and pulmonary 
surfactant through interaction with surfactant-specific proteins 
leading to their inactivation (Garcia-Verdugo et al., 2009; Glasser 
et al., 2009). Intravenous or intraperitoneal LPS administration 
triggers the release of inflammatory mediators into the systemic 
circulation, which in turn evokes indirect lung injury. In this 
case, the pulmonary vascular endothelium is the primary 
structure that is damaged and interstitial edema is the most 
prominent pathophysiological alteration. (Menezes et al., 2005). 
A single injection of LPS in the systemic environment is 
associated with relatively mild lung injury (Bastarache et  al., 
2009). Repeated or continuous LPS administration, however, 
has been shown to deteriorate lung injury in models of extra-
pulmonary ARDS (Everhart et  al., 2006; Cheng et  al., 2007). 
Organ injury was also observed after intravenous injection of 
LPS (Wang et  al., 2012) and is the most important cause of 
death in patients with ARDS according to clinical studies 
(Bersten et  al., 2002; Estenssoro et  al., 2002). So ARDS may 
be  the cause or the consequence of organ failure suggesting 
a possible need for differential therapeutic approaches for ARDS 
management (Sorbo and Slutsky, 2011).

Pathophysiological, histological, and morphological 
differences found in pulmonary and extra-pulmonary ARDS 
may influence the response to pharmacological agents, 
mechanical ventilation, and positioning. Some studies have 
reported a modulation of the inflammatory process in ARDS 
in response to pharmacological therapies such as dasatinib 
(Oliveira et  al., 2015) and corticosteroids (Leite-Junior et  al., 
2008) independent of the etiology. Clinical studies have evaluated 
ARDS treatments according to the underlying etiology. They 
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found significant oxygenation improvement in pulmonary 
ARDS after inhaled nitric oxide (Rialp et  al., 2001) and in 
extra-pulmonary ARDS after inhaled prostacyclin treatment 
(Domenighetti et  al., 2001). Prone position improved 
oxygenation independent of the cause of ARDS in some studies 
(Rialp et al., 2001), while others showed benefits from positioning 
especially in patients with extra-pulmonary ARDS (Lim et  al., 
2001). These conflicting clinical data reflect different features 
of clinical ARDS: (1) different pathological factors in primary 
pulmonary and extra-pulmonary insult, affecting elastance and 
resistance of the lung and intra-abdominal pressure resulting 
in different responses to mechanical ventilation strategies; (2) 
different severity of injury; (3) the stage of ARDS (early or 
late); and (4) the difficulty to separate pulmonary and extra-
pulmonary ARDS, which many times coexist.

MOLECULAR MECHANISM OF 
LIPOPOLYSACCHARIDE-INDUCED  
LUNG INJURY

The cellular response to LPS is initiated by binding of LPS 
to the extracellular binding proteins LBP (LPS binding protein), 
CD14 and MD-2; this facilitates the binding of LPS to its 
main receptor – toll-like receptor 4 (TLR-4). Intracellular adaptor 
proteins (e.g., MyD88) bind to the TLR-4 receptor and activate 
various intracellular signaling cascades involving kinases like 
ERK1/2 (Extracellular signal-Regulated Kinase) and p38, which 
regulate the expression of cytokines with pro-inflammatory 
properties like TNF-α (tumor necrosis factor alpha) by activation 
of the NFkB (nuclear factor kappa-light-chain-enhancer of 
activated B cells) pathway (Medzhitov, 2007). The complex 
process of TLR-4 signaling has been reviewed in depth previously 
(Lu et  al., 2008). Figure  1 shows major steps of LPS-triggered 
TLR-4 signaling.

DIFFERENTIAL REGULATION OF 
LIPOPOLYSACCHARIDE-RELATED 
SIGNALING MOLECULES OVER TIME

Experimental studies revealed that LPS challenge affects 
pulmonary expression of signaling molecules over time 
(Figure  2). For TLR-4, which acts as the main extracellular 
LPS receptor, kinetic studies demonstrated that mRNA expression 
initially decreased within 2  h after transnasal LPS challenge, 
increased at 4  h, and reached a maximum at 24  h (Bozinovski 
et  al., 2004). At the protein level, TLR-4 was higher at 24, 
48, and 72  h after intraperitoneal LPS challenge (Gao et  al., 
2012). TLR-4 mRNA and protein levels remained consistently 
elevated at 3 and 28  days after intraperitoneal LPS challenge 
(He et al., 2009). In contrast, molecules involved in the complex 
recognition of LPS by TLR-4 like CD14 and MD-2 showed 
a different pattern of activation. CD14 gene expression in the 
lung is rapidly increased to maximal levels at 3 h after intranasal 
LPS challenge, followed by a decrease to basal levels at 4  days, 

whereas MD-2 gene expression did not change after LPS 
exposure (Oshikawa and Sugiyama, 2003).

There is also evidence of differential activation of intracellular 
signal transduction pathways after LPS challenge. A kinetic 
study in mice described that pulmonary mRNA expression 
of the TLR-4 adaptor protein MyD88 was rapidly increased 
to maximal levels at 3 h after intranasal LPS challenge, followed 
by a decline to basal levels at 24  h (He et  al., 2009). At the 
protein level, MyD88 expression was enhanced in the lung 
at 24  h after intraperitoneal LPS challenge (He et  al., 2009). 
MyD88 protein levels remained nearly constant (i.e., plateau 
phase) over 48 and 72  h (He et  al., 2009). Downstream, rapid 
activation of pulmonary ERK1/2 from the MAPK family was 
observed within 15  min after transnasal LPS challenge 
(Bozinovski et al., 2002). A minor secondary phase of ERK1/2 
activation was observed between 2 and 6 h after LPS challenge 
decreasing to baseline levels at the end of the 24-h time 
course (Bozinovski et al., 2002). Considering the rapid response 
of ERK1/2 to LPS, ERK1/2 was proposed as a functional 
mediator in the TLR-4 signaling cascade (Bozinovski et  al., 
2002). In addition to ERK1/2, p38 MAPK has been recognized 
as an important mediator of LPS-induced lung injury. 
Phosphorylation of p38 MAPK rapidly increased, reached peak 
levels at 3  h, and slowly decreased to basal levels at 12  h 
after intravenous LPS challenge (Liu et  al., 2008). In a model 
of intratracheal LPS however, phospho-p38 MAPK levels 

FIGURE 1 | Signaling pathways of toll-like receptor 4. Interaction of 
lipopolysaccharide (LPS) with its receptor, toll-like receptor 4 (TLR-4), elicits 
strong innate immune responses through various intracellular signaling 
molecules. AP, activator protein; CD, cluster of differentiation; ERK, extracellular 
signal-regulated kinase; IkB, inhibitory kB; IKK, IkB kinase; IL, interleukin;  
IRAK, IL-1 receptor-associated kinase; JNK, c-Jun N-terminal kinase; LBP, 
LPS-binding protein; MD, myeloid differentiation protein; MEK, MKK, mitogen-
activated protein kinase (MAPK) kinase; MyD, myeloid differentiation factor; 
NFkB, nuclear factor kB; PMNs, polymmorphonuclear leukocytes; TNF, tumor 
necrosis factor; TRAF6, TNF receptor-associated factor.
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remained elevated at 24  h (Kim et  al., 2006) supporting the 
hypothesis that pathophysiological pathways can be differentially 
activated during pulmonary or extra-pulmonary LPS challenge 
(Menezes et  al., 2005).

Further downstream in the LPS-TLR-4 signaling cascade, 
transnasal LPS challenge was shown to affect DNA binding 
activity of NFkB over time. Pulmonary NFkB binding activity 
increased rapidly over the first hour after LPS challenge 

FIGURE 2 | Lipopolysaccharide signaling pathways over time. Lipopolysaccharide (LPS) challenge affects pulmonary expression of signaling molecules over time 
(*pulmonary challenge or **extra-pulmonary challenge). Not all signaling molecules are being activated at the same time, and not all signaling pathways are being 
activated for the same duration. So, rather confined therapeutic time-windows exist for effective targeting of LPS-induced signaling molecules. Changes in mRNA 
expression and protein concentration shown in hours/days post LPS challenge. CD, cluster of differentiation; ERK, extracellular signal-regulated kinase; mRNA, 
messenger ribonucleic acid; MyD, myeloid differentiation factor; NFkB, nuclear factor kB; PMNs, polymmorphonuclear leukocytes; TLR, toll-like receptor; TNF, tumor 
necrosis factor.
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and slowly declined over 6  h, being resolved at the end of 
a 24-h period (Bozinovski et al., 2002). Accordingly, transnasal 
LPS challenge affected pulmonary TNF gene expression over 
time. After a steep increase within 2  h, TNF-α mRNA 
expression declined at 4  h after LPS challenge, without 
reaching baseline levels (Bozinovski et  al., 2004). TNF-α 
mRNA expression remained nearly at a constant level for 
the rest of the 24-h period (Bozinovski et  al., 2004). At 
the protein level, TNF-α expression peaked within 4  h after 
LPS challenge and slowly declined over 24  h (Bozinovski 
et  al., 2004). A comparable 24-h TNF-α expression pattern 
was reported in mice exposed to intravenous LPS (Li et  al., 
2008). Finally, neutrophil infiltration into the lungs was 
evident within 2  h after transnasal LPS challenge in mice 
(Bozinovski et  al., 2004). Neutrophil granulocytes increased 
over time, peaking at 24  h after LPS. The neutrophil levels 
markedly declined at 48  h and were resolved by 72  h 
(Bozinovski et  al., 2004).

DYNAMICS OF LIPOPOLYSACCHARIDE-
INDUCED LUNG INJURY

It has been shown that LPS elicits strong innate immune 
responses by activating various intracellular signaling pathways. 
In this regard, it is important that not all signaling molecules 
are being activated at the same time and not all signaling 
pathways are being activated for the same duration (Figure 2). 
For instance, TLR-4 protein expression was increased at 24  h 
after intraperitoneal LPS challenge (Gao et  al., 2012) and 
remained consistently elevated at 3 and 28  days (He et  al., 
2009). Similarly, MyD88 protein levels were elevated at 24  h 
after intraperitoneal LPS challenge although remaining at a 
plateau level over 2–3  days (Oshikawa and Sugiyama, 2003). 
In complete contrast, MAPK and TNF-α showed a more 
transient expression pattern after intravenous LPS reaching 
peak levels within the first few hours and returning to  
basal levels within 12–24  h (Li et  al., 2008; Liu et  al.,  
2008). These experimental findings indicate that the 
pathophysiological pathways of LPS are time-dependent and 
imply that signaling molecules are differentially activated 
during disease progression. Besides the differential effect of 
time, different pathophysiological pathways are proposed to 
be  activated during pulmonary or extra-pulmonary LPS 
challenge, at least during the early phase of disease progression 
(Menezes et  al., 2005). Supporting this implication, prior 
kinetic studies showed that phosphorylation of p38 MAPK 
decreased to basal levels at 12  h after intravenous LPS  
challenge (extra-pulmonary insult) (Liu et  al., 2008), whereas 
phospho-p38 MAPK levels remained elevated at 24  h after 
intratracheal LPS challenge (pulmonary insult) (Kim et  al., 
2006). These dynamics in LPS-induced lung injury are of utmost 
importance, particularly when developing or evaluating therapeutic 
strategies that target specific signaling molecules. Indeed, 
progression of lung injury was prevented when the neutrophil 
elastase inhibitor sivelestat was intravenously infused from 2 
to 24  h after endotoxin inhalation (Kawabata et  al., 2000), 

which is precisely the time-window of enhanced neutrophil 
infiltration after LPS challenge (Bozinovski et  al., 2004). 
Concerning clinical cornerstones of ARDS therapy like 
positioning and fluid management, little is known on the 
effect of these interventions on experimental LPS-induced 
lung injury and its molecular dynamics.

In spite of the insights gained from the kinetic studies 
discussed here, only specific, limited time points after LPS 
challenge were examined. It may be  possible that the duration 
of molecular responses is underestimated or a secondary phase 
of activation remains unnoticed. Most likely, different signaling 
molecules will be present in lung tissue at different time points 
after LPS challenge. Consequently, findings in rodent models 
of LPS-induced lung injury may depend on the time point at 
which samples are obtained and corresponding physiological 
data are captured.

IN VITRO MODELS OF 
LIPOPOLYSACCHARIDE-INDUCED 
LUNG  INJURY

The innate immune response of the lung to LPS is regulated 
by a complex association of receptors depending on cell type. 
In vitro studies using human alveolar epithelial cell line A549, 
and the human tracheobronchial epithelial cell lines BEAS-2B, 
showed the presence of TLRs at mRNA level, specifically TLR1–6 
but not directly the TLR-4 (Schulz et al., 2002). The differences 
in TLR expression can depend on the stimulus, cell type, or 
subcellular location of the TLRs (McGettrick and O’Neill, 2010). 
It is already known that TLR-4 cycles between Golgi and 
plasma membrane (McGettrick and O’Neill, 2010) and that 
LPS response is regulated by the level of TLR-4 present on 
the cell surface membrane (Latz et  al., 2002). Guillot et  al. 
provided evidence for an intracellular compartmentalization 
of TLR-4 that allows LPS to induce the secretion of 
pro-inflammatory mediators in pulmonary epithelial cells. In 
this context, TLR-4 may be  activated only by exposition to a 
high amount of LPS (Guillot et  al., 2004).

Moreover, the presence of LPS does not appear to modulate 
the expression of TLR-4  in BEAS-2B cells incubated for short 
(1–6  h) or long period (48  h), yet is able to activate a TLR-4-
dependent signaling pathway in this pulmonary epithelial cell 
(Guillot et  al., 2004). As previously described, studies suggest 
the need of a coreceptors such as MD-2 and CD14 to initiate 
the binding between LPS and TLRs. In vitro studies showed 
that A549 and BEAS-2B express an LPS receptor that includes 
MD-2 but not CD14 (Guillot et  al., 2004). Similar results 
were also observed in A549 but a with low expression of 
CD14 with BEAS-2B cells (Schulz et  al., 2002), which can 
be explained by distinct basal activation or differentiation state 
of these cells or by a presence of a different mechanism 
involving CD14 on these cells in response to LPS. Despite 
these inconsistencies, LPS clearly induces the secretion of IL-8 
and IL-6  in both cell lines in a concentration-dependent 
manner by involving the signal-transducing molecules MyD88, 
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IRAK, TRAF6, and MAPK that activate the p38, Jnk, and 
ERK1/2 pathways (Guillot et  al., 2004).

INFLUENCE OF SUPPORTIVE CARE ON 
LUNG INJURY DYNAMICS

Lungs of ARDS patients are not only affected by the primary 
disease (e.g., pulmonary or extra-pulmonary insults) but also 
by therapeutic modalities used for supportive care (e.g., 
mechanical ventilation or fluid resuscitation). Accordingly, 
mechanical ventilation can be  considered as a “second hit” in 
ARDS patients (Bregeon et  al., 2002). This clinical condition 
can be  mimicked in rodents by a “two-hit” model of lung 
injury combining mechanical ventilation with either pulmonary 
or extra-pulmonary LPS challenge. Previous experimental studies 
showed that mechanical ventilation interacts with endotoxemia, 
deteriorating lung injury (Altemeier et al., 2005; Bregeon et al., 
2005) and promoting non-pulmonary organ failure (O’Mahony 
et  al., 2006). Exposure to mechanical ventilation after LPS 
challenge therefore adds to the dynamics of LPS-induced lung 
injury. In this regard, it has been described that TLR-4 protein 
expression was already increased after intratracheal LPS challenge 
or mechanical ventilation alone, but was further enhanced 
when mechanical ventilation followed LPS challenge (Hu et al., 
2010). Also downstream signaling molecules like cytokines and 
chemokines were shown to be higher when combining mechanical 
ventilation with LPS challenge (Haitsma et al., 2000; O’Mahony 
et al., 2006). It is worth noting that present technology complicates 
the use of prolonged supportive care in small animals. Therefore, 
available rodent models of mechanical ventilation may not 
mimic the clinical situation accurately where patients are 
ventilated for days or weeks.

PERSPECTIVE

Despite advances in understanding of dynamics of LPS-induced 
lung injury, additional in vitro studies should be  performed 
to evaluate novel LPS-binding proteins in alveolar epithelial 
cells and further elucidate distinct pathways in response to 
LPS challenge. While the early response to LPS challenge is 
rather well characterized, there are few data on the late phase 
of LPS response.

This review describes the molecular mechanisms that contribute 
to lung injury in rodent models of LPS-induced organ injury 
mimicking either pulmonary or extra-pulmonary ARDS. Pathways 
of LPS-induced lung injury are not only affected by the type of 
the primary insult and the presence of additional stimuli but 
also by time. All these contributing factors should be  taken into 
account when choosing a rodent model for developing and/or 
evaluating interventions that target specific pathophysiological 
pathways of LPS-induced lung injury. In this way, the therapeutic 
efficacy may be  optimized and the translation of promising 
treatment strategies into patient care may be  improved.
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