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Background: Our previous reports reflected some aspects of neuroplastic changes
from long-term Chinese chess training but were mainly based on large-scale
intrinsic connectivity. In contrast to functional connectivity among remote brain areas,
synchronization of local intrinsic activity demonstrates functional connectivity among
regional areas. Until now, local connectivity changes in professional Chinese chess
players (PCCPs) have been reported only at specific hubs; whole-brain-based local
connectivity and its relation to training profiles has not been revealed.

Objectives: To investigate whole-brain local connectivity changes and their relation to
training profiles in PCCPs.

Methods: Regional homogeneity (ReHo) analysis of rs-fMRI data from 22 PCCPs versus
21 novices was performed to determine local connectivity changes and their relation to
training profiles.

Results: Compared to novices, PCCPs showed increased regional spontaneous
activity in the posterior lobe of the left cerebellum, the left temporal pole, the right
amygdala, and the brainstem but decreased ReHo in the right precentral gyrus. From
a whole-brain perspective, local activity in areas such as the posterior lobe of the right
cerebellum and the caudate correlated with training profiles.

Conclusion: Regional homogeneity changes in PCCPs were consistent with the
classical view of automaticity in motor control and learning. Related areas in the
pattern indicated an enhanced capacity for emotion regulation, supporting cool and
focused attention during gameplay. The possible participation of the basal ganglia-
cerebellar-cerebral networks, as suggested by these correlation results, expands our
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present knowledge of the neural substrates of professional chess players. Meanwhile,
ReHo change occurred in an area responsible for the pronunciation and reading of
Chinese characters. Additionally, professional Chinese chess training was associated
with change in a region that is affected by Alzheimer’s disease (AD).

Keywords: board games, Chinese chess, regional homogeneity, automaticity, Chinese language cognition, AD
prevention

INTRODUCTION

Chess serves studies in cognitive science as Drosophila serves
studies in biological science. Many processes, such as perception
(Sheridan and Reingold, 2017), memory (Gong et al., 2015),
problem solving (Pereira et al., 2020), and empathy (Powell
et al., 2017), become more apparent in the classical research
paradigm of chess. With the application of non-invasive imaging
techniques (Nichelli et al., 1994; Onofrj et al., 1995; Amidzic
et al., 2001; Silva et al., 2018; Fuentes-García et al., 2019;
Pereira et al., 2020) and especially functional magnetic resonance
imaging (fMRI) (Atherton et al., 2003; Bilalić et al., 2011;
Wan et al., 2011; Duan et al., 2014; Hänggi et al., 2014;
Premi et al., 2020; Wang et al., 2020) in the human brain,
neural substrates of cognitive processes have gradually been
revealed. In studies investigating these substrates, cognitive
research on expertise was a main research domain. Based on
the theory of chunks in chess experts (Chase and Simon,
1973), the medial temporal lobe was initially revealed as the
basis of long-term memory (LTM) in chess experts (Amidzic
et al., 2001), and then the caudate region was comprehensively
shown to be responsible for automatically producing the
best next move in board games (Wan et al., 2011). Specific
regions have long been believed to form the basis of cognitive
expertise in board games. However, from the investigation of
functional connectivity between the caudate and the default
mode network (DMN) (Duan et al., 2012a), step-by-step
exploration of specific region-based functional connections was
applied (Duan et al., 2014; Sohn et al., 2017; Song et al.,
2020; Wang et al., 2020). Recently, whole-brain-based detection
of brain functional connectivity was reported as a dynamic
functional network characteristic of Chinese chess experts
(Premi et al., 2020).

Since the 1st China National Mind Sports Games in 2010
in Chengdu, China, the brain characteristics associated with
cognitive expertise in Chinese chess have been discussed
throughout the scientific world (e.g., Duan et al., 2012a,b,
2014; Premi et al., 2020; Song et al., 2020; Wang et al., 2020).
Chinese chess (Xiangqi in Chinese) is a traditional board game
originating from military strategies in ancient China. To the best
of our knowledge, this game was first introduced in an English
publication in 1895 (Platt, 1895). As in chess, the records of
professional players in each competition are compiled to assign
ranking points to each player, reflecting the person’s skill level.
Xiangqi is remarkable among board games in that its famous
endgame problems [such as “wild horses run on the farm” (Hung
et al., 2017)], moving rules (such as “the horse moves in the shape
of the character “RI” and “the elephant moves in the shape of

the character “TIAN”)1 and combat strategies (such as “dāng tóu
pào, m ǎ lái tiào”; See text footnote) are described and taught
in vivid sentences (“rhymes” or “sayings”) or descriptive battle
stories, which may explain the special relationship of this game
to the cognitive processes of Chinese language cognition, sematic
memory (SM) and episodic memory (EM). Changes in SM and
EM are both early markers of Alzheimer’s disease (AD) (Marra
et al., 2016; Gagliardi et al., 2019; Venneri et al., 2019). Recently,
some reports have discussed the AD-preventive effects of board
games (Nakao, 2019; Qureshi, 2019). For example, a previous
randomized clinical trial of 147 AD patients reported that AD
symptoms were reduced in patients who played the game of Go
(Lin et al., 2015).

Our previous studies (Duan et al., 2012a,b, 2014) reported
morphological changes in the caudate, the enhanced connectivity
of the caudate to the DMN, and remote functional connectivity
alterations including different global topological properties of the
whole-brain functional networks and intrinsic brain networks.
These reports reflected some aspects of neuroplastic changes
from long-term Chinese chess training but were mainly based
on large-scale intrinsic connectivity. In contrast to functional
connectivity among remote brain areas, synchronization of local
intrinsic activity demonstrates functional connectivity among
regional areas (Jia et al., 2017). Until now, local connectivity
changes in professional Chinese chess players (PCCPs) have been
reported only at specific hubs (Song et al., 2020); whole-brain-
based local connectivity and its relation to training profiles has
not been revealed.

Regional homogeneity (ReHo), revealing the homogeneous
characteristics of local brain activity, is one kind of
postprocessing method of local spontaneous activity. ReHo
is based on Kendall’s coefficient concordance (KCC) to measure
the similarity of the time series of a given voxel to those of its
nearest neighbors in a voxel-wise way in rs-fMRI analysis (Zang
et al., 2004). Recently, some reports (e.g., Jiang et al., 2015;
Jiang and Zuo, 2016) revealed the neurobiological relevance
underlying ReHo, including anatomical morphology, brain
development, and neurocognitive factors. Therefore, ReHo
was confirmed to be a useful neuroimaging tool to understand
human brain function (He et al., 2007; Wang et al., 2011; Wu
et al., 2011; Dai et al., 2012; Tian et al., 2012; Dong et al., 2014;
Liu et al., 2015; Lv et al., 2019). As one morphological change
typical of PCCPs was detected in the caudate (Duan et al., 2012a),
which subserves the associative phase of cognitive procedural
learning (Chiu et al., 2017), we might expect ReHo changes to be

1https://en.wikipedia.org/wiki/Xiangqi
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mostly similar to their structural and functional equivalents in
neuroimaging studies that have revealed training-specific areas.

In this study, ReHo analysis was performed based on rs-fMRI
data to explore the whole-brain local functional connectivity
changes in PCCPs and the relation of these changes to
training profiles.

MATERIALS AND METHODS

Participants
A total of 43 subjects were included in the present study.
One group included 22 PCCPs (14 males and 8 females; age,
27.32 ± 8.31 years; years of education, 13.45 ± 2.37; rating
points, 2410 ± 116; professional training years, 10 ± 9.32;
and professional training hours per day, 4.25 ± 1.82). Another
group included 21 novices (13 males and 8 females; age,
26.20 ± 8.17 years; years of education, 13.38 ± 3.37) who
knew the rules of the game and simple strategies but with no
game experience (Campitelli et al., 2005). PCCPs and novices
were sex-, education- and age-matched. To further examine the
difference between PCCPs and novices, both groups were tested
by Raven’s Standard Progressive Matrices, and two groups did
not differ on general intelligence (P = 0.63, two tailed t-test). All
participants had normal or corrected-to-normal vision. Written
informed consent was obtained from all subjects. The proposal
was approved by the local Ethics Committee of Huaxi Hospital,
Sichuan University.

Data Acquisition
Images were acquired using a 3.0T Siemens Magnetom Trio
scanner in the Huaxi MR Research Center. Functional images
were acquired using a single-shot, gradient-recalled echo-
planar imaging sequence [repetition time (TR) = 2,000 ms,
echo time (TE) = 30 ms and flip angle = 90

◦

]. Thirty
transverse slices [field of view (FOV) = 24 cm, in-plane
matrix = 64 × 64, slice thickness = 5 mm, without gap, voxel
size = 3.8 × 3.8 × 5] and 205 volumes were obtained from
each subject. The first five volumes were discarded to ensure
steady-state longitudinal magnetization. During the scanning
procedure, a standard head coil with foam padding was used
to restrict head motion. Subjects were instructed simply to rest
with their eyes closed, not to think of anything in particular and
not to fall asleep.

Data Analysis
Image pre-processing was performed using SPM8 software.2

The first five volumes were discarded to ensure steady-state
longitudinal magnetization. The remaining 200 volumes were
first corrected for the temporal difference and head motion.
In this study, the threshold for head motion was lower than
±1.5 mm or ±1.5

◦

. We calculated frame-wise displacement
(FD) which reflected the head movement at every different
time point by employing 6 displacements from the rigid body
motion correction procedure (Power et al., 2012), and found

2http://www.fil.ion.ucl.ac.uk/spm

FIGURE 1 | One-sample results for novices (left column) and professional
Chinese chess players (PCCPs) (right column). The regions indicated by a
warm color showed greater regional homogeneity (ReHo). The threshold was
P < 0.01, FDR corrected. The left side of the image corresponds to the left
side of the brain.

no significant differences (P = 0.82) in FD between PCCPs
(0.159 ± 0.16 mm) and novices (0.150 ± 0.07 mm) using
two-sample t-tests. The resulting images were then normalized
to the standard SPM8 echo-planar imaging template and
resampled to a standard stereotaxic space at a resolution of
3 mm × 3 mm × 3 mm. Finally, the normalized images
were temporally band-pass filtered (0.01 < f < 0.08 Hz) to
reduce the effects of low-frequency drift and high-frequency
physiology noise (Biswal et al., 1995); additionally, the linear
trend was removed.

Regional Homogeneity Analysis
The KCC (Kendall and Gibbons, 1990) was calculated to measure
the similarity of the time series of a defined cluster. In the present
study, 27 nearest neighbor voxels were defined as a cluster. The
KCC was given to the center voxel (Zang et al., 2004) as follows:

W =
∑

(Ri)
2
− n(R̄)2

1
12 K2(n3 − n)

where W is the KCC among given voxels, ranging from 0 to 1; Ri
is the sum rank of the ith time point; R̄ = (n+ 1)K/2 is the mean
of the Ri values; K is the number of time series points within a
measured cluster; and n is the number of ranks (here, n = 200
time points). REST software (Resting-state fMRI data analysis
toolkit)3 was used to calculate individual ReHo values in a voxel-
wise way. Each individual ReHo map was divided by that subject’s
global mean KCC value within the brain mask. The ReHo maps
were then spatially smoothed with a Gaussian filter of 8 mm of
full width at half maximum (FWHM).

Second-Level Analysis
Group statistical analysis was performed in SPM8. The one-
sample t-tests results from the two groups were combined to get
a new map. By binarizing the map, a combined explicit mask was

3http://sourceforge.net/projects/resting-fmri
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FIGURE 2 | Two-sample result between PCCPs and novices (P < 0.05, AlphaSim corrected, a combined threshold of P < 0.005, and a minimum cluster size of 46
voxels). Hot and cold colors indicate ReHo increases and decreases in PCCPs, respectively, and the number indicates the t-value. The left and right sides in this
figure correspond to the right and left sides of the brain, respectively. Further details of these regions are presented in Table 1.

obtained. The significance threshold was set at P < 0.01, corrected
by the false discovery rate (FDR) criterion (Genovese et al., 2002).

Then, two-sample t-tests were performed to show the
between-group difference in ReHo. The t-map was created with
a combined threshold of P < 0.005 and a minimum cluster size
of 46 voxels using the AlphaSim program in REST software.
This approach applied Monte Carlo simulation to calculate the

probability of false positive detection by taking into consideration
both the individual voxel probability threshold and cluster size.

Additionally, to explore whether ReHo correlates with the
rating points, years of professional training and training intensity
of PCCPs, a correlation analysis of ReHo versus these training
profiles was performed in this group for each voxel of the
whole brain. For the correlation analyses, we set the significance
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threshold at P < 0.05 (combined threshold of P < 0.001 and a
minimum cluster size of 20 voxels, corrected by AlphaSim).

RESULTS

Within-Group Results
In order to intuitively display ReHo results for Chinese chess
novices and PCCPs, a ReHo map was calculated within each
group and shown in Figure 1 (one-sample t-test; P < 0.01,
corrected by FDR). For visual observation, areas in the
DMN (Raichle et al., 2001) including the posterior cingulate
cortex/precuneus (PCC/Pcu), medial prefrontal cortex (MPFC)
and bilateral inferior parietal lobe (IPL) displayed significantly
greater ReHo than other regions.

Between-Group Results
Compared with the novices, PCCPs revealed increased ReHo
in the left cerebellum posterior lobe, left temporal pole, right
amygdala, and brainstem and decreased ReHo in the right
precentral gyrus (two-sample t-test, P < 0.05, corrected by
AlphaSim; Figure 2 and Table 1).

Correlational Results
In the voxel-based group comparisons of ReHo maps, we chose a
statistical threshold at voxel level P < 0.05 (AlphaSim corrected)
with a minimum cluster size of 20 voxels to reduce Type I
errors, resulting in a combined threshold of P < 0.001. The
correlation of ReHo for each whole-brain voxel against rating
points of PCCPs showed a significantly positive correlation
in the right precentral gyrus and a significantly negative
correlation in the left PCC/Pcu and right middle temporal
gyrus (MTG). The professional training years of PCCPs were
negatively correlated with the left SMA and right cerebellum
posterior lobe. The ReHo of the right caudate was negatively
correlated with training hours. Please see Figure 3 and Table 2
for more details.

DISCUSSION

Neuroscience studies have investigated the neural substrates of
motor control and learning, which has shed light on the neural
mechanism of expertise. From cognitive processes to associative
processes and to automatic processes, changing patterns of skill
performance are theoretically described; the main features of
the automatic process are “rapid, smooth, effortless, demand
little intentional capacity and difficult to consciously disrupt”
(Yarrow et al., 2009). In the classical view of automaticity, it
is believed that as long-term practice makes skills reflexive,
subcortical structures primarily activate, whereas novel behaviors
require attention and flexible thinking that depend on the
cortex (Ashby et al., 2010). Pertinently, in reports on the
brains of chess experts, this behavior was also described as
follows: “the pattern of activation moves from frontal parts at
the beginning of the process to posterior parts responsible for
retrieval of domain specific knowledge around the final expertise

stage” (Debarnot et al., 2014). In between-group analyses of
this study, the ReHo of PCCPs decreased in the precentral
gyrus but increased in the cerebellum, temporal pole, amygdala
and brainstem; this pattern of activity was similar to the
above-described changes.

A consensus has been reached on the relation between
the cerebellum and emotion (Adamaszek et al., 2017). In
addition to the cerebellum posterior lobe, we located areas
of increased spontaneous brain activity in the temporal pole,
amygdala and brainstem. The amygdala reflects emotion
(Weymar and Schwabe, 2016), especially emotional regulation
(Li et al., 2016; Morawetz et al., 2017) and cognitive reappraisal
(d’Arbeloff et al., 2018). Notably, there is also a relation
between the brainstem and emotion (Venkatraman et al.,
2017). Also, the temporal pole is reported in the emotion
of aggression (Breitschuh et al., 2018). As one dimension of
personality, emotional expression control was once reported
to incrementally contribute to the prediction of chess playing
strength (Grabner et al., 2007). A randomized controlled trial
protocol described a Go intervention programme designed to
enhance elementary school students’ cognitive function and
their capacity for emotional and behavioral control (Tachibana
et al., 2012). In the current study, we deduce the possibility
of enhanced emotion regulation function that results from
long-term Chinese chess training, indicating superior emotion
regulation ability that supports cool and focused attention in
PCCPs during gameplay.

An ordinal consensus supports functional interactions
between the basal ganglia and cortex and between the cerebellum
and cortex. In the consensus view, the basal ganglia and the
cerebellum are reported to form a densely interconnected
network, namely, the basal ganglia-cerebellar-cerebral cortical
networks, in which the caudate, different parts of the cerebellum
and cortex form different networks supplying a neural basis
for cognition (such as executive function) as well as for
neuropsychiatric disorders (such as AD and anxiety) (Bostan
and Strick, 2018). In addition to the negative correlation
between the right caudate and training hours each day, we

TABLE 1 | Comparison of regions with increased/decreased regional homogeneity
(ReHo) in professional Chinese chess players (PCCPs) compared to novices.

Anatomical region MNI (x, y, z)a BA Voxels tb

Increased ReHo regions

L cerebellum posterior lobe −27, −57, −51 – 125 3.94

L temporal pole −48, 18, −27 38 104 4.45

R amygdala 27, 0, −18 – 79 4.04

brainstem 3, −21, −18 60 3.50

Decreased ReHo regions

R precentral gyrus 63, 3, 30 6 90 −3.68

MNI, Montreal Neurologic Institute; BA, Brodmann’s area; L, left; R, right.
ReHo, regional homogeneity; MNI, Montreal Neurologic Institute; BA, Brodmann’s
area; L, left; R, right.
aCoordinates of primary peak locations in MNI space; bRepresents the statistical
value of the peak voxel showing ReHo differences between groups. In the PCCP
group, a positive t-value represents increased ReHo, and a negative t-value
represents decreased ReHo.
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FIGURE 3 | Significant correlations between ReHo and training profiles in PCCPs (P < 0.05, AlphaSim corrected, a combined threshold of P < 0.001, and a
minimum cluster size of 20 voxels). Hot and cold colors indicate positive and negative correlations, respectively. The numbers on the right color-bar refer to the
t-value. The left and right sides in this figure correspond to the right and left sides of the brain, respectively. Further details of these regions are presented in Table 2.

found a negative correlation between the right posterior lobe
of the cerebellum and length of professional training and a
positive correlation between the right precentral gyrus and
rating points. All these findings demonstrate a similar pattern
of concordant changes in some brain regions, such as the basal
ganglia-cerebellar-cerebral networks in the right hemisphere,
among PCCPs. These results add to our present knowledge
of the neural substrates of professional chess players. Prior to
this study, the caudate had been revealed initially as a neural
substrate (Wan et al., 2011; Duan et al., 2012a,b), and the
thalamus was recently reported as a neural substrate (as its
mediation between the caudate and frontal cortex) (Wang et al.,
2020). The present study reflects the participation of the basal
ganglia-cerebellar-cerebral networks.

Previous studies reported that as motor skills became
automatic, the activation of the SMA decreased (Poldrack et al.,
2005; Puttemans et al., 2005). Reports from sequence training,
task training and practice processes demonstrate a similar
changing trend in the SMA (Nyberg et al., 2006; Hatanaka et al.,
2009; Ma et al., 2010). Our result of a negative correlation between
the SMA and training years is parallel to these conclusions. In
addition to its role in training-specific plasticity, the left SMA
plays an important role in phonological processing in Chinese
language cognition (Kuo et al., 2004; Veroude et al., 2010); the left
SMA also takes part in Chinese character reading (Tan et al., 2000;
Kuo et al., 2003). Although the correlation between this training-
specific area and language cognition is a novel finding in the
study of the neural basis of board game experts, a previous report
has already shown such a relationship in brain region mainly
contributing to corresponding action to language understanding.
For example, Beilock et al. (2008) reported that the left BA6
(dorsal lateral premotor cortex), as a region normally devoted to
higher-level action selection and implementation, also supported
specialized motor (sports) experience enhancing action-related
language understanding even when there was no intention to
perform a real action.

Chunking theory-induced neuroscience investigations have
indicated that LTM chunks of domain-specific information are
stored in the ventral areas of the temporal lobe, including the
parahippocampal gyrus (PHG) and fusiform gyrus (Campitelli
et al., 2007). The PHG plays an important role in EM (Di Paola
et al., 2007; Gallagher and Koh, 2011); changes in EM serve as
the earliest and “marker” cognitive function alterations in AD
(Bäckman et al., 2001; Aretouli and Brandt, 2010; Gallagher and

TABLE 2 | Significant correlations between ReHo and training profiles in PCCPs.

Anatomical region (BA areas) MNI (x, y, z)a Voxels tb

Significant correlation between ReHo and rating points

R precentral gyrus (6) 39, −9, 45 35 5.11

L PCC/precuneus (31) −12, −54, 27 40 −6.90

R middle temporal gyrus (21) 57, 0, −30 27 −6.58

Significant correlation between ReHo and professional training years

L supplementary motor area (SMA) (6) −15, −12, 63 26 −6.24

R cerebellum posterior lobe 15, −60, −42 79 −6.20

Significant correlation between ReHo and
professional training hours per day

R caudate 18, 12, 15 31 −4.00

MNI, Montreal Neurologic Institute; BA, Brodmann’s area; L, left; R, right.
aCoordinates of primary peak locations in MNI space. bRepresents the peak
statistical value of voxels showing ReHo correlated with training profiles. Positive
and negative t-values indicate positive and negative correlations between ReHo
and training profiles, respectively.

Koh, 2011; Marra et al., 2016; Gagliardi et al., 2019). Moreover,
the connection of the PHG with the PCC/Pcu and MTG was
positively correlated with the Mini-Mental State Examination
(MMSE) score, indicating functional connectivity that reflects
the progression of cognitive degeneration disease. Pertinently,
the PHG is important in mediating the connectivity between the
hippocampus and hubs of the DMN as well as the connection
between the MTG memory system and the DMN (Liu et al.,
2016). Both neuropathological (Van Hoesen et al., 2000) and
structural MRI (Pantel et al., 2003) evidence have demonstrated
that selective morphological brain changes and atrophy in the
PHG represent a preclinical stage of AD. Recently, Jia et al. (2017)
reported a link between local synchronization alterations in the
PHG and APOE-related cerebral physiological heterogeneity. All
related findings demonstrated the possibility that plastic ReHo
changes in the PHG by professional Chinese chess training may
indicate its role in AD prevention. A 5.1-year study of 469 elderly
individuals, among whom dementia developed in 124 subjects (of
which more than fifty percent developed AD), found that playing
board games was associated with a reduced risk of dementia
(Verghese et al., 2003). This protection was later explained by
the cognitive reserve theory that the number and strength of
neuronal connections in the brain could be increased by training;
the more connections were built up, the larger reserves to
counteract the rate at which neurons were disappearing from
the brain as these neurons were destroyed by AD pathology
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(Marx, 2005). In this study, a negative correlation was
found between ReHo of the right MTG and rating points,
which demonstrates the relationship between the combined
function of the PHG and fusiform gyrus and training-specific
experiences among PCCPs.

CONCLUSION

Through the comparison of ReHo analysis of rs-fMRI data
between PCCPs and novices, training-specific whole-brain local
connectivity changes in PCCPs were revealed. Brain ReHo of
PCCPs demonstrated a similar changing pattern described in
the classical view of automaticity in motor control and learning.
Besides, some ReHo changes occurred in an area responsible
for Chinese character pronouncing and reading. Moreover,
professional Chinese chess training induced ReHo changes
located in AD-related areas, which suggested the possibility of
AD preventive effects from Chinese chess training. Findings from
this study demonstrate the feasibility of using ReHo as a research
tool to monitor board game-induced brain plastic changes and
shed light on the neural substrates underlying cognition in
Chinese chess playing.
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