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Cells of the embryonic vertebrate limb in high-density culture undergo chondrogenic pattern formation, which results
in the production of regularly spaced ‘‘islands’’ of cartilage similar to the cartilage primordia of the developing limb
skeleton. The first step in this process, in vitro and in vivo, is the generation of ‘‘cell condensations,’’ in which the
precartilage cells become more tightly packed at the sites at which cartilage will form. In this paper we describe a
discrete, stochastic model for the behavior of limb bud precartilage mesenchymal cells in vitro. The model uses a
biologically motivated reaction–diffusion process and cell-matrix adhesion (haptotaxis) as the bases of chondrogenic
pattern formation, whereby the biochemically distinct condensing cells, as well as the size, number, and arrangement
of the multicellular condensations, are generated in a self-organizing fashion. Improving on an earlier lattice-gas
representation of the same process, it is multiscale (i.e., cell and molecular dynamics occur on distinct scales), and the
cells are represented as spatially extended objects that can change their shape. The authors calibrate the model using
experimental data and study sensitivity to changes in key parameters. The simulations have disclosed two distinct
dynamic regimes for pattern self-organization involving transient or stationary inductive patterns of morphogens. The
authors discuss these modes of pattern formation in relation to available experimental evidence for the in vitro
system, as well as their implications for understanding limb skeletal patterning during embryonic development.
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Introduction

Skeletal pattern formation in the developing vertebrate
limb depends on interactions of precartilage mesenchymal
cells with factors that control the spatiotemporal differ-
entiation of cartilage. The most fundamental skeletogenic
processes involve the spatial separation of precartilage
mesenchyme into chondrogenic and nonchondrogenic do-
mains [1], and can be studied in vitro as well as in vivo (Figure
1). In high-density ‘‘micromass’’ cultures of chondrogenic
(i.e., cartilage-forming) embryonic limb mesenchymal cells
[2,3], as well as in the developing limb itself [4], morphogens
of the TGF-b family induce the local aggregation or
condensation of these cells by a process that involves the
upregulation of the adhesive extracellular glycoprotein
fibronectin [3,5]. Cells first accumulate in regions of increased
cell–fibronectin adhesive interactions [6–8] and then acquire
epithelioid properties by upregulation of cell–cell adhesion
molecules [9,10]. Cartilage differentiation follows at the sites
of condensation both in vitro and in vivo (see [11–13] for
reviews).

In certain developmental processes, such as angiogenesis
(sprouting of capillaries) and invasion by cancer cells of
surrounding tissues, pre-existing multicellular structures
become more elaborate. Precartilage condensation, by con-
trast, is an example of a developmental process in which cells
that start out as independent entities interact to form
multicellular structures. Others in this second category
include vasculogenesis (the initial formation of blood vessels),
the formation of feather germs, and the aggregation of social
amoebae into streams and fruiting bodies. Both continuous
[14–18] and discrete [18–29] models have been used pre-

viously to analyze a wide range of pattern formation
behaviors in both categories using concepts such as chemo-
taxis, haptotaxis, and reaction–diffusion instability. Discrete
models describe the behaviors and interactions of individual
biological entities such as organisms, cells, proteins, etc. They
are often applied to microscale events where a small number
of elements can have a large (and stochastic) impact on a
system.
In a previous study [26] we presented a discrete ‘‘biological

lattice gas’’ model for high-density cultures of precartilage
mesenchymal cells derived from the embryonic vertebrate
limb. This model, which was based on the physical notion of a
lattice gas, in which individual particles are free to move from
point to point on a lattice at discrete time-steps, accurately
simulated the formation of patterns of mesenchymal con-
densations observed in high-density micromass cultures of
such cells. In these simulations, the distribution and relative
size of the condensations corresponded to in vitro values
when appropriate quantities for cell behavioral parameters
were chosen, and the simulated patterns were robust against
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small variations of these values. Moreover, the simulated
patterns were altered similarly to the cultures when cell
density and exposure to or expression of molecular factors
represented in the model were altered in a fashion analogous
to their counterparts in the living system.

In the earlier model, each of the limb precartilage
mesenchymal cells, and each molecule from a ‘‘core’’ subset

of the molecules they secrete (the diffusible activator
morphogen TGF-b, a diffusible inhibitor of TGF-b’s effects,
the extracellular matrix [ECM] protein fibronectin), was
represented as a single particle (pixel) on a common grid.
Default motion of the cell particles was random, but cell
movement was also biased by the presence of fibronectin
particles produced and deposited by the cells according to a
set of rules involving TGF-b and inhibitor particles. The latter
in turn were produced in a cell-dependent fashion according
to a reaction–diffusion scheme, the network structure of
which was suggested by in vitro experiments [2,3,30].
The ability of the model of Kiskowski et al. [26] to simulate

both qualitative and quantitative aspects of precartilage
condensation formation and distribution suggested that the
core genetic network–cell behavioral mechanism that under-
lies this biological lattice gas might be sufficient to account
for pattern formation in the limb cell micromass system and
corresponding features of in vivo limb development. How-
ever, the model deviated from biological reality in several
important ways. (1) Mesenchymal cells in vitro are initially
surrounded by a small layer of ECM that separates them by
less than a cell diameter. Those that undergo condensation
round up, reducing their surface area, but do not move away
from adjacent noncondensing cells. Therefore, unlike the
situation in the model of Kiskowski et al. [26], mesenchymal
condensation in micromass culture does not involve accu-
mulation of cells at particular sites with concomitant
depletion of cells in surrounding zones. (2) The representa-
tion of cells, morphogens, and ECM on a common grid is
physically unrealistic. This is not simply a matter of pixel
scale: molecular substances can indeed form deposits and
gradients on the same linear scale as cells (;10 lm), and a

Figure 1. Developing Limb and Micromass Culture

(A) Progress of limb skeletal development in chicken forelimb (wing) between 3 and 7 d of embryogenesis. Gray represents precartilage condensation,
and black represents definitive cartilage. The developing limb, or limb bud, is paddle-shaped, being flatter in the back-to-front (dorsoventral) dimension
than in the thumb-to-little finger (anteroposterior) dimension, or the shoulder-to-fingertips (proximodistal) direction in which it mainly grows. The
cartilages that prefigure the bones first arise as stripe-like (e.g., long bones, digits) or spot-like (e.g., wrist bones shown here, or ankle bones in the
hindlimb) mesenchymal condensations. The apical zone of the 5-d chicken wing bud (indicated by the arrowheads) or leg bud provide a source of not-
yet-condensed mesenchymal cells that when grown in high-density ‘‘micromass’’ culture will form precartilage condensations.
(B) Discrete spot-like cartilage nodules that have formed after 6 d in a micromass culture of 5-d leg bud apical zone limb mesenchymal cells, visualized
by staining with Alcian blue. The cells in these cultures are initially plated as a densely packed monolayer (‘‘micromass’’) and rearrange over short
distances in the 2-D plane of the ;3 mm diameter culture during the indicated period. Each nodule arises from a condensation containing
approximately 30–50 cells. As indicated by the parallel lines, the spatial scale of the spot-like nodules (and the precartilage condensations from which
they arise) in the micromass cultures is comparable to the diameter of the precartilage and cartilaginous skeletal primordia in the developing limb. The
left panel is adapted, with changes, from [54]; the right panel is courtesy of Dr. Sherry Downie.
doi:10.1371/journal.pcbi.0030076.g001
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Author Summary

The development of an organism from embryo to adult includes
processes of pattern formation that involve the interactions over
space and time of independent cells to form multicellular structures.
Computational models permit exploration of possible alternative
mechanisms that reproduce biological patterns and thereby provide
hypotheses for empirical testing. In this article, we describe a
biologically motivated discrete stochastic model that shows that the
patterns of spots and stripes of tightly packed cells observed in
cultures derived from the embryonic vertebrate limb can occur by a
mechanism that uses only cell–cell signaling via diffusible molecules
(morphogens) and cell substratum adhesion (haptotaxis). Moreover,
similar-looking patterns can arise both from stable stationary
dynamics and unstable transient dynamics of the same underlying
core molecular–genetic mechanism. Simulations also show that spot
and stripe patterns (which also correspond to the nodules and bars
of the developing limb skeleton in vivo) are close in parameter
space and can be generated in multiple ways with single-parameter
variations. An important implication is that some developmental
processes do not require a strict progression from one stable
dynamic regime to another, but can occur by a succession of
transient dynamic regimes tuned (e.g., by natural selection) to
achieve a particular morphological outcome.

Patterns of Mesenchymal Condensation



‘‘molecular’’ pixel could be considered to correspond to
thousands of molecules. Nonetheless, the dynamics of
morphogen transport is continuous and is represented in
an inauthentically saltatory fashion by pixel displacement on
a grid of the same mesh size as that supporting cell
translocation. (3) Whereas the model of Kiskowski et al.
made the assumption that cells halt their motion when they
encounter suprathreshold levels of extracellular fibronectin
[26], this does not agree with measurements [31,32] indicating
that cells actually slightly increase their speed of motion as
they enter condensation centers and have a finite probability
of escaping from these foci.

Despite the successes of the model of Kiskowski et al. [26], it
was unknown whether removing its artifactual aspects and
replacing them with more realistic assumptions would lead to
similarly authentic results. We have therefore designed a
more sophisticated model that overcomes each of the listed
deficiencies of the earlier one. The cells in the new model are
extended, multipixel objects that can change shape in the
plane and ‘‘round up’’ by moving pixels into a virtual third
dimension. The model cells are separated by less than a cell
diameter, condense without denuding the regions surround-
ing condensation centers, and are not irreversibly trapped
upon entering a center. Finally, two grids of different mesh
size are used for cell and molecular dynamics.

We have found that not only does this improved model
reproduce the experimental data accounted for by the model
of Kiskowski et al., but that additional morphogenetic features
of the micromass culture system are simulated as well.
Moreover, potential dynamic properties of the developmental
process not seen in the earlier simulations, and not capable of
being distinguished on the basis of existing experimental data,
were disclosed in simulations using the new model, which has
therefore provided motivation for further empirical tests.

Results

Cell Representation
Werepresented eachmodel cell as an extended object on a 2-

D spatial grid. The rate and probability at which cells move (by
random walk) and change shape are parameterized separately
from movement of molecules so that they can be calibrated to
the scale of actual biological cells. Each model cell behaves
according to a predefined set of experimentally motivated
rules involving morphogen dynamics controlling the produc-
tion and deposition of fibronectin (seeMaterials andMethods).

We chose the simplest multipixel representation of limb
mesenchymal cells subject to the following biological con-
straints: (1) cells have essentially isotropic geometry (i.e., they
do not elongate in the direction of migration, but rather
probe their environment by extending short randomly
oriented projections); (2) the cell nucleus is also isotropic
but is relatively unchanging in shape and comprises on the
order of half the cell volume; and (3) cells in fibronectin-rich,
condensing areas of the micromass round up such that their
cross-section in the plane of the culture is significantly
reduced [32]. Model cells (initially comprising seven pixels;
Figure 2A) are therefore permitted to change shape con-
sistent with maintaining four pixels in a two-by-two square
(kernel) configuration that represents the portion of the cell
that contains the nucleus (Figure 2B) (although one or more
pixels of the central block can exchange with peripheral

pixels at each time-step). Cells respond to suprathreshold
levels of fibronectin by shrinking their area from seven pixels
to five pixels (corresponding to rounding up into a virtual
third dimension; Figure 2C) and increasing the rate at which
they move and change shape. Once a cell ventures onto
fibronectin it has the tendency to remain there, with a low
probability of leaving the condensation. Seven pixels is the
smallest multipixel representation that allows for both shape
change events and appropriate cross-sectional area change
when cells round up while maintaining a multipixel kernel.
The relatively small cell-size representation in the model
allows us to run extensive simulations with large numbers of
cells for a wide range of different parameters. Smaller
representations essentially reduce to a particle system; it is
straightforward to add more pixels if greater cell shape
fidelity is desired. (See Materials and Methods for implemen-
tation of all the above.)

Experimental Constraints on Parameter Values
The degrees of freedom built into our model allowed us to

calibrate some of the simulation parameters with exper-

Figure 2. Multipixel Spatial Representation of Cells

(A) Three cells on the spatial grid each occupying seven pixels.
(B) Cell changes shape. The region of the cell that contains the nucleus,
indicated by the four gray pixels, is structurally maintained; two border
pixels move to new locations, and one border pixel (top right) displaces a
nucleus pixel, which gets shifted to the right.
(C) Cell rounding-up on fibronectin. The surface area in the presence of
suprathreshold amounts of fibronectin is reduced with two border pixels
moving into a quasi-third dimension above the cell.
doi:10.1371/journal.pcbi.0030076.g002
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imentally determined values obtained in related or analogous
systems. In particular, the diffusion rate of the activator
morphogen and that of mesenchymal cells correspond well to
experimental values, and they both play an important role in
the resultant behavior of the model.

Lander et al. [33] calculated the effective diffusion
coefficient for a molecule the size and shape of Dpp, a
morphogen of the same superfamily as TGF-b, to be 10 lm2/s.
We have used this value, although the actual value may differ
due to varying capacities of members of the superfamily to
bind to variable microenvironments [34]. In the present
model, the diffusion rate for the activator morphogen in the
reaction–diffusion system was found to be a key parameter
for determining the size of the resultant patterns (see below).
If the diffusion rate is too slow, the activator does not spread
out across a sufficiently large area to produce broad
condensations; in contrast, if the diffusion rate is too fast,
the activator spreads out too much, thus preventing patterns
from even forming.

The effective ‘‘diffusion’’ rate for cells is considerably
slower than that of morphogens, and cells do not move
significant distances over the time period of precartilage
condensation formation [31,35,36]. (Diffusion of cells is of
course not due to Brownian motion, as is molecular diffusion,
but rather results from randomly directed cell locomotion
based on internally generated surface protrusive forces.)
Tracking of cells in time-lapse videos of developing chicken
limb precartilage mesenchyme showed that they move with
an average diffusion coefficient of ;0.5 lm2/min in non-
condensed regions and slightly faster in condensations [32].
We have therefore incorporated these experimental values
into our model, increasing the cell diffusion rate by 50% in
the presence of a threshold level of fibronectin (see Materials
and Methods). In addition, we cause the area of cells situated
on fibronectin to shrink in the presence of suprathreshold
levels of fibronectin, corresponding to the observed round-
ing-up of cells in mesenchymal condensations.

Using the experimental values for activator and cell
diffusion coefficients greatly facilitated choosing other
parameters so that appropriately sized and spaced condensa-
tions formed in silico. This contrasted with parameter
searches performed with nonbiological choices of activator

and cell diffusion coefficients. In those cases, no realistic
patterns formed in scores of simulations.
The inhibitor morphogen, elicited when cells in incipient

condensations are exposed to one or more ectodermally
produced fibroblast growth factors [30], must spread at a
faster rate than the activator morphogen for stable patterns
to be generated according to the reaction–diffusion dynam-
ics. We performed a number of simulations that varied the
ratio between the activator diffusion rate, which was kept
constant, and the inhibitor diffusion rate. Consistent pattern
formation was obtained when the inhibitor diffuses at a rate
four to eight times faster than the activator. At a slower than
4-fold ratio, the patterns degraded in consistency until the
point where no patterns were produced at all, which occurred
when both diffusion rates were almost equal (Table 1).
Beyond the 8-fold ratio, consistent patterns were still
produced (results not shown). The relatively small ratio
between the two diffusion rates makes the hypothesis of a
diffusible inhibitor of condensation formation [30,37] bio-
logically plausible.
Experimental evidence indicated that limb mesenchymal

cells in vitro respond to transient elevation in TGF-b
concentration early during the culture period by upregulat-
ing fibronectin production for at least a day [2]. We have
therefore assumed for the simulations described below that
cells are induced to produce and secrete fibronectin by their
first suprathreshold exposure to activator and become
unresponsive to later exposures to activator. Furthermore,
we have assumed that cells that are not exposed to inducing
levels of activator during a critical period follow an
alternative fibroblastic differentiation pathway [38], render-
ing them similarly unresponsive to later exposure to
activator.

Simulation of Condensation Patterns
Consistent with the experimental constraints described

above, we searched for a parameter set in the model that
reproduces the formation of precartilage condensation
patterns. We calculated the average interval of the centroids
(‘‘peak interval’’) [39] and the average island size of the
fibronectin patches [26] for five simulation images and
compared the values with those obtained from 12 in vitro
condensation images such as that in Figure 3A. The results
(Figure 4) indicate that our enhanced model reproduces the
pattern of precartilage condensations equally as well as the
model of Kiskowski et al. [26].
Different views of one simulation with parameters chosen

within the ‘‘standard’’ range are shown in Figure 3B–3D. The
distribution of condensations (Figure 3D) conforms very well
to the photograph of the 72-h culture (Figure 3A), although
the cells in the individual in silico condensations are not
tightly packed as they are in the in vitro ones. This is not
unexpected, since the model at present lacks representation
of a cell–cell adhesion molecule, several of which are
upregulated at condensation sites in limb mesenchyme
[9,10]. The shape change of the model cells once they
encounter fibronectin does nonetheless lead to a realistically
higher cell density in condensed versus noncondensed
regions of the simulated cultures.
The simulated distribution of fibronectin (Figure 3C)

conforms to the distribution of condensations, as expected
from immunolocalization studies [5]. The distribution of

Table 1. Variation of Average Peak Interval and Average Island
Size over a Range of Diffusion Ratios

Experiments/

Simulations

Activator-to-

Inhibitor Diffusion

Ratio, (DU: DV)

Average Peak

Interval, Mean

mm (SD)

Average Island

Size, Mean

10�3 mm2, (SD)

Experiments — 0.21 (0.009) 11.26 (1.26)

Simulations 1:3 (27:81) No patterns No patterns

1:4 (27:108) 0.218 (0.011) 11.867 (0.248)

1:5 (27:135) 0.2 (0.008) 13.167 (0.754)

1:6 (27:162) 0.213 (0.014) 13.464 (0.752)

1:7 (27:189) 0.204 (0.01) 14.179 (0.596)

For each diffusion ratio, a set of five simulations with different random initial conditions
was run with average peak interval and average island size calculated for the fibronectin
patch distribution for each simulation; the mean and standard deviation in parentheses is
reported for each simulation set. Values for 12 experiments are shown for comparison.
doi:10.1371/journal.pcbi.0030076.t001
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activator peaks at the time-point shown in Figure 3D maps
out the set of eventual condensations. Previous experimental
studies show TGF-b localization to anticipate the formation
of condensations by up to a day [2], and to trigger the
subsequent production of fibronectin after a brief, transient
exposure [2]. The model, with different parameter choices,
leads to realistic condensation patterns with either transient
(as in the simulation shown in Figure 3B–3D) or stable
activator patterns (see below).

We explored the robustness of the parameter set by varying
key parameters independently (65%); results can be seen in
Figure 5. Minor variation of the inhibitor strength on
activator (k2) by either þ5% or �5% produced little change
in the resulting condensation patterns. Instead, the temporal
dynamics were modified, causing an increase and decrease in
the period of the morphogen oscillations, respectively, with
the þ5% and �5% changes. For a decrease of 5% in the
activator self-regulation (k1) or an increase of 5% in the
activator regulation of inhibitor (k3), smaller condensations
were produced with the condensations spaced further apart
from one another. For a 5% increase in k1 or a decrease of
5% in k3, condensation patterns greatly expanded in size such
that the condensations touched one another, producing a
pattern of interconnected stripes instead of spots. Similar
results were also obtained if the inhibitor decay (k4) was
increased by 5%. For a 5% decrease in k4, the chemical
reaction was effectively damped, and no patterns were
produced.

Consistent with observations of limb precartilage develop-

ment in vitro and in vivo, our simulation results indicate that
cells can form condensation patterns by undergoing small
displacements of less than a cell diameter, packing more
closely by changing their shapes, while maintaining a relatively
uniform cell density across the entire spatial domain.
Given the possibility that choices of spatial domain and

boundary conditions could lead to simulation artifacts, we
sampled various alternatives in combination and investigated
changes in the resulting condensation patterns.
With respect to the spatial domain, we ran simulations with

rectangular grids of various widths and heights (unpublished
data); this produced no noticeable effects on the size, shape,
or distribution of the condensations. We conclude that the
total area of the spatial domain determines only the number
of condensations.
We also ran simulations with periodic and no-flux

conditions. In periodic conditions, grid boundaries are
connected together simulating a continuous space, whereas
the no-flux boundary acts as a barrier. Both types of
boundary conditions produced similar results for the size,
shape, and distribution of the condensation patterns apart
from the expected pattern truncations under no-flux
conditions (unpublished data).

Two Dynamic Regimes in Condensation Pattern
Formation
Our simulations disclosed two regimes of behavior in the

reaction–diffusion system of morphogens (Figure 6). In one
regime, the maximum concentration levels for the two
morphogens are characterized by a stationary value; this
regime appears when the chemical reaction is slow (i.e., the
production rate of the activator morphogen is balanced with
the production rate of the inhibitor morphogen; Figure 6B).
In the other regime, the concentrations levels for the two

Figure 4. Average Peak Interval versus Average Island Size for Oscillatory

Regime

Averages are shown for 12 experimental (circle) and five simulation
(square) points using parameter values in Table 2 with different random
initial conditions. All simulations were run for 3,000 iterations with
periodic boundary conditions.
doi:10.1371/journal.pcbi.0030076.g004

Figure 3. In Vitro and Oscillatory Regime Simulation Images for Spot-Like

Precartilage Condensations

(A) Discrete spot-like precartilage condensations that have formed after
72 h in a micromass culture of 5-d leg bud apical zone limb
mesenchymal cells, visualized by Hoffman Contrast Modulation optics.
Actual size of the microscopic field is 1 3 1.4 mm, and each condensation
contains approximately 30–50 tightly packed cells.
(B) Spatial grid of equal physical size to (A) containing over 6,000 cells
produced by simulation using the parameter values in Table 2 showing
clusters of fibronectin-producing differentiated cells (white), nondiffer-
entiated cells (blue-gray), and empty space between cells (black). Each
cluster contains on average ;30 cells.
(C) Spatial grid of same simulation as (B) showing fibronectin-rich
patches (black) produced by the differentiated cells.
(D) Spatial grid of same simulation as (B) showing activator concen-
trations at time slightly after the initial onset of cell differentiation. The
color bar indicates the range, with magenta for high concentration and
light blue for low concentration.
doi:10.1371/journal.pcbi.0030076.g003
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morphogens had an oscillatory behavior; concentrations
increase up to a peak value, decrease back down to almost
zero, and then continually repeat that cycle (Figure 6A). The
oscillatory regime occurs when the chemical reaction is fast
but a cap exists for the maximum amount of morphogen
produced for a single reaction step.

Both regimes for the reaction–diffusion system can produce
condensations patterns in the range of experimental values for
size and distribution. (See Figures 3 and 4 for the oscillatory
regime and Figures S1 and S2 for the stationary regime).
The limits on morphogen production (MAXU and MAXV in

Table 2) induce the oscillatory regime by restricting

Figure 5. Variation in Some of the Key Parameters Induces Morphological Changes in the Resultant Spatial Patterns from Distinct Spots to Connected

Spots to Stripe-Like Patterns

Average peak interval versus average island size for variations in the some of the key parameters are shown:þ5% (diamond) and�5% (filled diamond) for
k1,þ5% (triangle) and�5% (filled triangle) for k3,þ5% (inverted triangle) and�5% (filled inverted triangle) for k2, andþ5% (þ) for k4. The colored points are
a gradient of variations: 1% (red), 2% (orange), 3% (green), 4% (blue), and 5% (violet). Also shown are the five simulations (square) using the standard
parameter values in Table 2 and the mean for the 12 experiments (circle). All simulations were run for 3,000 iterations with periodic boundary conditions.
doi:10.1371/journal.pcbi.0030076.g005
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production of activator while still allowing production of
inhibitor, whose concentration has not yet reached the limit.
The result is that inhibitor concentrations build up in the
system; the inertia of inhibitor concentration dampens
activator production throughout the whole system, which
quickly accelerates and reduces the activator concentration
down to basal levels. Cells continue to produce a basal
amount of activator, so over time conditions are reproduced
for the onset of morphogen pattern formation. The dynamics
repeat, with transient patterns being formed, though the
spatial arrangement of the peaks varies unpredictably from
one oscillation to the next.
Variations in the limits on morphogen production in the

oscillatory regime produced minimal changes in the average
peak interval and average island size of the fibronectin patch
distribution (Table 3). The oscillatory regime is more robust
for higher limits and breaks down when the concentrations
are low. In contrast, the stationary regime operates in the
lower concentration levels of the morphogens.
The oscillatory regime is robust to a noisy threshold level

for cell differentiation. Simulations where each cell’s thresh-
old is randomly assigned from a normal distribution, N (9,000;
1,000), instead of a constant value, produce only slight
variation in the average peak interval and average island size
despite the large deviation in the threshold levels. However,
the stationary regime is sensitive to the threshold level for cell
differentiation as a modest variation, N (2,400; 170),
completely disrupts the spatial distribution of the fibronectin
patches (unpublished data).
The formation of patterns in the stationary regime is

sensitive to the period that cells are exposed to activator
morphogen and to the threshold level for cell differentiation.
If the exposure time is too short, small, irregularly spaced
condensations are produced. If the exposure is too long,
irregularly shaped condensations are produced. Although the
stationary regime produces stable activator peaks, those
peaks tend to wander spatially over time due to the
underlying cell diffusion. The oscillatory regime is less
sensitive to the threshold level for cell differentiation, and a
single transient pulse provides a well-defined exposure
period.

Figure 6. Dynamics of Oscillatory and Stationary Regimes

(A) Oscillatory regime produces transient patterns that repeat over time
but are spatially stochastic.
(B) Stationary regime produces stable patterns with minor stochastic
fluctuations around an equilibrium concentration. Graphs show the
maximum concentration value for a single pixel across the entire
molecular grid (that pixel lies within an activator peak as in Figure 3D but
may shift from peak to peak as concentrations vary) for activator (black)
and inhibitor (blue) morphogens.
doi:10.1371/journal.pcbi.0030076.g006

Table 2. Calibrated Simulation Parameters to Known Physical
Values

Parameter Physical Value Simulation Value

Cell diameter/area 15 lm/177 lm2 7 pixels

Cell spatial grid 1.4 3 1.0 mm 280 3 200 pixels

Molecular spatial grid — 560 3 400 pixels

Spatial ratio, cells–molecules 10,000:1 28 pixels–1 pixel

Simulation temporal scale 17.07 s 1 iteration

Reaction temporal scale 17.07 s 1 reaction

Diffusion temporal scale (n ¼ 200) 85.3 ms 1 diffusion step

Basal activator production (BU) Unknown 28

Activator self-regulation (k1) Unknown 0.3356

Activator regulation of inhibitor (k3) Unknown 0.16

Inhibitor regulation of activator (k2) Unknown �1.1

Inhibitor decay (k4) Unknown �0.4615

Maximum activator produced (MAXU) Unknown 8,000

Maximum inhibitor produced (MAXV) Unknown 8,000

Cell differentiation threshold (CDT) Unknown 7,000

Activator diffusion rate (DU) 10 lm2/s 27 pixels/iteration

Inhibitor diffusion rate (DV) Unknown 108 pixels/iteration

Cell diffusion rate 0.42 lm2/min 1 pixel/60 iterations

Cell diffusion rate on fibronectin 0.62 lm2/min 1 pixel/40 iterations

doi:10.1371/journal.pcbi.0030076.t002

Table 3. Robustness of Average Peak Interval and Average
Island Size over a Range of Production Maximums

Experiments/

Simulations

Maximum

(MAXU, MAXV)

Average Peak

Interval, Mean

mm (SD)

Average Island

Size, Mean

10�3 mm2 (SD)

Experiments 0.21 (0.009) 11.26 (1.26)

Simulations 32,000 0.206 (0.007) 13.08 (1.13)

16,000 0.214 (0.007) 12.417 (0.471)

8,000 0.218 (0.011) 11.867 (0.248)

4,000 0.207 (0.015) 11.13 (0.426)

2,000 0.214 (0.007) 10.995 (0.512)

1,000 0.207 (0.007) 10.478 (0.618)

500 No patterns No patterns

For each maximum, a set of five simulations was run with average peak interval and
average island size calculated for the fibronectin patch distribution for each simulation;
the mean and standard deviation in parentheses is reported for each simulation set.
Values for 12 cultures are shown for comparison.
doi:10.1371/journal.pcbi.0030076.t003
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Formation of Stripe Patterns
While the focus of our model has been on producing the

spot patterns typically seen in leg-cell cultures [5,40], the
exact same model can produce stripe patterns with a slight
adjustment to parameters (Figure 7). This is significant
because uncontrolled variations in the preparation of
cultures grown under the same conditions as the spot-
producing ones occasionally give rise to stripe patterns
(Figure 7A). When the reaction–diffusion system progresses
to spot patterns, it goes through a brief period of partial
stripe formation until dominant activator peaks stabilize the
system into spot patterns. Reducing the limits on morphogen
production (MAXU and MAXV in Table S1) prevents peaks of
activator morphogen from dominating, and stable stripe
patterns are maintained. This corresponds to theoretical
analysis by Shoji and coworkers of reaction–diffusion systems
with linear kinetics and constant constraints [41]; they show
that stripe patterns are generated instead of spot patterns if
the upper and lower constraints are equal distances from the
equilibrium. Similar to the formation of spot patterns in the
stationary regime, the formation of stripe patterns is sensitive
to the duration of the period in which cells are exposed to
activator morphogen.

Discussion

We have demonstrated that parameter choices can be
found for our quasi–3-D discrete model that reproduce the
experimental distribution and size range of precartilage
condensations in experimental micromass cultures. The
performance of the model was equal to that of Kiskowski et
al. [26], despite the imposition of realistic scaling and
experimentally determined constraints.

The new model has allowed us to study the interplay
between reaction–diffusion processes, fibronectin produc-
tion, and cell–fibronectin interaction in greater detail than
previously possible. In particular, our simulations disclosed
two regimes in the interplay of the reaction–diffusion system
of morphogens with fibronectin production and cell behav-
ior. In one regime, stationary morphogen patterns were
produced, followed by cell rearrangement into patterns of
condensation. In the second regime, morphogen patterns
were transient and oscillatory in time, and the induced
fibronectin production (and consequent cell rearrangement)
occurred with a delay. In addition, the dynamic character-
istics of the second regime provide a natural explanation for
apparent oscillatory effects of limb precartilage cell re-
sponses to TGF-b seen in previous experimental studies [2].
As mentioned in Results, the transient regime also exhibits
less sensitivity than the stationary regime to several key
system parameters, giving it plausibility as the more robust
pattern-forming mechanism. However, in order to suppress
‘‘second-generation’’ condensation patterns due to the
recurrence of activator peaks in this regime, we assumed
that cell differentiation to a morphogen-nonresponsive state
occurs rapidly relative to the period of oscillation. This
assumption is obviously not needed for simulations in the
stationary case; indeed, stable pattern formation in this
regime would be consistent with extended (i.e., over a period
of a day or more) susceptibility to perturbation by exogenous
TGF-b. We are currently performing in vitro experiments
analogous to earlier studies on the first day of development
[2] to test this predicted difference, as well as some others.
Our model generates realistic patterns of precartilage

condensation in high-density culture without the need to
postulate direct cell–cell adhesive interactions. This feature
appears to reflect biological reality. First, although the
separation of condensing from noncondensing cells super-
ficially resembles sorting out by differential adhesion (see [42]
for a recent model of the latter process based on a free-
energy minimization principle), haptotactic binding to
fibronectin is sufficient to recruit limb precartilage mesen-
chymal cells, or even inert particles, into condensations [6].
Second, while as mentioned above, several cell–cell adhesive
proteins, including N-CAM [9] and N-cadherin [10], are
expressed at sites of condensation, their loss does not impair
condensation-dependent skeletogenesis [43,44].
We note that in both the oscillatory and stationary cases,

the region of parameter space that leads to realistic
fibronectin patch and condensation patterns corresponds to
activator morphogen peaks that are on the spatial scale of the
condensations themselves. For the oscillatory regime, a small
number of those peaks (see Videos S1 and S2) have relatively
high and possibly nonphysiological activator and inhibitor
concentrations (assuming morphogen units represent one or
more protein molecules). If morphogen dynamics in these
cultures is indeed oscillatory [2], this may represent an
inauthentic aspect of our model, resulting from the use of the
classic diffusion-dependent Turing-type morphogen scheme.
We are therefore exploring alternative embodiments of the
model using juxtacrine signaling, the role of which is
suggested by recent demonstration of involvement of the
Notch signaling pathway in the inhibitory branch of the
condensation-patterning network [45]. Recent analyses have
suggested that introducing juxtacrine signaling into the

Figure 7. In Vitro and Simulation Images for Stripe-Like Precartilage

Condensations

(A) Stripe-like precartilage condensations.
(B) Spatial grid containing more than 6,000 cells produced by simulation
showing stripes of fibronectin-producing differentiated cells (white),
nondifferentiated cells (blue-gray), and empty space between cells
(black).
(C) Spatial grid of same simulation as (B) showing fibronectin-rich stripes
(black) produced by the differentiated cells.
(D) Spatial grid of same simulation as (B) showing activator concen-
trations at time slightly after the initial onset of cell differentiation. The
color bar indicates the range, with magenta for high concentration and
light blue for low concentration.
doi:10.1371/journal.pcbi.0030076.g007
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dynamics can bring reaction–diffusion pattern-forming
systems that are otherwise biochemically implausible into
more realistic parameter domains [46]. We note that our
multipixel representation will enable the incorporation of
cell asymmetry and polarity (a known feature of limb
mesenchymal cells [47]) in future models using cell relay
mechanisms.

The capacity of our model to generate both spots and
stripes of precartilage condensation under slightly different
parameter choices corresponds well to experimental results
in which either morphotype may be generated under similar
initial conditions. Because the developing limb itself gen-
erates its skeleton in the form of spots and stripes of
precartilage condensation (Figure 1; see also [1]), this result of
our simulations supports the applicability of the core
molecular–genetic mechanism we have used to the under-
standing of both in vitro and in vivo chondrogenic pattern
formation. Moreover, the flexibility and generality of the
framework presented here makes it suitable for representing
and testing other experimentally motivated models for
periodic patterning in which cell movement and shape
change is involved, such as the formation of feathers and
hair [25,48] and teeth [49,50].

Materials and Methods

Mesenchymal cell cultures. Cell cultures were prepared using
precartilage mesenchymal tissue isolated from the myoblast-free
distal 0.3 mm [51] of Hamburger and Hamilton stages 24–25 [52] leg
buds of 5-d White Leghorn embryos (Moyer’s Chicks, http://www.
moyerschicks.com) under the conditions described for the standard
cultures in Kiskowski et al. [26] (1.75 3 105 cell per 10-ll spot in
serum-free defined medium [53]). Living cultures were photo-
graphed using Hoffman Modulation Contrast optics (43 objective
lens; Modulation Optics, Inc., http://www.modulationoptics.com)
with condenser and polarizer adjusted to visualize cell condensa-
tions [7].

Computational model and cell dynamics. The spatial environment
that cells and molecules occupy is modeled on a 2-D plane. The
implementation provides support for multiple superimposed discrete
grids of various spatial scales. In our current model, we use two scales:
one for the cellular level and another finer-resolution scale for the
molecular level. The coarsest resolution spatial scale is considered to
be the base spatial scale, which is the cellular level for our model; all
other grids are an integer ratio size of that base grid. The base spatial
grid can be defined as a square or rectangular grid of any height and
width, and all of the grids overlay one another and cover the same
physical area.

Each cell is represented as a set of seven contiguous pixels
operating on the base spatial grid as shown in Figure 2A. We
maintained four pixels in a two-by-two square (kernel) configuration
that represents the portion of the cell that contains the nucleus and
allowed the remaining pixels to occupy the border region around the
nucleus. Cells that round up shrink their spatial extent to five pixels
(Figure 2C).

Cell diffusion was implemented as a random walk. If the cell moves,
then all of its seven (or five) pixels move one pixel in the appropriate
direction (up, down, left, right). Cells can also fluctuate in shape, yet
such fluctuations maintain a structural representation of the central
region containing the nucleus by preserving intact a two-by-two
square block of pixels. Therefore, shape fluctuations are restricted to
the motion of the three (or one) border pixels around the nucleus
which either move to new border pixels or displace nucleus pixels;
Figure 2B gives an example of both types of fluctuations for a cell
changing shape. Cells are prevented from overlapping each other
when they move or change shape.

Morphogen reaction–diffusion dynamics. In our discrete repre-
sentation of the Turing mechanism, a discrete number of activator
and inhibitor molecules occupy each pixel on the grid, and each
molecule is considered to have a spatial representation of just one
pixel. We modeled the reaction dynamics of the activator and
inhibitor molecules at each pixel as follows: let Ut and Vt be the

concentration of the activator and inhibitor, respectively, at time t,
and let /t be an indicator function for the existence of a cell (/t¼ 1 if
cell is at the pixel; otherwise, /t ¼ 0) at time t.

DUt ¼ minfMAXU ; ðk1Ut þ BU Þ/t þ k2Vtg ð1Þ

DVt ¼ minfMAXV ; k3Ut/t þ k4Vtg ð2Þ

Equation 1 shows the change over time for each pixel on the grid
of the activator morphogen concentration based upon a proportion
(as defined by chemical reaction rates) of the current activator and
inhibitor concentrations. Equation 2 shows the corresponding
change over time for each pixel on the grid of the inhibitor
morphogen. The activator morphogen is considered a positive self-
regulating molecule and a positive regulator of the inhibitor; thus,
chemical rate parameters k1 and k3 both have positive values. The
inhibitor morphogen is considered a negative regulator of activator
that decays over time; thus, chemical rate parameters k2 and k4 are
both negative values.

In our model, production of the activator and inhibitor molecules,
as represented by the parameters k1 and k3, can only occur in the
presence of a cell as enforced by /t; however, the decay of activator
and inhibitor, as represented by the parameters k2 and k4, is
considered to occur independent of cell presence. Cells are initially
randomly distributed on the grid and secrete a small basal amount
(BU) of activator morphogen that provides the initial concentration
of activator; cells continue this basal production throughout the
simulation, and inhibitor concentration starts at zero.

In keeping with the biology, we considered cells to respond to low
concentrations of morphogens and thus represent morphogen
molecules as discrete entities. Consequently, the morphogen concen-
trations (Ut, Vt) are whole numbers, and changes in the concen-
trations at a time-step are rounded to the nearest integer and
prevented from becoming negative. Nonetheless, we treated the
chemical rate parameters (k1, k2, k3, k4) for the two morphogens as
averages of the reaction rates and allowed them to assume real
number values.

In any physicochemical reaction there is limitation on how much
reagent a single cell can realistically produce during any period of
time. For this reason, our model provides separate parameters
(MAXU, MAXV) for the maximum amount of activator and inhibitor
that can be produced during a single reaction step. The maximums
are imposed on individual pixels of the molecular grid rather than
across the entire cell, consistent with polarization of limb mesen-
chymal cells [47]. This allows for small morphogen gradients to be
present across the spatial extent of an individual cell through the
spatially polarized secretion of morphogens. The peaks of activator
concentration produced by the reaction–diffusion dynamics define a
large-scale prepattern, equal in spatial area to the fibronectin
patches, containing around 30 cells within a single patch. Polarization
plays a role for the cells on the border region of the patch, whereas
cells in the patch interior perceive a relatively constant morphogen
concentration across their entire spatial extent.

Molecular diffusion from any pixel can occur randomly toward any
of the four neighboring pixels (up, down, left, right). The diffusion
rates (DU, DV) are scaled into a probability factor 0 , p , 1 and a
time-step n such that D¼ pn. The probability determines the chance
that a molecule will diffuse, and the time-step indicates how many
opportunities a molecule has to diffuse for a single simulation
iteration; if the molecule diffuses, then one of the four neighboring
pixels is picked with equal probability. The chemical reaction
operates at a much slower rate than molecular diffusion, so the time
scales are separated with diffusion calculated at a small time-step and
the reaction calculated at a longer time-step.

Fibronectin production. Fibronectin is a nondiffusing ECM
molecule that forms the template for precartilage condensations.
As the concentration levels of the activator morphogen increases in
the presence of a cell, that cell produces fibronectin mRNA, which
can then be translated into actual fibronectin protein molecules. The
model supports a simple threshold level (CDT) such that once the sum
of activator concentration across the entire spatial area of a cell
exceeds that threshold value, the cell differentiates into a fibronectin-
producing cell. Because we did not directly describe the level of
fibronectin mRNA within the cell, the trigger for cell differentiation
is separated from the actual production of fibronectin, and a model
parameter defines the delay between cell differentiation and
secretion of fibronectin.

We assumed that there is a critical period during which exposure,
or lack of exposure, of cells to activator morphogen, causes them to
either differentiate into fibronectin-producing cells or follow an

PLoS Computational Biology | www.ploscompbiol.org April 2007 | Volume 3 | Issue 4 | e760751

Patterns of Mesenchymal Condensation



alternative differentiation pathway. For purposes of simulation, we
disabled the reaction–diffusion dynamics after this critical period
(adjustable by a parameter) and prevented additional cells from
differentiating. For the oscillatory regime, a single transient pulse
(Figure 6B) defines the exposure period; reaction–diffusion dynamics
are disabled when the activator morphogen returns to basal
concentration levels. For the stationary regime, reaction–diffusion
dynamics are disabled after 500 simulation iterations (see Figures S1
and S2).

When a cell produces fibronectin, a single unit representing a
multimolecular complex is secreted with random probability for
each of the pixels on the molecular grid in the cell’s spatial domain,
and each unit is allowed to perform an initial small diffusion of at
most one pixel [26]. Production of fibronectin units continues until
a maximum concentration level is reached at a pixel, although cells
may still continue to produce fibronectin on pixels that have not yet
reached the maximum. The production rate of fibronectin, the
duration of such production, and the maximum amount of
fibronectin allowed per pixel can be adjusted with model
parameters.

Model calibration. In attempting to calibrate our model parame-
ters with known empirical parameters, we wanted to correlate the
spatial and temporal patterns produced by computer simulation
results with in vivo and in vitro experiments. For spatial patterns, we
considered the size, shape, and distribution of the fibronectin-rich
spatial domains; for temporal patterns, we considered the reaction
rates of activator and inhibitor production, the diffusion rates of
both cells and molecules, the onset of fibronectin production, the
production rate of fibronectin, and the shape and movement
fluctuations of cells on fibronectin. The actual values for the set of
key parameters used in the simulation and their corresponding
physical measurements, if known, are shown in Table 2.

Software implementation. Whereas the previous model of Kiskow-
ski et al. [26] was written in Matlab (http://www.mathworks.com), we
rewrote the current model in the C programming language for
efficiency, and then migrated it to the Objective-C programming
language to take advantage of object-oriented features. We still used
Matlab for visualizing data produced by simulation runs. The original
source code is available as Dataset S1 accompanying this article, and
can be obtained directly from the authors. We intend to continue
developing the software by expanding the capability to add molecular
and cellular detail to models of the limb micromass culture system
and allied 2-D and quasi–3-D developmental systems.
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