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Research Highlights 

(1) The characteristic index of the electroencephalogram signal was extracted using a nonlinear 

dynamics method, and a support vector machine was used for the classification of epileptic elec-

troencephalogram signals. Our findings are more accurate than previous classification studies. 

(2) Previous studies used electroencephalogram data from one or two cases in one electroence-

phalogram database, while we selected electroencephalogram data from four epileptic patients from 

the electroencephalogram database in two different hospitals, so the results are more representa-

tive. 

(3) In this study, electroencephalogram data from different cases were regarded as training data and 

test data for the support vector machine, which was different from previous studies that only used 

data from the same case, so our results are more meaningful for the prediction of clinical seizures. 

(4) We calculated the average classification accuracy rate of three cases as the final results, which 

are more convincing. Our findings indicate that a nonlinear dynamics index trained classifier can 

effectively identify epileptic electroencephalogram signals, and has good generalization ability. 

 

Abstract  
The automatic detection and identification of electroencephalogram waves play an important role in 

the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics 

index–approximate entropy and a support vector machine that has strong generalization ability 

were applied to classify electroencephalogram signals at epileptic interictal and ictal periods. Our 

aim was to verify whether approximate entropy waves can be effectively applied to the automatic 

real-time detection of epilepsy in the electroencephalogram, and to explore its generalization ability 

as a classifier trained using a nonlinear dynamics index. Four patients presenting with partial epi-

leptic seizures were included in this study. They were all diagnosed with neocortex localized epi-

lepsy and epileptic foci were clearly observed by electroencephalogram. The electroencephalogram 

data form the four involved patients were segmented and the characteristic values of each segment, 

that is, the approximate entropy, were extracted. The support vector machine classifier was con-

structed with the approximate entropy extracted from one epileptic case, and then electroence-

phalogram waves of the other three cases were classified, reaching a 93.33% accuracy rate. Our 

findings suggest that the use of approximate entropy allows the automatic real-time detection of 

electroencephalogram data in epileptic cases. The combination of approximate entropy and support 

vector machines shows good generalization ability for the classification of electroencephalogram 

signals for epilepsy. 
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INTRODUCTION 

    

Epilepsy is caused by the highly synchro-

nized abnormal discharge of neurons in the 

brain, it may recur with sudden onset, and 

can seriously affect the patient’s life and work. 

The electroencephalogram signal contains a 

large amount of physiological and patholog-

ical information about the brain, and is re-

garded as a key method for the diagnosis 

and treatment of epilepsy and other brain 

diseases
[1]

. The electroencephalogram signal 

consists of a group of randomized electro-

physiological signals, which have characte-

ristic nonstationary and nonlinear properties. 

Recently, a nonlinear approach has attracted 

increasing attention in electroencephalogram 

signal detection due to the great advantage 

of the randomness of representative signals
[2]

. 

The nonlinear properties of electroencepha-

logram signals have become a hot topic. 

 

At present, epileptic patients account for 5‰ 

of the total population worldwide, including 

six million cases in China. The majority of 

affected cases can be effectively controlled 

by drug treatment, while the remaining are 

intractable epilepsy patients because the 

drug treatment is ineffective. Among them, 

21–24% of intractable epilepsy patients can 

be cured by surgical removal of epileptic loci; 

however, the symptoms of the remaining 

75% of intractable epilepsy patients are una-

ble to be controlled
[3]

. Therefore, being able 

to predict recurrence and sudden seizures is 

very important for the improvement of the 

patient’s quality of life.  

 

A recent study found that a rule-based sei-

zure prediction method using a nonlinear 

dynamics index achieved greater than 90% 

sensitivity for focal neocortical epilepsy
[4]

. An 

effective prediction of an epileptic seizure 

requires automatic classification of epileptic 

electroencephalogram signals
[5]

. Therefore, 

we designed this study to explore the au-

tomatic identification and classification of 

electroencephalogram signals in epilepsy. 

 

Growing evidence has focused on the au-

tomatic detection and identification of epi-

lepsy signals
[6]

. A variety of classification 

methods have been proposed
[7]

, such as 

decision tree, Gaussian mixture classifica-

tion, fuzzy classification and support vector 

machines. In our experiment, we used a 

support vector machine for classification of 

electroencephalogram signals, because it 

requires only a small amount of data and 

has strong generalization ability
[8-10]

. Unfor-

tunately, in previous experiments
[8-10]

, train-

ing data and test data from electroence-

phalogram signals are often derived from 

the same cases, which may affect the clini-

cal applicability of the classifiers. 

 

To test the generalization ability of the 

nonlinear dynamics index and verify the 

availability of nonlinear dynamics in real- 

time detection of electroencephalogram 

epileptic signals, we selected training data 

and test data from the electroencephalo-

gram signals of different cases. In brief, we 

first collected a multi-segmental elec-

troencephalogram signal in one epileptic 

patient and continuous electroencephalo- 

gram signals from different cases. Then 

the signals were divided chronologically, 

and the nonlinear dynamics index was 

measured. The electroencephalogram data 

we collected were scalp data that had high 

noise disturbance, so we used approx-

imate entropy, which is the best anti-noise 

nonlinear dynamics index
[11]

. After the ap-

proximate entropy was calculated, we 

classified the data in each segment. Our 

findings indicate that this test method can 

clearly elucidate the generalization ability 

of the classifier. 
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RESULTS 

 

Quantitative analysis of subjects 

Four patients with partial epileptic seizures (neocortex 

localized epilepsy with clear loci) were included in this 

study. Their electroencephalogram data were divided 

into segments and the characteristic values of each 

segment were measured, i.e., their approximate entropy. 

The support vector machine classifier was constructed 

using the approximate entropy of one epileptic case, and 

then the electroencephalogram waves of the other three 

cases were classified. All patients were involved in the 

result analysis, with no loss. 

 

Construction of classifiers  

The electroencephalogram data of patient 1, which were 

used to construct the support vector machine classifier, 

were divided into group A and group B. Group A con-

tained 40 segments of electroencephalogram data during 

the epileptic interictal period, and group B contained 40 

segments of electroencephalogram data during the epi-

leptic seizure period. There were significant differences 

in the approximate entropy between group A and group 

B (t = 5.863, P < 0.01; paired sample t-test). The group-

ing is listed in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After the classifiers were constructed, the electroence-

phalogram data from the other three patients were 

chronologically and equally divided into two groups (pa-

tient 2: C1, C2; patient 3: D1, D2; patient 4: E1, E2), with 

40 segments of data in each group. All of the approx-

imate entropies of the electroencephalogram data in 

each group were input into the constructed classifier for 

classification (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the classification result of the electroencephalogram 

data in each group was a one-dimensional vector, we 

can combine electroencephalogram C1, C2, D1, D2, E1, 

E2 into groups C, D, and E. 

  

Classification results  

The characteristics of classifiers can be described using 

the following index: 

 

Sensitivity = true negativity / (true negativity + false posi-

tivity) (1) 

Sensitivity means the percentage of successfully verified 

seizure signals among all test data. 

 

Specificity = true negativity / (true negativity + false posi-

tivity) (2) 

Specificity means the percentage of successfully ex-

cluded seizure signals during the ictal period. 

Figure 1  Flowchart of support vector machine classifier.  

Groups A and B: epileptic electroencephalogram data at 
interictal and ictal states. ‘Extract characteristics’ extract 
the approximate entropy of electroencephalogram data. 

‘Classifier construction algorithm’ calculates the 
approximate entropy at interictal and ictal states and thus 
the classifier algorithm is obtained. 

Figure 2  Test flowchart of electroencephalogram data of 
epileptic patients (C1, C2; D1, D2; E1, E2).  

All the approximate entropy of the electroencephalogram 
data in the six groups were input into the constructed 
classifier for classification. ‘Extract characteristics’ extract 

the approximate entropy of the electroencephalogram 
data. Finally, the classification results of the 
electroencephalogram data from the six groups could be 

obtained. 

Extract characteristics 

Interictal period Seizure period 

Classier construction algorithm  

Classier  

Group A  Group B  

Extract characteristics 

Input into classifier 

Obtain results 

C1, C2, D1, D2, E1, E2 groups 
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Accuracy = number of correct classification / total num-

ber of test samples (3) 

Accuracy means the overall identification rate of the 

classifiers. 

 

In the group C, according to the clinician’s diagnosis 

report, 96–130 seconds were regarded as the ictal period, 

and patients presented with apparent spasm in the left 

upper limb, so we arranged 48–65 segments of data as 

the ictal data. As shown in Figure 3, the data in segments 

49, 51–65, and 75 (17 segments in total) were involved in 

the ictal data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the group D, according to the clinician’s diagnosis 

report, the data in segments 44–63 were the ictal data 

(Figure 4). 

 

In the group E, according to the clinician’s diagnosis 

report, the data in segments 53–72 were the ictal data 

(Figure 5). 

 

Based on the clinician’s diagnosis report, the classifica-

tion sensitivity, specificity and accuracy rate were very 

high in the groups C, D, and E. The accuracy rate of 

electroencephalogram data classification in the three 

groups reached 93.33% (Table 1). 

 

 

DISCUSSION 

 

In this study, we tried to extract an electroencephalogram 

signal index using a nonlinear dynamics method and used 

a support vector machine in the classification of epileptic 

electroencephalogram signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compared with previous classification results
[1-2, 7-10]

, our 

findings are more accurate and convincing for the follow-

ing reasons: First, previous studies used electroence-

phalogram data from one database and included only a 

few cases
[1-2, 7-10]

, while our study collected the electroen-

cephalogram data of four patients from two different hos-

pitals.  

Figure 3  Electroencephalogram data classification 
results of patient 2 (group C).  

According to the support vector machine classifier 
algorithm, the Y axis represents classification results,     
1 represents the epileptic interictal period and – 1 

represents the epileptic ictal period. The X axis represents 
electroencephalogram data at 1–80 segments for 0–160 
seconds.  

Each segment of data represents 2 seconds. Segments 
49, 51–65, 75 (total 17 segments) can be considered as 
ictal data. 

Figure 5  Electroencephalogram data classification 
results of patient 4 (group E).  

According to the support vector machine classifier 
algorithm, the Y axis represents classification results,     
1 represents the epileptic interictal period and –1 
represents the epileptic ictal period. The X axis represents 

the electroencephalogram data at 1–80 segments for 
0–160 seconds.  

Each segment of data represents 2 seconds. Segments 
53–72 can be considered as ictal data. 
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Figure 4  Electroencephalogram data classification 
results of patient 3 (group D).  

According to the support vector machine classifier 
algorithm, the Y axis represents classification results,    

1 represents the epileptic interictal period and –1 
represents the epileptic ictal period. The X axis represents 
the electroencephalogram data at 1–80 segments for 

0–160 seconds.  

Each segment of data represents 2 seconds. Segments 
44–63 can be considered as ictal data. 
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Second, previous studies also used training data and test 

data from one database
[1-2, 7-10]

, while our study collected 

training data and test data for the support vector machine 

from different databases and different cases. Finally, we 

calculated the average classification accuracy rate of 

three patients as the classification results, which are more 

convincing. Our experimental findings suggest that clas-

sifiers constructed with nonlinear dynamics indexes can 

effectively identify epileptic electroencephalogram signals 

and have good generalization ability. This method is sim-

ple and easy to use, and may benefit real-time detection 

and identification systems for epilepsy, thus assisting 

clinical diagnosis and treatment. 

 

Currently, neuroscience has become a hot spot in life 

science research. The characteristics of the nervous 

system may be quantitatively described through research 

into neurophysiological signals and the use of nonlinear 

dynamics methods, thus furthering our understanding of 

epilepsy.  

 

In this study, we used nonlinear dynamics and a support 

vector machine to classify epileptic electroencephalo-

gram signals, and have obtained a high accuracy rate 

compared with previous studies
[1-2, 7-10]

. Furthermore, the 

classifiers constructed with a nonlinear dynamics index 

showed good generalization ability. However, our expe-

riments are theoretical research and are not yet fit to be 

used clinically, thus practical applications deserve further 

exploration. 

 

 

SUBJECTS AND METHODS 

 

Design 

A computer-simulation, neuro-electrophysiological expe-

riment. 

 

Time and setting 

Experiments were performed at the Medical Information 

Processing Laboratory, Department of Biomedical Engi-

neering, Zhongshan School of Medicine, Sun Yat-sen 

University, China from July to October in 2012. 

 

Subjects 

Electroencephalogram data from partial epileptic patients 

were collected from the First Affiliated Hospital of Sun 

Yat-sen University and the Second Affiliated Hospital of 

Guangzhou Medical College, China. 

 

Inclusion criteria 

(1) Neocortical localized epilepsy; (2) clear epileptic loci; 

(3) onset within 1 minute, with clear ictal and interictal 

periods. 

 

Exclusion criteria 

(1) Limbic system localized epilepsy; (2) unclear epileptic 

loci; (3) onset later than 1 minute, ictal and interictal pe-

riods were elusive. 

 

Electroencephalogram data 

Electroencephalogram data were collected from the 

electroencephalogram room, First Affiliated Hospital of 

Sun Yat-sen University (patient 1) and the electroence-

phalogram room, Department of Neurology, Second Affi-

liated Hospital of Guangzhou Medical College (patients 

2–4), China, at 200 Hz and 256 Hz sampling frequency 

respectively.  

 

Patient 1: Temporal lobe epilepsy. Electroencephalogram 

data were collected via the F7 lead (left anterior temple) 

for 1 200 seconds continuously, and divided into ictal 

data (40 segments; group A) and ictal data (40 segments; 

group B) according to clinician’s reports. Each group 

contained 2 000 points of data. 

 

Patient 2: Temporal lobe epilepsy. Electroencephalo-

gram data were collected via the F8 lead (right anterior 

temple) for 160 seconds continuously, and chronolog-

ically divided into 80 segments (group C). Each seg-

ment contained 514 points of data, with each point 

representing 2 seconds. According to clinical perfor-

Table 1  Comparison of the sensitivity, specificity and accuracy of electroencephalogram data classification results for three 

epileptic patients  
 

Group 
Total data segments 

(segment) 

Data at seizure 

(segment) 

True positivity 

(segment) 

False positivity 

(segment) 

True negativity 

(segment) 

False negativity 

(segment) 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

C 80 18 15 1 62 2 88.24 98.41 96.25 

D 80 20 18 2 58 2 90.00 96.67 95.00 

E 80 20 17 4 54 5 77.27 93.10 88.75 

 
The sensitivity, specificity and accuracy of electroencephalogram data classification results for three epileptic patients (groups C, D, and E) are 

high. The average classification accuracy rate reached 93.33%. 
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mance, 88–126 seconds were regarded as the ictal 

period, and the patient presented with left upper limb 

convulsions. 

 

Patient 3: Temporal lobe epilepsy. Electroencephalogram 

data were collected via the T4 lead (right middle temple) 

for 160 seconds continuously, and chronologically di-

vided into 80 segments (group D). Each segment con-

tained 514 points of data, with each point representing   

2 seconds. According to clinical performance, 88–126 

seconds were regarded as the ictal period, and the pa-

tient presented with left upper limb convulsions and a left 

deflection of the head and the eyes. 

 

Patient 4: Frontal lobe epilepsy. Electroencephalogram 

data were collected via the Fp1 lead (left anterior temple) 

for 160 seconds continuously, and chronologically di-

vided into 80 segments (group E). Each segment con-

tained 514 points of data, and each point represented   

2 seconds. According to clinical performance, 106–144 

seconds were regarded as the ictal period, and the pa-

tient presented with left upper limb stiffness and a right 

deflection of the head and the eyes. 

 

All of the electroencephalogram data were collected from 

the scalp, processed and stored in the First Affiliated 

Hospital of Sun Yat-sen University, China and the 

Second Affiliated Hospital of Guangzhou Medical College, 

China. Prior to the experiments, all four epileptic patients 

were informed of the experimental scheme and risk, and 

gave their informed consent
[12]

. The electroencephalo-

gram data from the four epileptic patients are summa-

rized in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methods 

Extraction of nonlinear characteristics value 

Introduction of approximate entropy: a common nonli-

near kinetic parameter, which includes correlation di-

mension, Lyapunov exponent, and approximate entropy. 

Among these, approximate entropy is a rule for the 

complexity of a measure series and statistical quantiza-

tion. It can measure the probability of new patterns when 

the dimension increases from m to m + 1 and the inci-

dence of new information in a time sequence. Complex 

signals tend to have high approximate entropy; on the 

contrary, regular signals tend to have low approximate 

entropy. Approximate entropy can reflect the overall 

characteristics of the signals. Compared with correlation 

dimension and Lyapunov exponent, approximate entropy 

requires a small amount of data (500–1 000 points) and 

has anti-noise ability. Generally, approximate entropy is 

calculated by its definition as follows: 

 

For a given N-point time series {u(i)}, approximate en-

tropy can be obtained by the following steps (m is the 

dimension of the preset pattern, and r is the preset simi-

lar tolerance): 

 

(1) The sequence {u(i)} composes the m-dimensional 

vector X(i), namely: 

 

 

X(i)=[u(i)，u(i + 1)…u(i + m – 1)], i = 1 – N – m + 1    (1) 

 

 

(2) For every i value, the distance between vector X(i) 

and another vector X(j) is calculated: 

 

 

d[X(i),X(j)]=max|u(i + k) – u(i + k)|, k = 0 – m – 1      (2) 

 

 

(3) Given the threshold value r (r > 0), for each i value, 

the number of d[X(i),X(j)]<r is analyzed and the ratio of 

the number to the total number of vectors N – m + 1 is 

calculated, denoted as Ci
m
(r), namely: 

 

 

[Ci
m
(r)={d[X(i),X(j)]<r number}/(N – m + 1)          (3) 

 

 

(4) Ci
m
(r) logarithm is obtained, and the average i value is 

calculated, denoted as Φ
m
(r), namely:  

 

   
1

m m

i

1

1
r lnC r

1

N m

iN m

 



 
 

              (4) 

 

(5) For m + 1, repeat steps 1–4, to obtain Φ
m+1

(r) 

(6) Obtain the final results as follows: 

Table 2  General information of the four partial epileptic 

patients 

Patient 1 2 3 4 

Sex F F M F 

Age (year) 16 25 15 13 

Sample frequency (Hz) 200 256 256 256 

Origin Temporal Temporal Temporal Frontal 

Ictal segments  

(segment) 
40 18 20 20 

Interictal segments 

(segment) 
40 62 60 60 

Segment duration  

(second) 
10 2 2 2 

 
F: Female; M: male. 
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ApEn(m, r )= Φ
m
(r) –  Φ

m+1
(r)                   (5) 

 

 

Usually m = 2, r = 0.1 – 0.25 SD(u) (SD: standard devia-

tion), and the obtained approximate entropy has rea-

sonable statistical properties, which was consistent with 

previous studies
[13]

, so we set m = 2, r = 0.25 SD(u) for 

approximate entropy. 

 

A fast approximate entropy algorithm: Approximate en-

tropy was extracted using a fast algorithm, which over-

comes the shortcomings of common algorithms, such as 

low calculation efficiency, slow speed and being not 

conducive to real-time operation. This algorithm was 

proposed by Hong et al 
[14]

. using the theory of binary 

distance matrix; the speed was 5 times the definition 

calculation. 

 

1) For the N-point sequence, the N N  binary distance 

matrix D was calculated, and the element in the D (i
th
 row 

and j
th
 column) is denoted by ijd  : 

 

 

  1

0ijd      

   u i u j r

u i u j r

 

   1,2,...,i N        (6) 

 

2)  
2

iC  and 
3

iC  were calculated using the elements in 

matrix D:  

 

       

       

1
2

1 1
1

2
3

1 1 2 2
1

N

i ij i j
j

N

i ij i j i j
j

C r d d

C r d d d



 




   


 

  





                (7) 

 

3)  2

iC r  logarithm is obtained and the average i value 

is calculated: 

 

      
1

2 2

1

1
ln .

1

N

i

i

r C r
N





 

                (8) 

 

  

 3

iC r  logarithm is obtained and the average i value is 

calculated: 

 

      
2

3 3

1

1
ln .

2

N

i

i

r C r
N





 

                (9) 

 

4) Approximate entropy estimate: 

 

      2 32,ApEn r r r              (10) 

 

This fast approximate entropy algorithm omits the vector 

construction process and directly obtains the difference 

of data in the time series, thus improving the calculation 

speed of approximate entropy. During seizures, a large 

group of neurons in the human brain synchronously 

discharge, and several brain functions are inhibited, 

therefore, compared with normal brain electrical activity, 

the complexity will be reduced. From the interictal period 

to the ictal period, approximate entropy reduces to vary-

ing degrees and then begins to increase after the end of 

the seizure
[15-16]

. 

  

Support vector machine 

Definition of support vector machine: It is the optimal 

design rule of linear classifier proposed by Vapnik       

et al 
[17-19]

. Its basic principle is to find the optimal hyper-

plane in the feature space, and to separate two types of 

samples correctly. The interval between different types of 

sample sets that are close to the hyperplane should be 

the maximum, so as to achieve a greater generalization 

capability; when the optimal classification hyperplane 

cannot completely separate two types of sample, it is 

suggested to introduce a relaxation factor ξ, allowing the 

presence of misclassified samples, thus balancing the 

empirical risk and the promotion.  

 

A support vector machine is based on structural risk mi-

nimization, while others are based on empirical risk mi-

nimization. Compared with other classification methods, 

a support vector machine will keep the sample characte-

ristics and consider the adaptability of new input data; 

therefore, it has a stronger learning ability for small 

sample sizes
[20]

. 

 

Data points are expressed as an n-dimensional vector x, 

and the present study discusses a binary classification 

algorithm, with y = 1 or –1 to represent different levels. 

The classifier aims to find a hyperplane in the 

n-dimensional space, using the following equation: 

 

 

 0Tw x b                               (11) 

 

 

Through the hyperplane, two types of data can be sepa-

rated. If the data point on one side of the hyperplane is – 1, 
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then that on the other side of the hyperplane is all 1: 

 

 

     Tf x w x b                           (12) 

 

Obviously, if f(x) , then x is a point located on the hyper-

plane. As for all f(x) < 0 points, y = –1, while f(x) > 0  

corresponds to y = 1. During the classification process, 

we introduced the data points x into f(x). If the result was 

less than 0, we defined it as –1, and if greater than 0, we 

defined it as 1
[21]

. After the optimal classification plane in 

the character space was chosen, the binary classification 

results could be tested with the test data. For the new 

data x, f(x) can be defined as: 

 

 

   
1

,
N

i i i

i

f x y K x x b


 
 

1,2,...,i N
       

 

Here, λ1 ≥ 0  is the Lagrangian factor, meeting  

  , 1i iy w x b  
.   ,iK x x

 is the kernel function, 

which receives two low-dimensional space vectors and 

mappings to high-dimensional space, calculating the 

vector inner product through a transformation and con-

structing a linear discriminant function in 

high-dimensional space. Many problematic nonlinear 

classification problems in low-dimensional space can be 

solved through the kernal function conversion into a 

highdimensional space. 

 

Influencing factors: There are two factors contributing to 

the properties of the support vector machine classifier: 

the kernel function and the error penalty parameter 

C
[22-23]

. Currently, the selection criteria for the kernel 

function remain elusive, and radial basis functions have 

achieved good outcomes in electroencephalogram signal 

analysis
[24]

.  

 

The radial basis functions can map nonlinear time series 

low-dimensional space vector sets into high-dimensional 

space, so the kernel function in the support vector ma-

chine we used was a radial basis function. The error 

penalty parameter C is applied to optimize the generali-

zation ability of the machine, which may be affected by 

the misclassified sample proportion and the algorithm 

complexity. In our experiments, we tried C = 50, C = 100, 

and C is close to infinity for numerical calculation. When 

C = 50, there were two misclassified samples; when C = 

100, there were also two misclassified samples; and 

when C was approaching infinity, only one sample was 

misclassified, so we set the error penalty parameter C as 

approaching infinity. 

 

Statistical analysis 

All data are derived from raw electroencephalogram im-

ages. The data of patient 1 were divided into groups A 

and B, and the approximate entropy of the two groups 

was compared using a paired samples t-test. A P < 0.01 

value was considered significant.  
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