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T ype 2 diabetes is the most common
form of diabetes in humans and re-
sults from a combination of genetic

and acquired factors that impair �-cell
function and tissue insulin sensitivity
(1,2). However, there is growing evidence
that �-cell dysfunction is crucial for the
development and progression of this form
of diabetes (3,4). Reduced �-cell func-
tional mass in diabetes, and other catego-
ries of glucose intolerance, has been
described by several authors, and de-
creased islet and/or �-cell volume in the
pancreas of type 2 diabetic patients has
been consistently reported. In addition,
studies conducted in patients, and iso-
lated islets, have shown both quantitative
and qualitative defects of glucose-
stimulated insulin secretion. Predictably,
therefore, much interest is focused on the
possibility of preserving the �-cell to pre-
vent the onset of diabetes, or impede the
progressive deterioration of glycemic
control, observed after diagnosis and de-
veloping over the years. In this brief over-
view, several major features of �-cell
dysfunction in different conditions (from
normal glucose tolerance [NGT] to overt
diabetes) will be described; thereafter, the
possibility/feasibility of maintaining or re-
storing �-cell functional mass in type 2
diabetes, to prevent deterioration of glu-
cose control, will be discussed.

�-CELL DYSFUNCTION AND
TYPE 2 DIABETES: IN VIVO
STUDIES — Several cross-sectional
and prospective studies showed that
�-cell dysfunction plays a major role in
determining the onset and progression of

type 2 diabetes. When insulin response to
an oral glucose tolerance test and insulin
sensitivity during euglycemic insulin
clamp were measured in 388 individuals
(138 with NGT; 49 with impaired glucose
tolerance [IGT], and 201 with type 2 dia-
betes), a progressive decline of �-cell
function (with insulin release corrected
for glycemic stimulus and degree of insu-
lin resistance) was observed; this decline
commenced in normal glucose tolerant
subjects (5). Furthermore, in 188 sub-
jects, spanning the range from NGT to
IGT or overt diabetes, it was found that
the sensitivity of �-cells to glucose de-
creased already within the range of NGT
in association with rising 2-h glucose lev-
els during an oral glucose tolerance test
(6). Moreover, dynamic parameters of
�-cell function were independent deter-
minants of prevailing plasma glucose con-
centrations throughout the glucose
tolerance interval (6).

More stringent results have derived
from longitudinal studies. Insulin action
and insulin secretion were measured in
17 Pima Indians, in whom glucose toler-
ance deteriorated from NGT to IGT, or
diabetes, over 5.1 � 1.4 years (7). Tran-
sition from NGT to IGT was associated
with a decline in insulin-stimulated glu-
cose disposal and a more marked decrease
of the acute insulin secretory response to
intravenous glucose. Progression from
IGT to diabetes was accompanied by fur-
ther reductions in insulin sensitivity and
acute insulin response. Nevertheless, 31
subjects who retained NGT over a similar
period also showed reduced insulin-
stimulated glucose disposal, but their

acute insulin response increased suffi-
ciently to maintain normoglycemia (7).
Changes in �-cell function and insulin
sensitivity were evaluated in Caucasian
and African American individuals with
NGT, IGT, or type 2 diabetes, over 5.2
years of follow-up (8). At baseline, de-
creasing levels of both �-cell function
(acute insulin response) and insulin sen-
sitivity (obtained from a frequently sam-
pled intravenous glucose tolerance test)
mirrored deteriorating glucose tolerance
condition at baseline and at follow-up.
Over time, insulin sensitivity declined in
each glucose tolerance category. How-
ever, subjects who maintained NGT ex-
hibited a compensatory increase in
insulin secretion, whereas failure to aug-
ment insulin release led to IGT, or overt
diabetes (8).

Secondary failure of plasma glucose
control after initial successful response to
diet therapy in 432 newly diagnosed type
2 diabetic patients was evaluated in the
Belfast Diet Study (9). Secondary failure
to diet therapy occurred in 41 patients in
years 2–4, in 67 patients in years 5–7, and
in 51 patients in years 8–10; 173 patients
remained on diet alone until death or the
end of the study (10 years). Loss of effi-
cacy of diet alone was associated with
greater �-cell failure, and the ongoing de-
cline in �-cell function (assessed by ho-
meostasis model assessment [HOMA]-�)
closely mirrored the steady rise in fasting
plasma glucose. It is of interest that there
was no change in mean insulin sensitivity
in any of the groups (9).

First-degree relatives of patients with
type 2 diabetes are at increased risk of
developing hyperglycemia. When 531
first-degree relatives with no known his-
tory of diabetes were studied (10), it was
found that in all ethnic groups (Cauca-
sian, African American, Asian-American,
and Hispanic-American), impaired �-cell
function was more important than insulin
resistance in determining alterations of
glucose metabolism. Accordingly, in a
group of 33 nondiabetic first-degree rela-
tives followed-up for 7 years, decline in
glucose tolerance over time was strongly
associated with loss of �-cell function
(11). All this is in agreement with the data
from the U.K. Prospective Diabetes Study,
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showing that at the time of diagnosis of
diabetes, there is an �50% loss of �-cell
function (as calculated by HOMA-�),
which is followed by a further progressive
decline over time, whatever the treatment
(12).

Whereas all this work provides valu-
able information, it has to be kept in mind
that each test used in the aforementioned
studies for the assessment of �-cell func-
tion in vivo has of course merits but also
caveats (rev. in 13,14). The HOMA-� in-
dex is useful when studying large popu-
lations, but it provides an estimate of how
the �-cell is performing under fasting
conditions only. The oral glucose toler-
ance test is relatively easy to administer,
but it provides limited information on
early phase insulin release, and the intra-
venous glucose tolerance test does not al-
low the assessment of the incretin effect.
On the other hand, measurement of �-cell
mass in vivo in humans remains elusive
(13,14). Work done with human donors
who underwent hemipancreatectomy
(15) and recipients of islet auto- or allo-
graft (16,17) has shown that acute insulin
response to glucose or arginine and glu-
cose potentiation of arginine-induced in-
sulin secretion appear to best correlate
with �-cell mass.

�-CELL DYSFUNCTION AND
TYPE 2 DIABETES:
HISTOLOGICAL AND EX
VIVO STUDIES — The role of re-
duced �-cell mass in human type 2 dia-
betes, the primary importance of �-cell
apoptosis, and the insufficiency of repli-
cation/neogenesis have been studied by
several authors using histological pancre-
atic samples, or isolated islets. The num-
ber of islets in the pancreas of diabetic
subjects has been generally found to be
reduced (up to 40%) compared with non-
diabetic individuals (18–21). Moreover,
�-cell mass and/or volume have been
consistently found to be �20–60% lower
in type 2 diabetic pancreata (21–24), with
reduction already occurring in the pres-
ence of impaired fasting glycemia (IFG)
(23). In this latter study, the authors
found that obesity in nondiabetic individ-
uals was accompanied by a 50% increase
in relative �-cell volume compared with
lean nondiabetic individuals. However,
obese subjects with IFG and type 2 diabe-
tes had a 40 and 63% deficit, respectively,
in relative �-cell volume, and lean sub-
jects with type 2 diabetes had a 41% def-
icit in relative �-cell volume than lean
nondiabetic subjects. These differences

were due to a reduced number of �-cells,
rather than a smaller volume of individual
cells. Neogenesis, while increased in obe-
sity, was comparable in all groups. Fur-
thermore, �-cell replication was found to
be not significantly decreased in patients
with diabetes or IFG. However, a signifi-
cantly increased frequency of apoptotic
events was detected in type 2 diabetic
subjects versus nondiabetic subjects. In a
detailed study published more recently
(25), the authors analyzed autopsy sam-
ples from 57 type 2 diabetic and 52 non-
d iabe t i c European sub jec t s and
confirmed that �-cell mass was lower in
the former. However, there was marked
inter-subject variability and overlap be-
tween the two groups. �-Cell mass reduc-
tion was more pronounced with longer
duration of diabetes (25). Using electron
microscopy, it was observed that diabetic
�-cells have a decreased number of insu-
lin granules (24). Interestingly, the per-
centage of pancreas volume occupied by
�-cells (as assessed in autopsy pancreas
samples from obese humans with NGT,
IFG, or diabetes) has been found to be
significantly correlated with fasting
plasma glucose (26) (Fig. 1). Further-
more, research with isolated human islets
has consistently shown that �-cells from
type 2 diabetic subjects display several
defects that include reduced insulin con-
tent, diminished insulin mRNA expres-
sion, and decreased, or absent, first-phase
insulin secretion in response to glucose
(3,27–29).

Obviously, these studies are cross-
sectional. Therefore, prospective infor-

mation on �-cell mass changes to be
correlated with diabetes progression is
not available. In addition, at the present
time, it is not possible to exclude that sub-
jects who develop diabetes start with a
lower �-cell mass due to genetic reasons.
As a matter of fact, several genes associ-
ated with type 2 diabetes may affect �-cell
development (30,31).

�-CELL PRESERVATION
BY CURRENT
PHARMACOLOGICAL
THERAPIES: IN VIVO
STUDIES — As aforementioned, re-
search performed in different categories
of subjects by cross-sectional and longitu-
dinal studies, together with histological
analysis and ex vivo islet investigations,
strongly suggest that �-cell failure is cru-
cial for the onset of diabetes and progres-
sive deterioration of glycemic control.
Consequently, much interest is being fo-
cused on the potential of preserving the
�-cell during the different natural history
stages of type 2 diabetes.

Prevention of diabetes has been
achieved in variable percentages of high-
risk individuals by lifestyle changes, or
pharmacological intervention, but only in
a few cases has �-cell function been as-
sessed. In the U.S. Diabetes Prevention
Program study, subjects with IGT were
assigned to either placebo, a lifestyle
modification program (with a goal of 150
min of physical activity per week and 7%
weight loss), or metformin (32). During
an average follow-up of 2.8 years, the in-
cidence of diabetes was significantly

Figure 1—Percentage of subjects with fasting plasma glucose higher than 100 mg/dl in relation
to �-cell volume (lower or greater than 1.1%). Case subjects were obese and nondiabetic either
with IFG or with diabetes. A higher percentage of individuals with increased glucose values had
reduced �-cell volume. Adapted from Ritzel RA, Butler AE, Rizza RA, Veldhuis JD, Butler PC:
Relationship between �-cell mass and fasting blood glucose concentration in humans. Diabetes
Care 2006;29:717–718.
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lower in the metformin-treated individu-
als (4.8%) than in those receiving placebo
(7.8%). When the role of insulin sensitiv-
ity and insulin secretion was evaluated
(33), it was found that diabetes preven-
tion was associated with a significant im-
provement of insulin secretion relative to
insulin sensitivity. Thiazolidinediones
have also been shown to be effective in
preventing diabetes. In the Troglitazone
Prevention of Diabetes (TRIPOD) study, a
significant reduction in the incidence of
type 2 diabetes (from 45 to 20%) was ob-
served in the group of individuals treated
with troglitazone, which was associated
with preservation of �-cell compensation
for insulin resistance (34). In addition,
preliminary results of the ACT NOW
study showed that pioglitazone was able
to significantly reduce the incidence of
type 2 diabetes in patients with IGT,
which was associated with better insulin
secretory function (DeFronzo et al., late-
breaking abstract, American Diabetes As-
sociation 68th Scientific Sessions, San
Francisco, 6–10 June 2008).

After the diagnosis of type 2 diabetes,
the use of intensive treatment with insu-
lin, metformin, glibenclamide, or chlor-
propamide was effective in improving
glycemic control compared with conven-
tional therapy in the U.K. Prospective Di-
abetes Study (35). However, the various
drug treatments were similarly unable to
prevent progressive deterioration of glu-
cose control and reduction of �-cell func-
tion, as assessed by measuring the
HOMA-� index. Successive studies have
shown that treatment with some medica-
tions is associated with improved �-cell
function. When 53 type 2 diabetic pa-
tients were randomized to receive 4
months of treatment with placebo, 45 mg/
day pioglitazone, or 8 mg/day rosiglita-
zone, improved glycemic control was
achieved in the thiazolidinedione groups
(36). In this study, glucose values were
significantly associated with �-cell func-
tion (36). Postprandial �-cell perfor-
mance was assessed by a mathematical
model in a group of subjects with type 2
diabetes treated with metformin or a sul-
fonylurea, who were administered ex-
enatide as add-on for 4 weeks (37). The
authors showed that the glucagon-like
peptide 1 (GLP-1) mimetic improved
�-cell function significantly at the end of
the treatment period. In a recent study
(38), 69 metformin-treated patients with
type 2 diabetes were randomized to ex-
enatide or insulin glargine, and �-cell
function was measured during an argin- T
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ine-stimulated hyperglycemic clamp at
week 0, at week 52, and after a 4-week
off-drug period. Both drugs reduced A1C
levels significantly during treatment,
which was associated with a significant
improvement of �-cell function parame-
ters in the exenatide arm (Table 1). How-
ever, glycemic control and �-cell function
measures returned to pretreatment values
in both groups after 4 weeks off-drug (Ta-
ble 1).

Therefore, a few studies have shown
that certain pharmacological treatments
can prevent the onset of diabetes and slow
its progression in humans and that these
effects are associated with ameliorated
�-cell function. However, from such in
vivo studies, it is impossible to under-
stand whether the effects on the insulin-
secreting cells are mediated by an
improvement of the metabolic milieu or
are due to an action of the drug(s) directly
on �-cells.

�-CELL PRESERVATION
BY CURRENT
PHARMACOLOGICAL
THERAPIES: EX VIVO
STUDIES — The possibility that pan-
creatic �-cell damage can be prevented,
or even reverted, has been tested in iso-
lated human nondiabetic islets exposed to
different metabolic perturbations and,
more importantly, with islets from type 2
diabetic donors. In early work, it was as-
sessed whether metformin could affect
the phenomenon of glucotoxicity (39).
Human islets were incubated for 24 h in
culture medium containing either 5.5 or
22.2 mmol/l glucose, with or without a

therapeutic concentration of metformin.
After incubation in the absence of met-
formin, the islets pre-exposed to 22.2
mmol/l glucose showed no significant in-
crease in insulin release when challenged
acutely with 16.7 mmol/l glucose (con-
firming that hyperglycemia desensitizes
pancreatic �-cells). In the presence of
metformin, the islets maintained the abil-
ity to significantly increase their insulin
release in response to 16.7 mmol/l glu-
cose, even when previously cultured with
high glucose. Metformin could also pro-
tect human islets from lipotoxicity. When
islets were incubated for 48 h in the pres-
ence of 2.0 mmol/l free fatty acid (oleate
to palmitate, 2 to 1), acute insulin secre-
tion in response to 16.7 mmol/l glucose
was significantly reduced (40). Impair-
ment of insulin secretion after exposure to
free fatty acids was mainly accounted for
by defective early-phase release. Addition
of metformin to high–free fatty acid me-
dia prevented the impairment of glucose-
mediated insulin release and the decline
of first-phase insulin secretion (40).
Other drugs used to reduce insulin resis-
tance in peripheral tissues (i.e., peroxi-
some proliferator–activated receptor
[PPAR]-�) seem to protect islet cells from
metabolic insults. Exposure of isolated is-
lets to free fatty acids decreased glucose-
stimulated insulin release and islet insulin
content, and these alterations were pre-
vented by the PPAR-� agonist rosiglita-
zone (41). Interestingly, it has been
reported that �-cell rest induced by an
ATP-dependent potassium channel
(KATP) opener protected human islets
from the functional damage induced by

prolonged pre-exposure to relatively (11
mmol/l) high glucose concentrations
(42).

Of greater importance, however, is to
assess whether the functional and molec-
ular alterations of human type 2 diabetic
�-cells are reversible. In a recent article, it
was found that when type 2 diabetic islets
were incubated with metformin for 24 h,
insulin content and insulin granule
amount increased significantly (Fig. 2),
which was accompanied by partial resto-
ration of glucose responsiveness (24).
Metformin also improved �-cell survival
(24). Recently, the role of incretins
(GLP-1, glucose-dependent insulino-
tropic polypeptide [GIP], and some of
their analogs) in the therapy of diabetes
has received much attention (43). In vitro
and laboratory animal models have
shown that these molecules can protect
the �-cell from apoptosis and promote
�-cell differentiation and proliferation. In
a study from our laboratory (44), pancre-
atic islets were prepared from the pan-
creas of nondiabetic and type 2 diabetic
donors and then incubated in the pres-
ence of 5.5 mmol/l glucose, with or with-
out the addition of exendin-4 (a long-
acting GLP-1 mimetic). Insulin secretion
from the type 2 diabetic islets improved
after incubation with exendin-4, which
also induced a significantly higher expres-
sion of insulin, GLUT2, glucokinase, and
some �-cell regeneration and differentia-
tion factors, including pancreas duode-
num homeobox-1 (Pdx-1).

Amelioration of insulin release per se
may have direct beneficial actions on
�-cells (45). Insulin receptor phosphory-
lation leads to activation of phosphoino-
sitide 3 (PI-3) and mitogen-activated
(MAP) kinases, protecting the �-cell from
apoptosis (46). In addition, several data
have demonstrated that pro-insulin–
derived C-peptide can affect the function
and survival of a number of cell types,
including �-cells (47). When isolated hu-
man islets were cultured in the presence
of 50 ng/ml C-peptide, islet cell apoptotic
rate decreased significantly, which was
accompanied by increased mRNA and
protein expression of the anti-apoptotic
molecule B-cell CLL/lymphoma 2 (Bcl-2),
without changes in the expression of the
pro-apoptotic protein Bax (48).

CONCLUSIONS — Pancreatic �-cell
dysfunction is key to the development
and progression of type 2 diabetes. Both
altered �-cell function and decreased
�-cell mass are likely to contribute to the

Figure 2—Volume density of mature and immature insulin granules and its ratio in �-cells from
type 2 diabetic subjects before and after ex vivo metformin exposure. Treatment caused significant
increase of mature granules, decrease of immature granules, and higher ratio. Adapted from
Marchetti P, Del Guerra S, Marselli L, Lupi R, Masini M, Pollera M, Bugliani M, Boggi U, Vistoli
F, Mosca F, Del Prato S: Pancreatic islets from type 2 diabetic patients have functional defects
and increased apoptosis that are ameliorated by metformin. J Clin Endocrinol Metab
2004;89:5535–5541.
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defects in insulin release typical of diabe-
tes. These defects cause a progressive
increase of glucose levels, with deteriora-
tion of glycemic control over the years.
Interestingly, however, some evidence is
emerging to show that the onset of diabe-
tes may be delayed and the progression of
glucose control deterioration slowed by
certain therapies. These beneficial effects
are associated, at least in part, to better
maintained �-cell function. For these ap-
proaches to be more effective, strategies
should be developed to deliver potentially
useful drugs to the �-cell at the desired
concentrations and for the necessary du-
ration. In addition, efforts should be
made to better understand which alter-
ations at the level of �-cell microenviron-
ment are present and may impede the
complete success of therapeut ic
interventions.
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