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Identification of 3 subpopulations 
of tumor‑infiltrating immune cells for malignant 
transformation of low‑grade glioma
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Abstract 

Background:  Tumor-infiltrating immune cells (TIICs) are highly relevant to clinical outcome of glioma. However, 
previous studies cannot account for the diverse functions that make up the immune response in malignant transfor-
mation (MT) from low-grade glioma (LGG) to high-grade glioma (HGG).

Methods:  Transcriptome level, genomic profiles and its relationship with clinical practice were obtained from TCGA 
and CGGA database. The “Cell type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT)” 
algorithm was used to estimate the fraction of 22 immune cell types. We divided the TCGA and CGGA set into an 
experiment set (n = 174) and a validation set (n = 74) by random number table method. Univariate and multivariate 
analyses were performed to evaluate the 22 TIICs’ value for MT in LGG. ROC curve was plotted to calculate area under 
curve (AUC) and cut-off value.

Results:  Heterogeneity between TIICs exists in both intra- and inter-groups. Several TIICs are notably associated with 
tumor grade, molecular subtypes and survival. T follicular helper (TFH) cells, activated NK Cells and M0 macrophages 
were screened out to be independent predictors for MT in LGG and formed an immune risk score (IRS) (AUC = 0.732, 
p < 0.001, 95% CI 0.657–0.808 cut-off value = 0.191). In addition, the IRS model was validated by validation group, 
Immunohistochemistry (IHC) and functional enrichment analyses.

Conclusions:  The proposed IRS model provides promising novel signatures for predicting MT from LGG to HGG and 
may bring a better design of glioma immunotherapy studies in years to come.
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Background
Gliomas account for 60% of all primary and other cen-
tral nervous system (CNS) tumor diagnoses, and make 
up ~ 80% of all malignant brain tumors [1]. The World 
Health Organization (WHO) classifies gliomas accord-
ing to histology and molecular subtype, and grades 
them by the scale of I, II, III, IV. low-grade gliomas 
(LGG) typically range from grades I–II, while high-
grade gliomas (HGG) are categorized as grades III–IV. 
Glioblastoma multiforme (GBM) is grade IV glioma 

subtype which often spontaneously appears in the 
CNS, but can also progress from LGG. GBM takes up 
half of CNS tumors, and is a fatal disease with no cur-
able therapy [2]. Even with a comprehensive therapy, 
such as surgical resection, adjuvant radiotherapy, and 
alkylating agent temozolomide chemotherapy, patients 
who suffer from gliomas still have short median sur-
vival time, due to the aggressiveness of tumors, resist-
ance to treatments, and recurrence over time [3]. In 
particular, patients with GBM approximately has a 
median survival of only 14–16 months [4]. In the past 
decade, studies on the anticancer immune responses 
for other tumors have promoted clinical advances in 
the limited success of conventional therapies. Mean-
while, the discovery of CNS lymphatic system has 
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provided a new theoretical basis and opportunity for 
brain tumor immunotherapy [5].

Tumor-infiltrating immune cells (TIICs), whose 
function and composition subtly altered with the 
immune status of the host have been reported to be 
effectively targeted by drugs correlate with clinical 
outcome [6]. Melanoma and non-small-cell lung can-
cer are the two solid tumors in which immunotherapy 
has proved to be effective [7]. However, compared 
with these two tumors, glioma harbors a lower burden 
of somatic mutations and a more immunosuppres-
sive tumor microenvironment [8]. Unique challenges 
should be overcome before immunotherapy applied 
to CNS. First, anatomically, the blood–brain barrier 
(BBB) restricts the entry of immune cells to the brain 
parenchyma. Also, the tumor cells themselves secrete 
a variety of immunosuppressive factors that influence 
macrophage polarization, dendritic cell (DC) matura-
tion, regulatory T cell recruitment, inhibition of neu-
trophil and natural killer (NK) cell function. Previous 
studies have revealed that glioblastomas are heavily 
infiltrated with monocytes/microglia, although TIICs 
are relatively rare. Reports suggest that these cells 
account for 10–30% of viable cells within the tumor 
mass. They appear to be affected by tumors and have 
positive immunosuppressive effects. For example, 
Rodrigues et al. demonstrated that normal monocytes 
that come into contact with glioblastoma cells secrete 
multiple immunosuppressive factors (IF-10, TGF-β, 
B7-H1), have reduced phagocytic ability and induce 
apoptosis in activated T cells [9]. While preclinical 
data shows the success of immunotherapy for gliomas, 
the profiles of TIICs in glioma and their clinical value 
still remain to be explained.

Nevertheless, Immunohistochemistry and flow 
cytometry are the two most commonly used tech-
niques that depend on a single marker for detecting 
TIICs in previous studies. Obviously, these approaches 
can be misleading and are not comprehensive as many 
marker proteins are expressed in different cell types. 
The “Cell type Identification By Estimating Relative 
Subsets Of RNA Transcripts” (CIBERSORT) employs 
deconvolution of bulk gene expression data and a 
sophisticate algorithm for in silico quantification of 
many immune cell types in heterogeneous samples 
as tumor stroma. Here, we used CIBERSORT, for the 
first time, to quantify the 22 TIICs subpopulations 
of immune response in glioma based on the patients’ 
gene expression profiling from TCGA and CGGA pub-
lic databases in order to investigate its relationship 
between clinicals factors, with the final goal of devel-
oping new immunotherapeutic strategies.

Materials and methods
Datasets
We examined expression data and clinical variables 
from the following main sources: The Cancer Genome 
Atlas (TCGA) dataset (http://cance​rgeno​me.nih.
gov/),Chine​se Glioma Genome Atlas (CGGA) dataset 
(http://www.cgga.org.cn) (up to April 10, 2019). We 
searched the supplements and contacted the inves-
tigators to get the missing information for samples. 
In TCGA dataset, we obtained mRNAseq data of 160 
GBM samples and 528 LGG samples. 325 samples gen-
erated by Illumina HiSeq platform were collected form 
CGGA dataset, ranging from WHO grade II to grade 
IV. Then, expression profiles of each samples and cor-
responding clinical data were manually organized. 
Besides, 5 non-GBM patient data from the TCGA-
GBM dataset, patients with any missing or insufficient 
data on age or survival data were excluded from sub-
sequent processing. RNA sequencing data were firstly 
transformed using “voom” (variance modeling at the 
observational level) for the two datasets. Details of the 
study design are illustrated in Fig. 1 as a flowchart.

CIBERSORT estimation
The gene expression with standard annotation were 
uploaded to the CIBERSORT web portal (http://ciber​
sort.stanf​ord.edu/), and the algorithm was running the 
LM22 signature and 1000 permutations. Cases with 
a CIBERSORT output of p < 0.05, indicating that the 
inferred fractions of TIICs populations produced by 
CIBERSORT are accurate, were considered to be eligi-
ble for further analysis. For each sample, the final CIB-
ERSORT output estimates were normalized to sum up 
to one and thus can be interpreted directly as cell frac-
tions for comparison across different immune cell types 
and dataset.

Immunohistochemical detection of immune cell types
5 LGG and 5GBM tissue from 10 patients who received 
surgery in the First Affiliated Hospital of Nanjing Medi-
cal University (Nanjing, Jiangsu province, China) were 
constructed for immunohistochemistry. Specimens 
were all confirmed by pathological analysis as glioma. 
IHC was performed as described earlier, using mono-
clonal antibodies against CXCR5, CD4, CD68, CD11b, 
CD57 and CD56 (H-132; Santa Cruz Biotechnology, 
Santa Cruz, CA). Isotype-matched mouse monoclonal 
antibodies were used as negative controls. Slides were 
analyzed using an image analysis workstation (Spot 
Browser, ALPHELYS). Polychromatic high-resolution 
spot-images (740 × 540 pixel, 1.181  μm/pixel resolu-
tion) were obtained (200× fold magnification). The 
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density was recorded as the number of positive cells per 
unit tissue surface area. For each duplicate, the mean 
density was used for statistical analysis.

Gene oncology (GO) and Kyoto encyclopedia of genes 
and genomes (KEGG)
GO was applied to determine the function of differen-
tially expressed genes and pathway enrichment was ana-
lyzed by KEGG (http://strin​g-db.com).

Statistical analyses
Statistical analyses were conducted using R software ver-
sion 3.5.3 (http://www.r-proje​ct.org/) and SPSS 19.0 for 
windows (IBM, NY, USA). All statistical tests were two-
sided and a p value < 0.05 is considered as significant.

Hierarchical clustering of immune cell proportions was 
conducted to compare distinct immune cell infiltration in 
different samples. The proportions of various TIICs were 
defined as a change from 0 to 1 based on our observa-
tion. R packages “Corrplot” (https​://githu​b.com/taiyu​
n/corrp​lo), “Pheatmap” (https​://CRAN.R-proje​ct.org/
packa​ge=pheat​map) and “Vioplot” (https​://githu​b.com/
TomKe​llyGe​netic​s/viopl​ot)were also used to investigate 

differences in the composition of immune cells within 
and between groups. Wilcoxon test was used to evaluate 
the relationship between tumor grades, tumor molecular 
subtypes and TIICs. The association between TIICs and 
survival were analyzed using log rank test and Kaplan–
Meier (K–M) curve visualized the results. Multivariable 
analyses were further operated to screen independently 
predictors. AUC and cut-off value were obtained by con-
ducting ROC curve. “Limma” package was used to analy-
sis the differential expressed gene, |log2FC| > 1.3219 and 
FDR < 0.05 were set as filters.

Results
Composition of immune cells in LGG and GBM
“Limma” package [10] run firstly to normalize the 
gene expression data and to accommodate the opera-
tional requirements of CIBERSORT. Then, CIBER-
SORT algorithm was used to analysis the difference of 
immune infiltration between LGG and HGG samples 
in 22 subpopulations of immune cells. 269 out of the 
total 1008 samples from TCGA and CGGA datasets 
with p-value < 0.05 were included for subsequent pro-
cessing, of which 81 samples were grouped into LGG 

Fig. 1  Details of the study design. TCGA​ The Cancer Genome Atlas, CGGA​ Chinese Glioma Genome Atlas, CIBERSORT Cell type Identification By 
Estimating Relative Subsets Of RNA Transcripts

http://string-db.com
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cohort and 188 samples into the HGG cohort. The total 
value of all immune cells in each sample was set at one, 
Fig. 2a showed the proportion of all 22 subpopulations 
of immune cells in these samples (Fig.  2a). Obviously, 
the proportions of immune cells in glioma varied sig-
nificantly between both intra- and inter-group. Rest-
ing NK cells and T cells regulatory (Tregs) exhibited a 
significant positive correlation, while there was a dis-
tinctive negative correlation between M0 macrophages 
and monocytes by average linkage clustering (Fig. 2b). 
Through hierarchical clustering based on the above 
data, we can find that TIICs, such as monocytes, M0 
macrophages showed striking distribution differences 
in LGG and HGG (Fig.  2c). The violin plot (Fig.  2d) 
showed that there were marked differences in the dis-
tribution of 10 out of 22 immune cells, such as mono-
cytes (p < 0.001), M0 macrophages (p < 0.001), activated 
NK cells (p < 0.01), between LGG and HGG cohorts. 
Taken together, these results suggest that the heteroge-
neity of TIICs in gliomas is evident and may play a role 
in the malignant progression of LGG to HGG.

Immune cells associated with tumor grade and molecular 
subtypes
Wilcoxon tests were used to evaluated the relationship 
between tumor grades, tumor molecular subtypes and 
TIICs. p-values are shown in Table 1. TIICs such as M0 
Macrophages and TFH cells are positively correlated 
with elevated levels (Fig.  3a, b), while cell subpopu-
lations like monocytes and activated NK cells were 
negatively correlated (Fig.  3c, d). Subsequently, due to 
the lack of molecular subtypes information in TCGA 
dataset, we analyzed the relationship between glioma 
molecular subtypes and TIICs in samples from CGGA 
dataset. p-values are also shown in Table 1. Differences 
exist in the distribution of tumor-infiltrating cells of 
various glioma molecular subtypes (Fig.  3e–h). These 
results further demonstrate that TIICs may affect the 
progression of glioma to some extent.

Immune cell comparison responding to the prognosis 
of gliomas
We then obtained clinical data from TCGA and CGGA 
databases, samples with a survival time less than 30 days 

Fig. 2  The landscape of immune infiltration in glioma. a The difference of immune infiltration between low- and high-grade glioma. b Correlation 
matrix of all 22 immune cell proportions in TCGA and CGGA datasets. c Heatmap of 22 immune cell proportions. The horizontal axis shows 
the clustering information of samples which were divided into two major clusters. d The distribution of same immune cells between low- and 
high-grade glioma. p-values show the significance of the distribution
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were excluded. Then expression profiles of each samples 
and corresponding clinical data were manually organ-
ized. To further analyze the factors associated with 
patient prognosis and perform subsequent validation, we 
randomly divided the total sample into 70% of the experi-
ment group and 30% of the validation group. For immune 
cell infiltration and corresponding survival time, we per-
formed univariate analyses (Table  2) and nine immune 
cells showed significant prognostic value in both data-
bases. Highly expressed T follicular helper cells, resting 
NK cells, M0 macrophages, M1 macrophages and resting 
Dendritic cells predicted poor overall survival, while high 
expression of the other 4 cell subpopulations, includ-
ing plasma cells, activated NK cells, monocytes and 
activated dendritic cells predicted a better prognostic 
value. Kaplan–Meier curves visualizes the above results 
(Fig.  4a–i). The consequences of the univariate analy-
ses further sought out that these nine TIICs specifically 
influence patients’ prognosis and paved the way for fur-
ther screening independent predictors.

Identify several independent prognostic factors
Multivariate analysis was conducted to identify inde-
pendently prognostic factors and the p-values were also 

shown in Table 2. The result suggested that these three 
TIICs, including TFH cells, activated NK cells and M0 
macrophages, may serve as independent predictors of 
the progression of glioma, especially in the MT of LGG 
to GBM. Based on the correlation coefficients obtained 
by multivariate analysis, we constructed an immune 
risk score (IRS) model based on these three immune 
cells: IRS = 14.339*TFH cells + 2.354* M0 macrophages 
− 22.69* activated NK cells. ROC curve was than drawn 
and we therefore got the AUC = 0.732 (Fig. 5a) and fig-
ured out cut-off value = − 0.43124. Next, we divided 
the experiment group into high- and low-risk groups 
by cut-off value after calculating IRS. K–M curve indi-
cated a significant difference in survival between high- 
and low-risk groups (Fig. 5b). What’s more, IRS scores 
showed statistical differences with molecular subtypes 
of glioma (Table 3).

Verify the prognostic model in the validation group
For the validation group, we calculated IRSs and also 
divided it into high- and low-risk groups based on 
the cut-off value. The K–M curve showed the survival 
rate of patients in the high-risk group was significantly 
worse than that in the low-risk group (Fig.  5c). This 
was a good proof of the validity of the IRS model we 
constructed.

IHC confirmed the CIBERSORT result
In order to verify the explorative data obtained for TFH 
cells, activated NK cells and M0 macrophages, we evalu-
ated these cells density by immunohistochemistry in 5 
human LGG tumor tissues and 5 human GBM tumor tis-
sues Examples of these cells tryptase staining and quan-
tification summary are shown in Fig. 6a–r. In agreement 
with CIBERSORT results, activated NK cells was reduced 
in GBM while TFH cells and M0 macrophages were 
increased in GBM.

Differential expressed genes and enrichment analysis 
based on prognostic model
We calculated IRSs for all samples and divided them into 
high- and low-risk group for TCGA and CGGA data-
bases. After obtaining the differential genes of the two 
databases separately, we found that we got 118 common 
differential expressed genes for the intersection of the 
results (Fig.  7). For these genes, online tools “STRING” 
was used for GO/KEGG enrichment analysis and found 
that they enriched in the following biological processes 
(Table 4) which were mainly related to immune response.

Table 1  Comparison of CIBERSORT immune cells fractions 
between grade and molecular subtypes of glioma

TIICs Grade Molecular subtype
p-value p-value

B cells naive 2.81E−05 0.188257963

B cells memory 4.61E−05 0.737169605

Plasma cells 0.001815233 3.55E−05

T cells CD8 0.249592172 0.172157201

T cells CD4 naive 0.039037853 0.413131088

T cells CD4 memory resting 0.002288205 0.146932516

T cells CD4 memory activated 0.014882526 0.171750522

T cells follicular helper 0.001064575 0.091842131

T cells regulatory (Tregs) 0.074373931 4.73E−05

T cells gamma delta 0.564203378 0.002882824

NK cells resting 0.00140453 0.000258713

NK cells activated 3.30E−07 0.000544631

Monocytes 6.52E−20 0.001213765

Macrophages M0 1.08E−26 3.09E−09

Macrophages M1 0.000436372 0.377244738

Macrophages M2 0.078628638 0.730798047

Dendritic cells resting 0.094204212 0.001100304

Dendritic cells activated 0.364620103 0.158098129

Mast cells resting 0.035430526 0.008667249

Mast cells activated 0.000954643 1.73E−06

Eosinophils 3.56E−05 0.058457676

Neutrophils 0.019156303 0.047975933
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Fig. 3  Immune cells associated with tumor grade and molecular subtypes. a–d Relationship between the fraction of M0 macrophages (p < 0.001), 
TFH cells (p = 0.001), monocytes (p < 0.001) and activated NK cells (p < 0.001) and glioma WHO grade. e–h Relationship between the fraction of M0 
macrophages (p < 0.001), activated Mast cells (p < 0.001), activated NK cells (p < 0.001) and monocytes (p = 0.001) and molecular subtypes of glioma
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Discussion
For a long time, although it is well known that immune 
cells play an important role in tumor initiation and devel-
opment, these insights have few influence on clinical 
practice [11, 12]. In addition, the role of genes that are 
abnormally expressed in tumor tissues in diagnosis and 
prognosis has also attracted widespread attention; how-
ever, few studies have focused on the differential distri-
bution of immune cells between different components. 
In this paper, we firstly established an immune risk score 
model based on the fractions of three subpopulations of 
TIICs. Compared with the high-IRS group based on our 
model, the low-IRS group has a significantly better sur-
vival rate (p < 0.001). This finding suggests that our IRS 
model can better predict progression of glioma, espe-
cially in the MT from LGG to GBM. Validation group, 
IHC and functional enrichment analyses further illus-
trate the validity of the model. This study opens a door 
for a better understanding of new diagnosis strategy from 
the perspective of TIICs. We acknowledge that there 
exist limitations in this research, particularly no precise 
analysis of the effect of single TIICs. Besides, studies on 
TIICs in initiation of glioma weren’t carried on due to 
lack of sequencing samples from normal people in these 

public databases. Therefore, further studies are urgently 
needed to analysis single TIISs and whether it is possible 
to detect the real-time progression of tumor through the 
state of immune cells in the circulatory system.

Gliomas are tumors of CNS, originating from trans-
formed neural stem or progenitor glial cells [13]. On the 
basis of histopathological characteristics WHO classified 
gliomas into groups: low-grade gliomas (LGG, grades 
I and II) are well differentiated, slow-growing tumors, 
whereas high-grade gliomas (HGG, grades III and IV) 
are less differentiated or anaplastic, and strongly infiltrate 
brain parenchyma [14]. Glioblastoma (GBM) is catego-
rized as the most malignant type (grade IV). It accounts 
for 50% of CNS tumors and is a deadly disease without 
curable therapy. Despite aggressive treatments, such 
as extensive resection combined with radiation and/or 
chemotherapy, patients with GBM eventually die of their 
disease [4]. In another aspect, patients with LGG may 
survive for many years, but after transformed to GBM, 
survival rates rapidly decline [15, 16]. A population-based 
study showed that the mean period of malignant trans-
formation from LGG to GBM was 5.3 years and for ana-
plastic astrocytoma to GBM was 1.4 years [17]. Most of 
the predictive models established in previous studies on 

Table 2  Univariate and multivariate analysis between 22 subpopulations of TIICs and survival in experiment group

*Statistically significant

TIICs Univariate analysis Multivariate analysis

HR p-value 95% CI HR B p-value 95% CI

B cells naive 0.709 0.158 0.440–1.143

B cells memory 0.068 1.558 0.968–2.507

Plasma cells 0.594 0.028* 0.371–0.949 0 − 7.889 0.181 0–39.380

T cells CD8 1.071 0.778 0.664–1.730

T cells CD4 naive 0.229 0.144 0.032–1.652

T cells CD4 memory resting 0.736 0.208 0.456–1.187

T cells CD4 memory activated 1.875 0.121 0.848–4.145

T cells follicular helper 2.641 < 0.001* 1.585–4.400 1.69E+06 14.339 0.046* 1.298–2.196E+12

T cells regulatory (Tregs) 0.979 0.929 0.613–1.563

T cells gamma delta 1.304 0.354 0.743–2.289

NK cells resting 1.653 0.036* 1.027–2.660 0 − 9.67 0.099 0–6.150

NK cells activated 0.498 0.003* 0.310–0.800 0 − 22.69 < 0.001* 0–Inf

Monocytes 0.367 < 0.001* 0.223–0.603 0.141 − 1.959 0.259 0.005–4.228

Macrophages M0 4.103 < 0.001* 2.500–6.733 10.527 2.354 0.018* 1.501–73.813

Macrophages M1 1.763 0.019* 1.089–2.852 2157.986 7.677 0.072 0.503–9.261E+6

Macrophages M2 0.768 0.27 0.481–1.227

Dendritic cells resting 2.017 0.004* 1.243–3.274 0 − 8.748 0.423 0–3.094E+5

Dendritic cells activated 0.486 0.04* 0.241–0.983 0 − 62.875 0.233 0–3.495E+17

Mast cells resting 0.928 0.821 0.486–1.774

Mast cells activated 0.76 0.248 0.477–1.210

Eosinophils 0.678 0.106 0.424–1.086

Neutrophils 1.03 0.904 0.641–1.655
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Fig. 4  Nine subpopulations of TIICs significantly associated with the prognosis of patients with glioma in the experiment group. a–e Kaplan–Meier 
plots visualized high level of immune cells, including TFH cells (p < 0.001), resting NK cells (p = 0.036), M0 macrophages (p < 0.001), M1 macrophages 
(p = 0.019) and resting dendritic cells (p = 0.004), associated with poor OS. f–i Kaplan–Meier plots visualized high level of immune cells, including 
plasma cells (p = 0.028, activated NK cells (p = 0.003), monocytes (p < 0.001) and activated dendritic cells (p = 0.04), associated with good OS
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glioma development and malignant transformation were 
based on differential expressed genes, but they neglected 
that immune cells may also play an important role in 
tumorigenesis. Due to technical limitations, previous 
researches were limiting to a narrow insight of tumor-
infiltrating cells. Immunohistochemistry and flow cytom-
etry which depend on a single surface marker were used 
to evaluated TIICs. Apparently, these techniques may 
have misidentified other cell with the same surface mark-
ers as TIICs and are subjectively affected by observers. 
Thus, in the current study, we employed a silicon analy-
sis, known as CIBERSORT, to infer the proportions of 22 
immune cell subpopulations from glioma transcriptomes. 
CIBERSORT is a deconvolution algorithm for character-
ing TIICs composition of complex tissues by analyzing 
547 gene expression, introduced by Newman etc. in 2015. 
They firstly employed a novel application of liner support 
vector regression to deconvolve the tissue composition. 
In order to assess the feasibility of TIICs deconvolution 
from bulk tumors, they then designed and validated a 
TIICs gene signature matrix, termed LM22. By using 
LM22 to deconvolve 3061 human transcriptomes, they 
therefore proved CIBERSORT has great specificity and 
sensitivity [11]. As an emerging technology, CIBER-
SORT have already conducted in breast cancer [18], lung 
cancer [19], colon cancer [6] and so on, all these studies 

demonstrated the effectiveness and accuracy of this tool 
when analyzing TIICs.

Univariate and multivariate analyses indicated TFH 
cells, activated NK cells and M0 macrophages as inde-
pendent predictors. Then, based on their correlation 
coefficients, we firstly constructed such an IRS model 
in glioma. Among these correlation coefficients, or the 
degree to which the cell distribution correlated with 
tumor progression, the coefficient of activated NK cells 
is negative, while the coefficients of the other two TIICs 
are positive. This is consistent with our previous analy-
ses between TIICs and tumor grade. Hence, we have ade-
quate reason to believe that this model can predict MT 
between LGG and GBM well.

Immune system can be functionally divided into innate 
immunity and adaptive immunity, where adaptive immu-
nity is antigen-specific. It mainly consists of B cell-medi-
ated humoral immunity and cytotoxic T cell-mediated 
cellular immune responses, and both these two adaptive 
immunity processes require signals from CD4 T cells [9]. 
In one aspect, some CD4 T cell subpopulations such as 
Th1 cells can exert anti-tumor immunity by overcom-
ing the tolerance of autoantibodies expressed by tumors, 
and these effectors T cells are advantageous for tumor 
immunotherapy [20]. However, other subsets of CD4 T 
cells, particularly regulatory T cells and TFH cells, inhibit 
tumor immunity, thereby promoting cancer growth 

Fig. 5  IRS construction and validation. a ROC curve of the IRS model in experiment group. b Kaplan–Meier curve visualized the overall survival of 
experiment group based of the level of IRS. c Kaplan–Meier curve visualized the overall survival of validation group based of the level of IRS

Table 3  Relationships between IRS scores and molecular subtypes of glioma

IRS Subtype p-value

Classical Mesenchymal Neural Pronerual

Grade

 LGG (0.18 ± 0.52) (0.90 ± 0.64) (0.24 ± 0.59) (0.98 ± 0.81) < 0.05

 HGG (0.86 ± 0.72) (1.02 ± 0.48) (− 0.87 ± 0.59) (− 0.02 ± 0.65) < 0.05
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[21–23]. In our study, although there was no significant 
difference in the composition of TFH cells between LGG 
group and HGG group, but in Fig. 2b we can see that its 

level in the GBM group is higher than that of the lower 
grade gliomas. At present, there is no research on the 
role of TFH in the immune microenvironment of glioma, 

Fig. 6  IHC of three significant TIICs. a–c, g–i Level of TFH cells, M0 macrophages and activated NK cells in LGG group. d–f, j–l Level of TFH cells, M0 
macrophages and activated NK cells in HGG group. m–r The quantification of TFH cells (p < 0.001), M0 macrophages (p < 0.001) and activated NK 
cells (p < 0.001) are shown
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which is the problem we need to think about and solve 
next.

Unlike T cells, NK cells play a unique role in innate 
and adaptive immune responses without the involve-
ment of major histocompatibility complex (MHC) 
antigens or antibodies [24], and monitor status of intra-
cellular bacteria, viruses-infected cells and transformed 
cells. Activated NK cells are one of two types of lym-
phokine-activated killer (LAK) cells. When stimulated 
by IL-2, they become activated against tumor cells. 
Although no randomized controlled trails of immuno-
therapy with HGG by LAK has been performed to date, 
one study showed patients treated with LAK cells had 
longer survivals than control groups [25]. Due to the dif-
ficulties in producing sufficient LAK cells, researches on 

activated NK cells for immunotherapy of glioma have 
been restricted. We pointed out a significant difference in 
the distribution of activated NK cells between low- and 
high-grade gliomas (p < 0.001) (Fig. 2c, d), and the lower 
the level of activated NK cells in the higher grade of gli-
omas (p < 0.001) (Fig.  3d). In studies of the association 
with glioma molecular subtype, the level of activated NK 
cells was the lowest in the mesenchymal subtype, which 
has the worst prognosis, while the other three subtypes 
harbor relatively higher level of it (p < 0.001) (Fig. 3g). In 
addition, as previously stated, the correlation coefficient 
of activated NK cells is also negative. These results indi-
cate that activated NK cells may induce favorable clinical 
outcome of glioma, in another word, it may also be a vital 

suppressor for MT in LGG.
TAMs are macrophages infiltrating in tumor tissues 

which are the main composition in tumor microenvi-
ronment (TME). They differentiate through alternative 
pathways, among which the most common one is Notch 
pathway [26, 27]. What’s more, they facilitate tumor pro-
gression [28]. Once activated, monocytes continue to dif-
ferentiate, first differentiated into M0 macrophages and 
then M1 and M2 arisen from M0. Others have shown 
that increased level of M0 is associated with poor clinical 
outcomes of lung adenocarcinoma [29]. So far, no clear 
experiments have been conducted to demonstrate the 
relationship between TAMs and glioma prognosis. Some 
people believe that TAMs in gliomas may be affected by 
tumor tissues and show immunosuppressive effects [19]. 

Fig. 7  Venn diagram of the differential expressed genes. 249 DEGs 
from CGGA datasets and 166 DEGs from TCGA were taken to obtain 
the 39 common DEGs

Table 4  GO enrichment and KEGG pathway analysis results with grouped all samples into high- and low-IRS group

GO/KEGG Pathway ID Pathway description False discovery rate

GOBP GO.0022617 Extracellular matrix disassembly 2.24E−05

GO.0030198 Extracellular matrix organization 5.75E−05

GO.0040012 Regulation of locomotion 7.51E−05

GO.0030334 Regulation of cell migration 0.0002

GO.0001503 Ossification 0.000601

GOCC GO.0005615 Extracellular space 1.16E−10

GO.0044421 Extracellular region part 3.19E−06

GO.0005576 Extracellular region 9.92E−06

GO.0005578 Proteinaceous extracellular matrix 0.000868

GO.0044420 Extracellular matrix component 0.000868

GO.0005793 Endoplasmic reticulum-Golgi intermediate compart-
ment

0.00291

GOMF GO.0005518 Collagen binding 0.00543

GO.0031730 CCR5 chemokine receptor binding 0.0436

KEGG 4512 ECM-receptor interaction 0.000163

4151 PI3K-Akt signaling pathway 0.00375

4510 Focal adhesion 0.00375

910 Nitrogen metabolism 0.0339
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According to our work, the contents of M0 (p < 0.001) in 
GBM is higher than that of LGG. Wilcoxon test result 
also exhibits a gradual increase in the level of M0 from 
LGG to GBM. Moreover, coefficient of our IRS model 
also indicate that M0 comes under the influence of tumor 
development and promote malignant progression.

To again insight into the immune-related biologi-
cal processes during glioma progression, we performed 
GO biological process (GOBP), GO cellular compo-
nent (GOCC), GO molecular function (GOMF) and 
KEGG pathway analysis. Not only do the top results 
are immune-related, it is particularly worth mention-
ing that the first of each analysis are all immunologically 
relevant. This proves the validity of our consequences to 
some extent, on the other hand, it also finds some hub 
pathways in the MT of glioma, which indicates a path for 
future researches.

Conclusion
In summary, our study expounded the distinct composi-
tion of tumor-infiltrating immune cells in different grades 
and molecular subtypes of glioma. The complex intersec-
tion between TIICs and MT was quantified by our IRS 
model. Finally, we pointed out some relevant pathways 
related to progression and MT of glioma. These findings 
deepen the understanding of immune responses in CNS 
tumors and may enable to develop more effective immu-
notherapeutic strategies.
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