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Chronic neuropathy is a common and debilitating problem that poses a significant
challenge to health care worldwide. Natural compounds have received considerable
attention as potential sources of new drugs for the treatment of neuropsychiatric pain.
Catechin is a well-known novel flavonoid with several therapeutic properties, notably in
neurodegenerative diseases. The current study is designed to investigate the role of
catechin in neuroprotective activity in the chronic constriction injury (CCI) model.
Apparently, healthy adult male Sprague–Dawley rats weighing 160–190 g (8 weeks old)
were selected and grouped into the following: sham (distilled water), CCI group (CCI),
standard [CCI + pregabalin (10 mg/kg, p.o.)], and test catechin [CCI + catechin (50 and
100 μg/kg p.o.)] for 28 days. Behavioral, thermal, and mechanical changes were
evaluated. The results showed that mechanical allodynia and thermal hyperalgesia
were reduced in the catechin-treated group when compared with the CCI group. In
addition, the relationship between the analgesic effect of catechin and the expressions of
TNF-α, IL-6, and IL-βwas established. The results showed that catechin reversed the signs
of neuropathic pain. It also decreased the levels of TNF-α, IL-6, and IL-β in the rat brain.
Therefore, the results suggested that catechin has promising potential in the treatment and
management of neuropathic pain by decreasing the levels of NF-κβ–regulated
inflammatory cytokines in the chronic constriction injury model.
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INTRODUCTION

Neuropathic pain is a chronic and severe condition produced by the somatosensory nervous system
(Singh et al., 2017). It includes the central nervous system (CNS) and the peripheral nervous system
(PNS). CNS or PNS injuries result in unpleasant somatosensory experiences (Bernetti et al., 2021).
Some types of peripheral nerve damage cause long-lasting localized neuropathic pain. These injuries
can be caused by trauma, infections, inflammation, tumors, metabolic diseases, or endocrine diseases
(Baron, 2006). Researchers estimate that neurological pain affects between 3 and 17% of the world
population (Van Hecke et al., 2014). It causes a substantial burden on individuals, societies, and
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economics. It affects about 10% of the population in the
United States and can last for years or even a lifetime after an
initial injury (Corso et al., 2006).

The pathophysiological mechanism underlying neuropathic
pain is reported to be highly complicated [5]. Neuropathic pain is
caused by neuro-inflammatory processes that affect nerve tissue
and regulate the inflammatory response. The relationship
between neuropathic pain and peripheral nerve injury is based
on the TNF-α–driven pro-inflammatory cytokine mechanism
(Myers et al., 2006). Other pro-inflammatory cytokines are
also involved, such as interleukin (IL)-6 and IL-1β. The
secretion of conventional mediators of inflammation such as
prostaglandins and iNOS. The upregulation of these factors in
the nervous system leads to appalling results (Myers et al., 2006).

The activation of glial cells leads to the release of tumor
necrosis factor-alpha (TNF-α) and IL-1β. Nuclear factor κB
(NF-κB) transcriptionally regulates the release of cytokines
during the inflammatory process (Fu et al., 2010). Following
nerve injury, the activity and expression of NF-κB have been
observed in the dorsal root ganglia and sciatic nerve (Ledeboer
et al., 2005). The role of NF-κB is quite vital. Although several
other factors such as IL-6 and IL-1β also seem to contribute to
nerve root injury in sciatica. TNF-α alone has been reported to
cause neuropathic changes and mechanical allodynia, mimicking
the primary aspect of neuropathic conditions in humans
(Takahashi et al., 2006).

Currently, neuropathic pain treatments are only restricted to
surgical intervention and pharmacological approaches, limiting
their effectiveness (Carvajal et al., 2018). The available approved
therapies focus mainly on two well-known analgesics: opiates and
nonsteroidal anti-inflammatory drugs (NSAIDs) (Moore et al.,
2015). These therapies have fewer pharmacological effects and
more side effects. The underlying intricacy of pain transmission
and processing makes it extremely difficult to discover new
targets and analgesic medications. The lack of suitable
therapies has encouraged our research to identify novel
therapies for neuropathic pain. Alternative treatments that
offer more pharmacological effects and lesser side effects are
needed to manage pain.

Traditional herbal medicine has been shown to have powerful
antinociceptive effects on chronic pain with lesser adverse effects
than existing treatment therapies. Catechin is a group of
flavonoid compounds derived from Camellia sinensis var.
sinensis plant (Unachukwu et al., 2010). Increasing evidence
have revealed that catechin has several protective properties
against the treatment of fever, inflammatory disorders,
wounds, and cancers in different parts of the world. It is well
known for its anti-inflammatory capacity. It can inhibit the
expression of pro-inflammatory cytokines (Vazquez Prieto
et al., 2015;Noll et al., 2013) by inhibiting nuclear factor-kappa
B (NF-κB) (Suhail et al., 2019). These observations strongly
suggest that catechin can be effective in the treatment of
neuropathic pain in rats by determining its potential to inhibit
the expression of various pro-inflammatory cytokines like IL-1β,
IL-6, and TNF-α. However, this antinociceptive efficacy of
catechin on a chronic constriction injury (CCI)–induced
model remains to be clarified.

MATERIALS AND METHODS

Drugs and Chemicals
Catechin was obtained as a gift sample from Ayurvet Ltd.,
Baddi, India. The ELISA kit was purchased from Cayman
Chemical (Michigan, United States). Pregabalin (Mylan
Labs, India), ketamine (Themis Pharmaceuticals Ltd.,
India), and xylazine (Med Vet, Mumbai, India) were
purchased from commercial sources. All chemicals were of
analytical grade.

Experimental Animals
Apparently, healthy adult male Sprague–Dawley rats (8 weeks
old) weighing 160–190 g were obtained from the Animal
Facility of Swift School of Pharmacy, Rajpura, Punjab,
India. After the Institutional Animal Ethics Committee
(IAEC) approval, studies were carried out, with approval
no.-1616/PO/Re/S/12/CPCSEA (protocol no. IAEC/19/005).
All experiments were carried out according to the current
CPCSEA guidelines, New Delhi. The selected animals were
housed and kept in a climate-controlled environment with a
constant temperature of 25 ± 2°C, relative humidity of 55%, a
12:12 h light:dark cycle and had free access to food and water,
ad libitum. In this study, different doses were administered
according to the preliminary investigations as shown in
Table 1.

Chronic Constriction Injury Model
The sciatic nerve developed peripheral mononeuropathy in
rats according to the method previously reported by Mao et al.
(1993) and Shahid et al. (2017). Rats in both the ligation and
sham groups (n = 6/group) were anesthetized with a ketamine:
xylazine mixture in a ratio of 4:1. A blunt dissection revealed
the common sciatic nerve through the biceps femoris in the
center of the thigh. Approximately 7 mm of the sciatic nerve
was removed from the adherent tissue proximal to the
trifurcation. Four ligatures (4-0 chromic gut) were loosely
wrapped around it with an interval of about 1 mm. The nerve
was 4–5 mm long when it was impacted. The sham group had
a similar dissection, except that the sciatic nerve was not
ligated. All surgical procedures were performed under
standard sterile conditions. Primary care was taken for the
wound by applying povidone iodine ointment. The animals
were inspected every 2 days during the first 14 days and then
weekly for 28 days. During these examinations, each rat was
placed on a table and carefully studied for a minute or two for
changes in gait, the posture of the affected hind paw, the skin

TABLE 1 | Grouping of animals.

Groups Subjects Treatment given

Group I Sham Vehicle (distilled water)
Group II CCI groups CCI
Group III Standard CCI + pregabalin (10 mg/kg, p.o.)
Group IV Test catechin CCI + catechin (50 μg/kg p.o.)
Group V Test catechin CCI + catechin (100 μg/kg p.o.)
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condition of the affected hind paw, and the amount of
autonomy if present.

Behavioral Methods to Measure Pain-Like Behaviors
The nociceptive stimulus is the most commonly used method to
quantify nociception in animal studies. Behavioral tests have been
performed in CCI-induced animals after a previously reported
investigation before pain induction, on the 0th, 3rd, 7th, 14th,
21st, and 28th day after surgery. The animals were sacrificed on
the 28th day. The sciatic nerve, brain, and spinal cord of the
lumbar region were isolated with snap freeze using liquid
nitrogen and stored at −80°C. The total value was also
estimated for biochemical, molecular, and histological
parameters.

Test for Spontaneous Pain Using a Neutral Plate
To estimate the level of spontaneous pain (ongoing pain without
apparent external stimuli), the neutral plate method was used by
following the method published by Yoon et al. (1999) and Lee
et al. (2000). Each animal was placed on an aluminum plate
maintained at an ambient temperature (25 ± 0.5°C) beneath an
inverted, clear plastic cage for 5 min. The duration of lifting was
recorded for the next 5 min. The reaction time for the animal to
lick the paw or the withdrawal of the paw not related to the
general movement was taken as the latency period.

Test for Cold Allodynia Using a Cold Plate
For the measurement of cold allodynia using a cold plate, each rat
was placed on a brass plate kept at a cold temperature (5 ± 1°C)
(Robinson and Meert, 2005). It was allowed to acclimate for
5 min. After 5 min of adaptation, the cumulative duration of time
that the rat held its foot off the floor for the next 5 min was
recorded (Ruan et al., 2018).

Test for Mechanical Allodynia Using the von Frey Test
Automated von Frey filaments are fine gauge metal wires used to
test the rat’s sensitivity to mechanical stimuli by following the
previously reported method (Li et al., 2019; Nakamura et al.,
2021). Rats were kept in acrylic cages with a wire mesh grid on
top. A probe was placed on the hind paw for testing, avoiding less
sensitive footpads. Stimulation was maintained until the paw was
removed or gradually increased. In this technique, a maximum
acceptable force can be calculated. The procedure was performed
three times on each paw, with a minimum of a 10-s gap between
each test. The final reading was taken as the average of three
measurements.

Locomotor Activity Using an Actophotometer
Locomotor activity was measured using an actophotometer, as
reported by Nishat Fathima et al. (2020). An actophotometer
provided with a digital counter with infrared sensors and a
computerized counter and light source was used to measure
locomotor activity (horizontal movement) of animals. Each
animal was placed in the actophotometer for 5 min, and the
basal activity score was recorded for all animals. Total counts/
5 min per animal were used to measure the locomotor activity.

Evaluation of the Antinociceptive Potential of Catechin
Apparently, healthy adult male Sprague–Dawley rats (n = 6) were
anesthetized with a 4:1 combination of ketamine and xylazine
(1 ml/kg, i.p. supplemented). The common sciatic nerve was
revealed by blunt dissection through the biceps femoris in the
center of the thigh. Approximately 7 mm of the sciatic nerve was
removed from the adherent tissue proximal to the trifurcation.
Four ligatures (4-0 chromic gut) were loosely wrapped around it
with an interval of about 1 mm. The nerve was 4–5 mm long
when it was impacted. Under the magnification of ×40, it was
observed that ligatures were tied with extreme care. The required
degree of constriction slowed but did not stop the blood flow
through the superficial epineurial veins and occasionally caused a
slight transient spasm in the muscle around the exposure. The
incision was stitched up in layers. The sham group had a similar
dissection, except that the sciatic nerve was not ligated. The
animals were examined and treated with catechin from day 14 to
day 28.

Biochemical Parameters
Estimation of the Transcription Factor Nuclear Factor
κB by ELISA
Transcription factor analysis was performed with an ELISA kit
(Cayman Chemical, Michigan, United States) that allowed the
detection of NF-κB (Costa et al., 2008). The bottom of the well
was immobilized with a particular double-stranded DNA
(dsDNA) sequence, including an NF-κB response element. The
nuclear extract contained NF-κB, which binds to the NF-κB
response element. Subsequently, it was detected by adding a
specific antibody directed against NF-κB. The brain, spinal
cord, and sciatic nerve samples were homogenized in 100 µl of
ice-cold hypotonic lysis buffer per milligram of tissue. Five
hundred microliters of hypotonic buffer was supplied with
25 µl of Nonidet after centrifugation for 10 min. The pellets
were mixed with P-40, and the combination was centrifuged
at 14,000 rpm for 2 min at 4°C. The pellets were then suspended
in 50 µl of hypertonic lysis buffer. They were incubated at 4°C for
30 min with shaking. The supernatant containing the nuclear
extracts was kept at −80°C after centrifugation at 14,000 rpm for
10 min at 4°C. On the ELISA plate, 10 µg of nuclear protein
extract was added. Then, it was incubated at room temperature
for 1 h. A primary antibody recognizes an epitope in p65. After
1 h, the HRP substrate was added. The reaction was stopped after
10 min. The absorbance was recorded on a microplate reader at
450 nm. A cell lysate containing the transcription factor NF-κB
(human p65) was used as a positive control.

RNA Extraction and Reverse
Transcription–Polymerase Chain Reaction for the
Detection of Messenger RNA for IL-1 β, IL-6, and
TNF-α
RNA isolation. The mRNA levels were analyzed using the
reverse transcription (RT-PCR) approach by following a
previously described method (Konturek et al., 2000). The
brain was diced and chopped. The samples were disrupted in
liquid nitrogen using a mortar and pestle. The guanidium
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isothiocyanate–phenol–chloroform TRIzol technique extracted
the total cytoplasmic RNA from tissue samples. The RNA was
washed with 70% ethanol after being precipitated with isopropyl
alcohol. It was then treated for 45 min with an RNase inhibitor.
After resuspending the RNA at 65°C for 15 min, a Qiagen RNA
isolation kit was used to purify the RNA further. The mixture was
then processed with RNase-free DNase according to the
manufacturer’s instructions. The RNA was resuspended in
RNase-free water after precipitation. The absorbance at the
260-nm wavelength was used to determine the concentration.
The RNA samples were kept at −80°C until analyzed.

cDNA preparation. Reverse transcriptase (Cat. RR014A,
Takara Bio. Inc., CA, United States) and oligo-(dT) primers were
used tomake single-stranded cDNA from 5 µg of total cellular RNA,
according to the instructions given by the manufacturer. Of the total
RNA, 5 µg was heated at 65°C for 5 min to uncoil. A reaction
combination of 50 U Moloney murine leukemia virus reverse
transcriptase (M-MLV RT), 0.3 µg oligo (dT) primer with 1 µl
RNase block ribonuclease inhibitor (40 U/µl), and 2 µl of
100mM dATP, dTTP, dGTP, and dCTP master mix with 5 µl
10× buffer was used to make the cDNA. The cDNA (2 µl) was
amplified in a 50-µl reaction volume containing 2UTaq polymerase,
200 µM dNTP, 1.5 mM MgCl2, 5 µl 10× polymerase chain reaction
buffer, and specific primers used at a final concentration of 0.5 µM.
A DNA thermal cycler (Veriti® 96-well, Applied Biosystems, CA,
United States) was used to amplify the polymerase chain reaction
mixture. Band intensities were compared against those expressed
constitutively (Konturek et al., 2003; Brzozowski et al., 2005).

Electrophysiology of Nerves
The motor nerve conduction velocity was measured as an index
of the speed of conduction of an electrical impulse through a
nerve using a Student Physiograph by following a previously

described method (Kumar et al., 2007). The sciatic and tibial
nerves were stimulated with supramaximal stimulation, 0.5 V,
single stimulus, and square wave pulses for a duration of 0.2 ms
using bipolar needle electrodes (26 × 1/2 gauge). The paired steel
needle electrodes were placed percutaneously at 1 cm between the
reference and the stimulation or recording electrodes. Then, the
stimulating electrodes were implanted in the sciatic notch and
knee. On the tiny muscles of the hind paw dorsum, recording
electrodes were placed. Surface electrodes attached to a potential
BioCoupler were implanted in the paw to detect the motor
response. A clip was used to secure a ground electrode to the
calf muscle. The body temperature was maintained at 37°C
throughout the experiment. The Student Physiograph software
was used for recordings caused by motor fiber activation
(LabChart 7.3.7). In milliseconds, the latency (the time
between stimulation and the beginning of the reaction) was
assessed. The distance between the two stimulating electrodes
was measured in micrometers and converted to meters. The
following formula was used to calculate the conduction
velocity of the motor neuron.

Motor nerve conduction velocity (m/s) � (Dis tan ce between the nerve stimulation point) inmeters

(SciaticM − wave latency − tibialMwave latency) in sec onds

Statistical Analysis
All statistical tests were performed using the GraphPad Prism
software, version 8 (GraphPad Software Inc., La Jolla, CA,
United States). The data were treated with appropriate analysis
of variance (ANOVA). All values were expressed as mean ± SEM.
p < 0.001 was considered statistically significant.

RESULTS

General Observations
After surgery, no signs of autotomy or loss were observed.
Following nerve ligation, no motor impairment was observed.
The sham animals acted in the same way on both the ipsilateral
and the contralateral sides. Throughout the testing period, no
significant differences were found in either modality.

Assessment of Spontaneous Pain Using a
Neutral Plate
CCI resulted in the significant development of spontaneous
pain, as indicated by the increase in the duration of paw lifting
on a neutral plate. On day 0, the course of lifting the paw in the
sham group was 6 ± 0.3 s and 14 ± 0.07 s after 1 week.
Throughout the experiment, a significant difference in paw
lifting was observed between the sham group and the CCI
group. Pregabalin (10 mg/kg) did not attenuate the CCI-
induced increase in the duration of paw lifting. The time of
paw lifting improved significantly in the groups receiving
catechin 50 and 100 μg/kg i.p. in a dose-dependent manner.
With catechin 50 μg/kg i.p., the duration of paw lifting was
found to be 16 ± 0.8 s and 14 ± 0.7 s on the 21st day and the
28th day, respectively. These values were reduced to 19 ± 0.95 s

FIGURE 1 | Assessment of spontaneous pain using a neutral plate.
Values are expressed as mean ± SEM for six animals in each group.
Significance was determined by ANOVA. p < 0.001 when compared with
sham and CCI.
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and 20 ± 1 s on the 21st and 28th days, respectively, with
catechin 100 μg/kg, as shown in Figure 1.

Assessment of Cold Allodynia Using Cold
Plate Technique
Each animal was placed on an aluminum plate cooled to 4 ± 2°C
with ice beneath an inverted clear plastic cage and was allowed to
acclimate for 5minutes. It was found to be significantly increased in
the CCI group when compared with the sham group. On day 7, the
duration of paw lifting in the sham group was 15 ± 0.75 s. This was
significantly more than the duration of paw lifting in the positive
control group, which was found to be 3 ± 4.03 s. However, pregabalin
treatment slowed this increase in the CCI group when lifting their
paws dose-dependently. On the 21st day, the duration of paw lifting
was found to be 4 ± 14.01 s in the CCI group. This was further
increased to 22 ± 7.47 s in the group receiving pregabalin (10mg/kg
p.o.) on day 21. On the 28th day, it was found that the duration of
paw lifting was 6 ± 13.61 s in the CCI group, which had increased to
23 ± 7.02 s in the group that received pregabalin 10mg/kg p.o.

This difference had been consistent throughout the
experiment. However, catechin treatment with 50 μg/kg i.p.
reversed this increase in the duration of paw lifting. It was
found to be 15 ± 3.12 s and 18 ± 3.05 s on the 21st and 28th
days, respectively. On the 21st and 28th days, catechin 100 μg/kg
i.p. reduced the duration of paw lifting to 18 ± 3.56 s and 22 ±
4.15 s, respectively, in the treatment group, as shown in Figure 2.

Assessment of Mechanical Allodynia Using
the von Frey Test
The sciatic nerve resulted in a significant decrease in the threshold
for paw withdrawal in the von Frey test. This indicates the

development of mechanical allodynia. On day 7, the CCI
group reduced the paw withdrawal threshold to 3 ± 12.13 g,
which lasted throughout the experiment. This decrease was
significantly low compared with the paw withdrawal threshold.
It was 18 ± 12.86 g in the treatment group that received
pregabalin 10 mg/kg of p.o. On the 28th day, the withdrawal
threshold was found to be 4 ± 8.19 g in the CCI group. In
addition, it was increased to 20 ± 12.86 g in the treatment
group that received pregabalin 10 mg/kg p.o. on day 28.

The paw withdrawal threshold improved to 15 ± 6.47 g in the
treatment group receiving catechin 50 μg/kg i. p. on the 28th day.
This increased even more to 22 ± 24.15 g on the day the group
received 100 μg/kg catechin, as shown in Figure 3.

Assessment of Locomotor Activity Using an
Actophotometer
In the present study, CCI-induced behavioral alteration started
on the 3rd day and lasted throughout the experiment. Catechin
had facilitated the increase in the sensation of nociceptive pain,
electrophysiological changes, and biochemical changes. The
antinociceptive effect of the selected catechin doses was
indicated by their potential to attenuate spontaneous pain
(neural plate). The duration of paw lifting, when placed on
a neutral plate, was found to decrease in the treatment group
when compared with the CCI group in a dose-dependent
manner on days 21 and 28. Catechin also attenuated cold
allodynia, as indicated by the cold plate. The duration of paw
lifting decreased in a dose-dependent manner in the last
2 weeks. Catechin was found to significantly increase the
paw withdrawal threshold on days 21 and 28 when
compared with sham. Treatment with CCI and catechin did
not significantly reduce locomotor activity/5 min on any of the

FIGURE 2 | Assessment of cold allodynia using the cold plate technique.
Values are expressed as mean ± SEM for six animals in each group.
Significance was determined by a two-way analysis of variance. p < 0.001
when compared with sham and CCI.

FIGURE 3 | Assessment of mechanical allodynia using the von Frey test.
Values are expressed as mean ± SEM for six animals in each group.
Significance was determined by two-way analysis of variance. p < 0.001 when
compared with sham and CCI.
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assessment days when compared with sham and CCI,
respectively (Table 2).

Effect of Catechin on Nuclear Factor κB
Activation
The activated NF-κB test demonstrated that the DNA binding
activity of NF-κB component p65 was elevated in the sciatic nerve
of CCI rats. According to the results on the 28th day after the injury,
in the CCI group, NF-κB activation was found to be 0.597 ± 0.020
(arbitrary unit). On the contrary, in the control group, it was found to
be 0.231 ± 0.679 (arbitrary unit). An increase in the NF-κB DNA
binding activity was significantly reduced by administering catechin
(50 and 100 μg/kg) to rats. An average of 0.264 ± 0.035 (arbitrary
unit) and 0.212 ± 0.073 (arbitrary unit) was reported in the treatment
groups that received 50 and 100 μg/kg catechin, respectively, as
shown in Figure 4A. CCI-induced neuropathic pain has been

shown to increase NF-kB levels. This increase in NF-kB activation
is believed to be associated with an improved nociceptive response. It
was evidenced by the increase in inflammatory cytokines production
that causes inflammation and pain. Compared with the CCI group,
catechin administration for 14 days resulted in a dose-dependent
reduction in NF-κβ in the sciatic nerve.

Effect of Catechin on mRNA Expression of
IL-6, IL-1β, and TNF-α
The level of IL-6 mRNA was found to be 1.387 ± 0.057 in the CCI
group and 0.947 ± 0.055 in the sham group. These signals
decreased significantly to 1.09 ± 0.081 and 0.554 ± 0.071 in a
dose-dependent manner when treated with catechin at 50 and
100 μg/kg, respectively (Figure 4B).

The IL-1 mRNA levels of IL-1β were found to be 0.845 ± 0.012
in the CCI group and 0.415 ± 0.012 in the sham group. These

TABLE 2 | Effect of catechin on locomotor activity using an actophotometer.

Time
interval (in days)

Ambulation counts/5 min

Sham CCI Catechin 50 μg/kg Catechin 100 μg/kg

Pre 337.17 ± 16.858 257.43 ± 12.871 362.24 ± 18.112 360.04 ± 18.002
7th 378.31 ± 18.915 350.82 ± 17.541 391.31 ± 19.56 312.00 ± 15.602
14th 336.23 ± 16.811 285.13 ± 14.256 362.13 ± 18.1065 299.33 ± 14.966
21st 325.17 ± 16.258 266.82 ± 13.341 316.00 ± 15.8 239.26 ± 11.963
28th 330.27 ± 16.513 241.83 ± 12.09 307.44 ± 15.372 222.47 ± 11.123

Values are expressed as mean ± SEM, for six animals in each group. Significance was determined by two-way analysis of variance. #: p < 0.001 when compared with sham and CCI.

FIGURE 4 | Effect of catechin on (A) NF-κB activation; (B) mRNA expression of IL-6; (C) mRNA expression of IL-1β; and (D) mRNA expression of TNF-α.
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signals decreased significantly to 0.510 ± 0.065 and 0.383 ± 0.074
in a dose-dependent manner when treated with catechin at 50 and
100 μg/kg, respectively (Figure 4C).

The mRNA level of TNF-α was found to be 1.756 ± 0.121 in
the CCI group and 1.213 ± 0.065 in the sham group. These levels
decreased significantly to 1.364 ± 0.054 and 1.228 ± 0.077 in a
dose-dependent manner in the treatment groups that received
catechin 50 and 100 μg/kg, respectively (Figure 4D).

Effect of Catechin on Motor Nerve
Conduction Velocity
On the penultimate day before sacrifice, chronic constriction
damage resulted in a considerable loss of neuronal electrical
activity, as demonstrated by a decrease in the motor nerve
conduction velocity (MNCV) (56.24 ± 1.12) when compared
with sham (75.66 ± 1.65). Administration of catechin (50 and
100 μg/kg i.p.) attenuated the loss of MNCV in a dose-dependent
manner in the treatment groups by 63.78 ± 2.35*m/s and 86.70 ±
4.32*m/s, respectively.

DISCUSSION

In the present study, catechin was evaluated as an alternative
treatment option for neuropathic pain. Therefore, we conducted
this study using animal models to further validate and evaluate its
practicality in neuropathic pain. The antinociceptive effects of the
drug were tested using a CCI model. Due to the similarity of rat
behavioral responses to human pathophysiology and the pursuit of
effective therapies, the CCI-induced neuropathy model was used to
carry out the experiment. It is used as a target for the discovery of
new therapeutics by different researchers (Le Coz et al., 2017;
Limcharoen et al., 2020; Fonseca-Rodrigues et al., 2021).

The present study has shown a decrease in the activation of NF-
κβ extracted from the sciatic nerve in a dose-dependent manner at
given catechin doses. This outcome is consistent with an earlier study
by Zulazmi et al. (2015). Catechin at given doses has shown a
significant decrease in the expression of these pro-inflammatory
cytokines. The improvement in allodynia and spontaneous pain in
the last 2 weeks can be attributed to this corresponding decrease in
the expression of TNF-α, IL-6, and IL-β.

Catechin reversed the signs of neuropathic pain, although only in
the late phase of neuropathic pain. Catechinswere able to significantly
reduce hyperalgesia and allodynia in a dose-dependent manner after
treatment. Treatment with catechins strongly modulates the
expression of cytokines in the sciatic nerve. The increased TNF-α,
IL-6, and IL-β levels were completely restored to normal levels in the
rat brain by catechin treatment. Again, we observed a correlation
between the effect on pain and cytokines. The results suggest that
catechin can be considered a parent compound that blocks NF-κβ
activation. It showed that the attenuation of pain symptoms and
decreased levels of NF-κβ–regulated inflammatory cytokines (TNF-α,
IL-6, and IL-β) in the chronic constriction injury model. Similar
results have been observed by Gopalsamy et al. (2017).

These data indicate that CCI causes inflammation in
neurodegenerative pain through various mechanisms. Modulation

of inflammatorymolecules appears to be a common feature achieved
through different mechanisms, and the NF-κβ pathway has been
suggested to play an important role in neuropathic pain. It should be
noted that the results of the current study show consistency between
all parameters, and catechin can be considered an effective treatment
for neuropathic pain.

CONCLUSION

Neuropathic pain is a serious disorder that has a significant
impact on the quality of life of people who suffer from it,
despite the fact that treatment options are limited. The
treatment of neuropathic pain remains a major clinical
challenge due to the complex mechanisms involved in the
development of neuropathic pain.

In conclusion, we have demonstrated that the oral
administration of catechin reduced CCI-induced neuropathic
pain symptoms in rats. Based on the evidence-based result
obtained in this research, it is possible to draw meaningful
conclusions with catechin as an alternative therapy for
neuropathic pain. Our data suggest that catechin blocks NF-κβ
activation in the rat model with neuropathic pain. It further
decreases the levels of NF-κβ-regulated inflammatory cytokines
(TNF-α, IL-6, and IL-β).

The analgesic effect of catechin-mediated activation of NF-κβ
in a rat model of neuropathic pain requires further research in
different animal models to understand the exact mechanism of
anti–TNF-α therapies. Validation of the results will offer hope for
future success in treating neuropathic pain with maximum
pharmacological effects and fewer side effects. Oral
administration of catechin might represent a therapeutic
perspective in managing neuropathic pain conditions.
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